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1. Introduction

Branciari [1] obtained a fixed point result for a single mapping satisfying an analogue
of Banach’s contraction principle for an integral-type inequality. The authors in [2–6]
proved some fixed point theorems involving more general contractive conditions. Also
in [7], Suzuki shows that Meir-Keeler contractions of integral type are still Meir-Keeler
contractions. In this paper, we establish a fixed point theorem for weakly compatible
maps satisfying a general contractive inequality of integral type. This result substantially
extends the theorems of [1, 4, 6].

Sessa [8] generalized the concept of commuting mappings by calling self-mappings A
and S of metric space (X ,d) a weakly commuting pair if and only if d(ASx,SAx)≤ d(Ax,
Sx) for all x ∈ X . He and others proved some common fixed point theorems of weakly
commuting mappings [8–11]. Then, Jungck [12] introduced the concept of compatibility
and he and others proved some common fixed point theorems using this concept [12–16].

Clearly, commuting mappings are weakly commuting and weakly commuting map-
pings are compatible. Examples in [8, 12] show that neither converse is true.

Recently, Jungck and Rhoades [14] defined the concept of weak compatibility.

Definition 1.1 (see [14, 17]). Two maps A,S : X → X are said to be weakly compatible if
they commute at their coincidence points.
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Again, it is obvious that compatible mappings are weakly compatible. Examples in
[14, 17] show that neither converse is true. Many fixed point results have been obtained
for weakly compatible mappings (see [14, 17–21]).

Lemma 1.2 (see [22]). Let ψ : R+ → R+ be a right continuous function such that ψ(t) < t
for every t > 0, then limn→∞ψn(t) = 0, where ψn denotes the n-times repeated composition
of ψ with itself.

2. Main result

Now we give our main theorem.

Theorem 2.1. Let A, B, S, and T be self-maps defined on a metric space (X ,d) satisfying
the following conditions:

(i) S(X)⊆ B(X), T(X)⊆ A(X),
(ii) for all x, y ∈ X , there exists a right continuous function ψ :R+ →R+, ψ(0)= 0, and

ψ(s) < s for s > 0 such that

∫ d(Sx,Ty)

0
ϕ(t)dt ≤ ψ

(∫M(x,y)

0
ϕ(t)dt

)
, (2.1)

where ϕ : R+ → R+ is a Lebesque integrable mapping which is summable, nonnegative and
such that

∫ ε

0
ϕ(t)dt > 0 for each ε > 0, (2.2)

M(x, y)=max
{
d(Ax,By),d(Sx,Ax),d(Ty,By),

d(Sx,By) +d(Ty,Ax)
2

}
. (2.3)

If one of A(X), B(X), S(X), or T(X) is a complete subspace of X , then
(1) A and S have a coincidence point, or
(2) B and T have a coincidence point.
Further, if S and A as well as T and B are weakly compatible, then
(3) A, B, S, and T have a unique common fixed point.

Proof. Let x0 ∈ X be an arbitrary point of X . From (i) we can construct a sequence {yn}
in X as follows:

y2n+1 = Sx2n = Bx2n+1, y2n+2 = Tx2n+1 =Ax2n+2 (2.4)

for all n = 0,1, . . .. Define dn = d(yn, yn+1). Suppose that d2n = 0 for some n. Then y2n =
y2n+1; that is, Tx2n−1 =Ax2n = Sx2n = Bx2n+1, and A and S have a coincidence point. �

Similarly, if d2n+1 = 0, then B and T have a coincidence point. Assume that dn �= 0 for
each n.

Then, by (ii),

∫ d(Sx2n,Tx2n+1)

0
ϕ(t)dt ≤ ψ

(∫M(x2n,x2n+1)

0
ϕ(t)dt

)
, (2.5)
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where

M(x2n,x2n+1)=max
{
d
(
Ax2n,Bx2n+1

)
,d
(
Sx2n,Ax2n

)
,d
(
Tx2n+1,Bx2n+1

)
,

d
(
Sx2n,Bx2n+1

)
+d
(
Tx2n+1,Ax2n

)
2

}

=max
{
d2n,d2n+1

}
.

