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Recently, Jafari and Sehgal obtained an extension of the Himmelberg fixed point theorem
based on the Kakutani fixed-point theorem. We give generalizations of the extension to
almost convex sets instead of convex sets. We also give generalizations for a large classB
of better admissible multimaps instead of the Kakutani maps. Our arguments are based
on the KKM principle and some of previous results due to the second author.
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1. Introduction

In 1972, Himmelberg [1] derived the following from the Kakutani fixed point theorem.

Theorem 1.1. Let T be a nonvoid convex subset of a separated locally convex space L. Let
F : T→T be a u.s.c. multimap such that F(x) is closed and convex for all x ∈ T , and F(T) is
contained in some compact subset C of T . Then F has a fixed point.

Recall that Theorem 1.1 is usually called the Himmelberg fixed point theorem and is a
common generalization of historically well-known fixed point theorems due to Brouwer,
Schauder, Tychonoff, Kakutani, Bohnenblust and Karlin, Fan, Glicksberg, and Hukuhara
(see [2]). Recall also that the multimap F is usually called a Kakutani map.

Recently, Jafari and Sehgal [3] obtained an extension of Theorem 1.1 based on the
Kakutani fixed point theorem. Our aim in this paper is to give generalizations of the ex-
tension to almost convex sets instead of convex sets. We also give generalizations for a
large class B of better admissible multimaps instead of the Kakutani maps. Our argu-
ments are based on the KKM principle and some results in [3–5].
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2. Preliminaries

Recall that, for topological spaces X and Y , a multimap (simply, a map) F : X � Y is
u.s.c. (resp., l.s.c.) if, for any closed (resp., open) subset A⊂ X ,

F−1(A) := {x ∈ X | F(x)∩A�=∅} (2.1)

is closed (resp., open) in X . If Y is regular, F is u.s.c. and has nonempty closed values,
then F has a closed graph.

Himmelberg [1] defined that a subset A of a t.v.s. E is said to be almost convex if, for
any neighborhood V of the origin 0 in E and for any finite set {w1, . . . ,wn} of points of A,
there exist z1, . . . ,zn ∈A such that zi−wi ∈V for all i, and co{z1, . . . ,zn} ⊂ A.

As the second author once showed in [6], the classical KKM principle implies many
fixed point theorems. In [4], the following almost fixed point theorem was obtained from
the KKM principle.

Theorem 2.1. Let X be a subset of a t.v.s. and Y an almost convex dense subset of X . Let
T : X � E be an l.s.c. (resp., a u.s.c.) map such that T(y) is convex for all y ∈ Y . If there is
a totally bounded subset K of X such that T(y)∩K �=∅ for each y ∈ Y , then for any convex
neighborhood V of the origin 0 of E, there exists a point xV ∈ Y such that T(xV )∩ (xV +
V) �=∅.

Note that a t.v.s. is not necessarily Hausdorff in Theorem 2.1. It is routine to deduce
Theorem 1.1 from Theorem 2.1. In fact, in 2000, we had the following in [7].

Theorem 2.2. LetX be a subset of a locally convex Hausdorff t.v.s. E andY an almost convex
dense subset of X . Let T : X � X be a compact u.s.c. map with nonempty closed values such
that T(y) is convex for all y ∈ Y . Then T has a fixed point.

In particular, for Y = X , we obtain the following generalization [7] of Theorem 1.1.

Theorem 2.3. Let X be an almost convex subset of a locally convex Hausdorff t.v.s. Then
any compact u.s.c. map T : X � X with nonempty closed convex values has a fixed point
in X .

A polytope P in a subset X of a t.v.s. E is a subset of X homeomorphic to a standard
simplex.

We define “better” admissible class B of maps from a subset X of a t.v.s. E into a
topological space Y as follows.

F ∈B(X ,Y)⇔ F : X � Y is a map such that, for each polytope P in X and for any
continuous function f : F(P)→P, the composition f (F|P) : P � P has a fixed point.

There is a large number of examples of better admissible maps (see [5]). A typical
example is an acyclic map, that is, a u.s.c. map with compact acyclic values. It is also
known that any u.s.c. map with compact values having a trivial shape (i.e., contractible in
each neighborhood) belongs toB(X ,Y), see [8].

For a subset C of a t.v.s. E, we say that a multimap F : C � C has an E-almost fixed
point if, for each neighborhood V of the origin 0 in E, there exist points xV ∈ C and
yV ∈ F(xV ) such that xV − yV ∈V as in Theorem 2.1.
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The following generalization of Theorems 1.1 and 2.3 is a consequence of the main
theorem of [5], whereBp should be replaced byB.