(2.6)

Thus from (2.5), we have

∫ d2n+1

0
ϕ(t)dt ≤ ψ

(∫max{d2n,d2n+1}

0
ϕ(t)dt

)
. (2.7)

Now, if d2n+1 ≥ d2n for some n, then, from (2.7), we have

∫ d2n+1

0
ϕ(t)dt ≤ ψ

(∫ d2n+1

0
ϕ(t)dt

)
<
∫ d2n+1

0
ϕ(t)dt, (2.8)

which is a contradiction. Thus d2n > d2n+1 for all n, and so, from (2.7), we have

∫ d2n+1

0
ϕ(t)dt ≤ ψ

(∫ d2n

0
ϕ(t)dt

)
. (2.9)

Similarly,

∫ d2n

0
ϕ(t)dt ≤ ψ

(∫ d2n−1

0
ϕ(t)dt

)
. (2.10)

In general, we have for all n= 1,2, . . . ,

∫ dn

0
ϕ(t)dt ≤ ψ

(∫ dn−1

0
ϕ(t)dt

)
. (2.11)

From (2.11), we have

∫ dn

0
ϕ(t)dt ≤ ψ

(∫ dn−1

0
ϕ(t)dt

)

≤ ψ2
(∫ dn−2

0
ϕ(t)dt

)

...

≤ ψn
(∫ d0

0
ϕ(t)dt

)
,

(2.12)

and, taking the limit as n→∞ and using Lemma 1.2, we have

lim
n→∞

∫ dn

0
ϕ(t)dt ≤ lim

n→∞ψ
n
(∫ d0

0
ϕ(t)dt

)
= 0, (2.13)
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which, from (2.2), implies that

lim
n→∞dn = lim

n→∞d
(
yn, yn+1

)= 0. (2.14)

We now show that {yn} is a Cauchy sequence. For this it is sufficient to show that {y2n}
is a Cauchy sequence. Suppose that {y2n} is not a Cauchy sequence. Then there exists an
ε > 0 such that for each even integer 2k there exist even integers 2m(k) > 2n(k) > 2k such
that

d
(
y2n(k), y2m(k)

)≥ ε. (2.15)

For every even integer 2k, let 2m(k) be the least positive integer exceeding 2n(k) satisfying
(2.15) such that

d
(
y2n(k), y2m(k)−2

)
< ε. (2.16)

Now

0 < δ :=
∫ ε

0
ϕ(t)dt ≤

∫ d(y2n(k),y2m(k))

0
ϕ(t)dt ≤

∫ d(y2n(k),y2m(k)−2)+d2m(k)−2+d2m(k)−1

0
ϕ(t)dt. (2.17)

Then by (2.14), (2.15), and (2.16), it follows that

lim
k→∞

∫ d(y2n(k),y2m(k))

0
ϕ(t)dt = δ. (2.18)

Also, by the triangular inequality,
∣∣d(y2n(k), y2m(k)−1

)−d
(
y2n(k), y2m(k)

)∣∣≤ d2m(k)−1,
∣∣d(y2n(k)+1, y2m(k)−1

)−d
(
y2n(k), y2m(k)

)∣∣≤ d2m(k)−1 +d2n(k),
(2.19)

and so
∫ |d(y2n(k),y2m(k)−1)−d(y2n(k),y2m(k))|

0
ϕ(t)dt ≤

∫ d2m(k)−1

0
ϕ(t)dt,

∫ |d(y2n(k)+1,y2m(k)−1)−d(y2n(k),y2m(k))|

0
ϕ(t)dt ≤

∫ d2m(k)−1+d2n(k)

0
ϕ(t)dt.

(2.20)

Using (2.18), we get

∫ d(y2n(k),y2m(k)−1)

0
ϕ(t)dt −→ δ, (2.21)

∫ d(y2n(k)+1,y2m(k)−1)

0
ϕ(t)dt −→ δ, (2.22)

as k→∞. Thus

d
(
y2n(k), y2m(k)

)≤ d2n(k) +d
(
y2n(k)+1, y2m(k)

)≤ d2n(k) +d
(
Sx2n(k),Tx2m(k)−1

)
, (2.23)
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and so

∫ d(y2n(k),y2m(k))

0
ϕ(t)dt ≤

∫ d2n(k)+d(Sx2n(k),Tx2m(k)−1)

0
ϕ(t)dt. (2.24)

Letting k→∞ on both sides of the last inequality, we have

δ ≤ lim
k→∞

∫ d(Sx2n(k),Tx2m(k)−1)

0
ϕ(t)dt ≤ lim

k→∞
ψ
(∫M(x2n(k),x2m(k)−1)

0
ϕ(t)dt

)
, (2.25)

where

M
(
x2n(k),x2m(k)−1

)=max
{
d
(
y2n(k), y2m(k)−1

)
,d2n(k),d2m(k)−1,

d
(
y2n(k)+1, y2m(k)−1

)
+d
(
y2n(k), y2m(k)

)
2

}
.

(2.26)

Combining (2.14), (2.15), (2.16), (2.18), (2.21), and (2.22) yields the following contra-
diction from (2.25):

δ ≤ ψ(δ) < δ. (2.27)

Thus {y2n} is a Cauchy sequence and so {yn} is a Cauchy sequence.
Now, suppose that A(X) is complete. Note that the sequence {y2n} is contained in

A(X) and has a limit in A(X). Call it u. Let v ∈ A−1u. Then Av = u. We will use the fact
that the sequence {y2n−1} also converges to u. To prove that Sv = u, let r = d(Sv,u) > 0.
Then taking x = v and y = x2n−1 in (ii),

∫ d(Sv,y2n)

0
ϕ(t)dt =

∫ d(Sv,Tx2n−1)

0
ϕ(t)dt ≤ ψ

(∫M(v,x2n−1)

0
ϕ(t)dt

)
, (2.28)

where

M
(
v,x2n−1

)=max
{
d
(
u, y2n−1

)
,d(Sv,u),d

(
y2n, y2n−1

)
,

d
(
Sv, y2n−1

)
+d
(
y2n,u

)
2

}
.

(2.29)

Since limn d(Sv, y2n)= r, limn d(u, y2n−1)= limn d(y2n, y2n−1)= 0, and limn[d(Sv, y2n−1) +
d(y2n,u)]= r, we may conclude that

∫ r

0
ϕ(t)dt ≤ ψ

(∫ r

0
ϕ(t)dt

)
<
∫ r

0
ϕ(t)dt, (2.30)

which is a contradiction. Hence from (2.2), Sv = u. This proves (1).
Since S(X) ⊆ B(X), Sv = u implies that u ∈ B(X). Let w ∈ B−1u. Then Bw = u. By

using the argument of the previous section, it can be easily verified that Tw = u. This
proves (2).

The same result holds if we assume that B(X) is complete instead of A(X).
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Now if T(X) is complete, then by (i), u∈ T(X)⊆ A(X). Similarly if S(X) is complete,
then u∈ S(X)⊆ B(X). Thus (1) and (2) are completely established.

To prove (3), note that S, A and T , B are weakly compatible and

u= Sv =Av = Tw = Bw, (2.31)

then

Au= ASv = SAv = Su,

Bu= BTw = TBw = Tu.
(2.32)

If Tu �= u then, from (ii), (2.31) and (2.32),

∫ d(u,Tu)

0
ϕ(t)dt =

∫ d(Sv,Tu)

0
ϕ(t)dt ≤ ψ

(∫M(v,u)

0
ϕ(t)dt

)

= ψ
(∫ d(u,Tu)

0
ϕ(t)dt

)
<
∫ d(u,Tu)

0
ϕ(t)dt,

(2.33)

which is a contradiction. So Tu= u. Similarly Su= u. Then, evidently from (2.32), u is a
common fixed point of A, B, S, and T .

The uniqueness of the common fixed point follows easily from condition (ii).

Remark 2.2. Theorem 2.1 is a generalization of the main theorem of [1], Theorem 2 of
[4], and Theorem 2 of [6].