Theorem 2.4. Let X be an almost convex subset of a locally convex t.v.s. E.
(1) If F ∈B(X ,X) is compact, then F has an E-almost fixed point.
(2) Further, if E is Hausdorff and F is closed, then F has a fixed point.

In what follows, let E = (E,τ) be a t.v.s. with topology τ, ̂E = (E,τ)∧ the completion
of E, and E∗ the topological dual of E. Recall that if E∗ separates points of E, then (E,τ)
is Hausdorff and (E,τw) with the weak topology is Hausdorff and locally convex. We will
use the following lemmas in [3].

Lemma 2.5 [3, Lemma 2]. If ( ̂E)∗ separates points of ̂E, then E∗ separates points of E.

Lemma 2.6 [3, Lemma 4]. Let ( ̂E)∗ separate points of ̂E. Let K be a compact subset of E
whose coK in ̂E is ̂E-compact. If a net {xα} ⊂ coK is such that for some u ∈ K ,{xα}→u in
(E,τw), then there is a subnet {xβ} of {xα} with {xβ}→u in (E,τ).

3. New fixed point theorems

Motivated by [3], we obtain the following main result of this paper.

Theorem 3.1. Let E be a t.v.s., C an almost convex subset of E, and K a compact subset of
C such that coK is ̂E-compact. Let F : C � K be a u.s.c. multimap such that

(1) for each x ∈ C, F(x) is a nonempty closed subset of K ;
(2) F has an (E,τw)-almost fixed point in K .

If ( ̂E,τw)
∗ separates points of ̂E, then F has a fixed point in K .

Proof. We follow that of [3, Theorem 5]. Since ( ̂E,τw)
∗ separates points of ̂E, by Lemma

2.5, (E,τw) is a Hausdorff locally convex t.v.s. Let � be a neighborhood basis of the origin
0 of (E,τw) consisting of (E,τw)-closed convex and symmetric subsets of E. For each
V ∈ �, there exist points xV ∈ K , yV ∈ F(xV ) such that xV − yV ∈ V . Partially order
� by inclusion. Then {xV − yV | V ∈�}→0 in (E,τw). Since {yV | V ∈�} ⊂ K , there
exists a subnet {yV ′ |V ′ ∈�′ ⊂�} and a u∈ K such that {yV ′ |V ′ ∈�′}→u in E. Since
xV − yV ∈ V , the net {xV ′ | V ′ ∈�′}→u in (E,τw). Since u ∈ K and {xV ′ | V ′ ∈�′} ⊂
coK , it follows by Lemma 2.6 that there is a subnet {xV ′′ } of {xV ′} with {xV ′′ }→u in E.
Hence {yV ′′}→u in E also. Since K is regular and F is u.s.c. with closed values, F has a
closed graph. Since, for each V ′′, yV ′′ ∈ F(xV ′′), we have u ∈ F(u). This completes our
proof. �

From Theorem 2.1, we immediately have the following.

Theorem 3.2. Let E be a t.v.s. such that (E,τw) is a locally convex t.v.s., C an almost convex
subset of E, and K a (E,τw)-totally bounded subset of C. Let F : C � K be a u.s.c. (resp., an
l.s.c.) multimap such that for each x ∈ C, F(x) is a nonempty convex subset of K . Then F
has an (E,τw)-almost fixed point in K .
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Combining Theorems 3.1 and 3.2, we have the following.

Theorem 3.3. Let E be a t.v.s., C an almost convex subset of E, and K a compact subset of
C such that coK is ̂E-compact. Let F : C � K be a u.s.c. multimap such that for each x ∈ C,
F(x) is a nonempty closed and convex subset of K . If ( ̂E,τw)

∗ separates points of ̂E, then F
has a fixed point in K .

When C is convex, Theorem 3.3 reduces to the main theorem of Jafari and Sehgal [3].
As noted in [3], if E is a locally convex Hausdorff t.v.s., then so is ̂E and hence ( ̂E)∗

separates points of ̂E. Consequently, Theorem 2.2 follows from Theorem 3.3.
From Theorem 2.4, we immediately have the following.

Theorem 3.4. Let E be a t.v.s. such that (E,τw) is a locally convex t.v.s., C an almost convex
subset of E, and K an (E,τw)-compact subset of C. If F ∈B(C,K), then F has an (E,τw)-
almost fixed point in K .

Combining Theorems 3.1 and 3.4, we have the following.

Theorem 3.5. Let E be a t.v.s., C an almost convex subset of E, and K a compact subset of
C such that coK is ̂E-compact. Let F ∈B(C,K). If ( ̂E,τw)

∗ separates points of ̂E, then F has
a fixed point in K .

As noted in [3], if E is a locally convex Hausdorff t.v.s., then so is ̂E and hence ( ̂E)∗

separates points of ̂E. Consequently, Theorem 2.4 follows from Theorem 3.5.
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