If ϕ(t)≡ 1, then Theorem 2.1 of this paper reduces to Theorem 2.1 of [17].
If ϕ(t)≡ 1 and ψ = ht, 0≤ h < 1, then Theorem 2.1 of this paper reduces to Corollary

3.1 of [20].

The following example shows that our main theorem is generalization of Corollary 3.1
of [20].

Example 2.3. Let X = {1/n : n ∈ N}∪ {0} with Euclidean metric and S, T , A, B are self
maps of X defined by

S
(
1
n

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
n+1

if n is odd,

1
n+2

if n is even,

0 if n=∞,

T
(
1
n

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
n+1

if n is even,

1
n+2

if n is odd,

0 if n=∞,

A
(
1
n

)
= B

(
1
n

)
= 1

n
∀n∈N ∪{∞}.

(2.34)

Clearly S(X)⊆ B(X), T(X)⊆ A(X), A(X) is a complete subspace of X and A,S and B,T
are weakly compatible.
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Now suppose that the contractive condition of Corollary 3.1 of [20] is satisfying, that
is, there exists h∈ [0,1) such that

d(Sx,Ty)≤ hM(x, y) (2.35)

for all x, y ∈ X . Therefore, for x �= y, we have

d(Sx,Ty)
M(x, y)

≤ h < 1, (2.36)

but since supx �=y(d(Sx,Ty)/M(x, y)) = 1, one has a contradiction. Thus the condition
(2.35) is not satisfied.

Now we define ϕ(t) =max{0, t1/t−2[1− log t]} for t > 0, ϕ(0) = 0. Then for any τ ∈
(0,e),

∫ τ

0
ϕ(t)dt = τ1/τ . (2.37)

Thus we must show that there exists a right continuous function ψ : R+ → R+, ψ(s) < s
for s > 0, ψ(0)= 0 such that

(
d(Sx,Ty)

)1/d(Sx,Ty) ≤ ψ
(
(M(x, y))1/M(x,y)) (2.38)

for all x, y ∈ X . Now we claim that (2.38) is satisfying with ψ(s)= s/2, that is,

(
d(Sx,Ty)

)1/d(Sx,Ty) ≤ 1
2

(
(M(x, y))1/M(x,y)) (2.39)

for all x, y ∈ X . Since the function τ → τ1/τ is nondecreasing, we show sufficiently that

(
d(Sx,Ty)

)1/d(Sx,Ty) ≤ 1
2

(
(d(x, y))1/d(x,y)

)
(2.40)

instead of (2.39). Now using Example 4 of [6], we have (2.40), thus the condition (2.38)
is satisfied.
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tut Mathématique. Publications. Nouvelle Série, vol. 32 (46), pp. 149–153, 1982.

[9] B. E. Rhoades and S. Sessa, “Common fixed point theorems for three mappings under a weak
commutativity condition,” Indian Journal of Pure and Applied Mathematics, vol. 17, no. 1, pp.
47–57, 1986.

[10] S. Sessa and B. Fisher, “Common fixed points of weakly commuting mappings,” Bulletin of the
Polish Academy of Sciences. Mathematics, vol. 35, no. 5-6, pp. 341–349, 1987.

[11] S. L. Singh, K. S. Ha, and Y. J. Cho, “Coincidence and fixed points of nonlinear hybrid con-
tractions,” International Journal of Mathematics and Mathematical Sciences, vol. 12, no. 2, pp.
247–256, 1989.

[12] G. Jungck, “Compatible mappings and common fixed points,” International Journal of Mathe-
matics and Mathematical Sciences, vol. 9, no. 4, pp. 771–779, 1986.

[13] G. Jungck, “Compatible mappings and common fixed points. II,” International Journal of Math-
ematics and Mathematical Sciences, vol. 11, no. 2, pp. 285–288, 1988.

[14] G. Jungck and B. E. Rhoades, “Fixed points for set valued functions without continuity,” Indian
Journal of Pure and Applied Mathematics, vol. 29, no. 3, pp. 227–238, 1998.

[15] H. Kaneko and S. Sessa, “Fixed point theorems for compatible multi-valued and single-valued
mappings,” International Journal of Mathematics and Mathematical Sciences, vol. 12, no. 2, pp.
257–262, 1989.
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