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1. Introduction

The Banach contraction principle is one of the most fundamental fixed point theorems.

Theorem 1.1 (Banach contraction principle). Let (X ,d) be a complete metric space, and
let f : X → X be a map. If there exists a constant c ∈ [0,1) such that

d
(
f (x), f (y)

)≤ c ·d(x, y), (C.1)

then f has a unique fixed point u, and limn→∞ f n(y)= u for each y ∈ X .

Since the publication of this result, various authors have generalized and extended it
by introducing weakly contractive conditions. In [1], Rhoades gathered 25 contractive
conditions in order to compare them and obtain fixed point theorems. Collaço and Silva
[2] presented a complete comparison for the maps numbered (1)–(25) by Rhoades [1].

One of the methods of alternating the Banach contractive condition is not to com-
pare d( f (x), f (y)) with d(x, y), but compare d( f p(x), f q(y)) with the distances between
any two points in Op(x, f )∪Oq(y, f ), where p ≥ 1 and q ≥ 1 are given integers, and
Op(x, f )≡ {x, f (x), . . . , f p(x)} (e.g., see [3–6]).
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The generalized banach contraction conjecture was established in [7–10], of which
the contractive condition is min{d( f k(x), f k(y)) : 1 ≤ k ≤ J} ≤ c · d(x, y), where J is a
positive integer.

A further method of alternating the Banach contractive condition is to change the
constant c ∈ [0,1) in the contractive condition into a function (e.g., see [11–14]).

The third method of alternating the Banach contractive condition is to compare not
only d( f p(x), f q(y)) with the distances between any two points in Op(x, f )∪Oq(y, f ),
but also d( f p(x), f q(y)) with the distances between any two points in O(x, f )∪O(y, f ),
where O(x, f )≡ { f n(x) : n= 0,1,2, . . .} (e.g., see [6, 15, 16]).

Following the above three methods of generalizing the Banach contraction principle,
we present some of fixed point theorems under some relatively weaker and more general
conditions.

2. Weakly contractive maps with the infimum of orbital diameters being 0

Throughout this paper, we assume that (X ,d) is a complete metric space, and f : X → X is
a map. Given a subsetX0 ofX , denote by diam(X0) the diameter ofX0, that is, diam(X0)=
sup{d(x, y) : x, y ∈ X0}. For any x ∈ X , write O(x)=O(x, f )= {x, f (x), f 2(x), . . .}. O(x)
is called the orbit of x under f .O(x) is usually regarded as a set of points, while sometimes
it is regarded as a sequence of points. Denote by Z+ the set of all nonnegative integers,
and denote by N the set of all positive integers. For any n∈N, write Nn = {1, . . . ,n}. For
n∈ Z+, write Zn = {0,1, . . . ,n}, and On(x)=On(x, f )= {x, f (x), . . . , f n(x)}.

For any given map f : X → X , define ρ : X → [0,∞] as follows:

ρ(x)= diam
(
O(x, f )

)= sup
{
d
(
f i(x), f j(x)

)
: i, j ∈ Z+

}
for any x ∈ X. (∗)

Definition 2.1 (see [16]). Let (X ,d) be a metric space, and let f : X → X be a map. If for
any sequence {xn} in X , limn→∞ ρ(xn)= ρ(x) whenever limn→∞ xn = x, then ρ is called to
be closed, and f is called to have closed orbital diametral function.

That f has closed orbital diametral function means ρ : X → [0,∞] is continuous. It is
easy to see that “ f is continuous” and “ f has closed orbital diametral function” do not
imply each other.

Theorem 2.2. Let (X ,d) be a complete metric space, and suppose that f : X → X has closed
orbital diametral function or f : X → X is continuous. If there exist a nonnegative real num-
ber s, an increasing function μ : (0,∞)→ (0,1], and a family of functions {γi j : X ×X →
[0,1) : i, j = 0,1,2, . . .} such that, for any x, y ∈ X ,

∞∑

i=0

∞∑

j=0
γi j(x, y)≤ 1−μ

(
d(x, y)

)
, (2.1)

d
(
f (x), f (y)

)≤ s · [ρ(x) + ρ(y)
]
+
∞∑

i=0

∞∑

j=0
γi j(x, y)d

(
f i(x), f j(y)

)
, (2.2)

then f has a unique fixed point if and only if inf{ρ(x) : x ∈ X} = 0.
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Proof. The necessity is obvious. Now we show the sufficiency.
For each n ∈N, since inf{ρ(x) : x ∈ X} = 0, we can choose a point vn ∈ X such that

ρ(vn) < 1/n. We claim that v1,v2, . . . is a Cauchy sequence of points. In fact, if v1,v2, . . . is
not a Cauchy sequence of points, then there exists δ > 0 such that, for any k ∈ N, there
are i, j ∈N with i > j > k satisfying d(vi,vj) > 3δ. Let μ0 = μ(δ). Choose k ∈N such that
2(s+1)/k < δμ0/2, and choose n >m > k such that d(vn,vm) > 3δ. Then for any x ∈O(vn)
and any y ∈O(vm), we have

d(x, y)≥ d
(
vn,vm

)− ρ
(
vn
)− ρ

(
vm
)
> 3δ− 1

n
− 1
m

> δ, (2.3)

this implies
∑∞

i=0
∑∞

j=0 γi j(x, y)≤ 1−μ(d(x, y))≤ 1−μ0, and hence

d
(
f (x), f (y)

)≤ s · [ρ(x) + ρ(y)
]
+
∞∑

i=0

∞∑

j=0
γi j(x, y)

[
d(x, y) + ρ(x) + ρ(y)

]

< (s+1)
[
ρ(x) + ρ(y)

]
+
(
1−μ0

)
d(x, y)

≤ (s+1)
[
ρ
(
vn
)
+ ρ
(
vm
)]
+
(
1−μ0

)
d(x, y)

<
2(s+1)

k
+
(
1−μ0

)
d(x, y) <

δμ0
2

+
(
1−μ0

)
d(x, y)

<
(
1− μ0

2

)
d(x, y).

(2.4)

It follows from (2.4) that limi→∞d( f i(vn), f i(vm))= limi→∞(1−μ0/2)i ·d(vn,vm)= 0. But
this contradicts (2.3).

Thus v1,v2, . . .must be a Cauchy sequence of points. We may assume that it converges
to w.
Case 1. If f has closed orbital diametral function, then the function ρ is closed. Noting
that ρ(vn) < 1/n, we have ρ(w)= limn→∞ ρ(vn)= 0, which implies that w is a fixed point
of f .

Case 2. If f is continuous, then limn→∞ f (vn) = f (w). Since d(vn, f (vn)) ≤ ρ(vn) < 1/n,
we get limn→∞d(vn, f (vn))= 0, and then d(w, f (w))= 0. Hence w is a fixed point of f .

Thus in both cases w is a fixed point of f .
Suppose u is also a fixed point of f . If u 
= w, then by (2.2) and (2.1) we can obtain

d(u,w)= d( f (u), f (w))≤ s · (0+0)+ [1−μ(d(u,w))] ·d(u,w) < d(u,w), which is a con-
tradiction. Hence u=w, andw is the unique fixed point of f . Theorem 2.2 is proved. �

Theorem 2.3. Let (X ,d) be a complete metric space, and suppose that f : X → X has closed
orbital diametral function or f : X → X is continuous. If there exist s≥ 0 and t ∈ [0,1) such
that, for any x, y ∈ X ,

d
(
f (x), f (y)

)≤ s · [ρ(x) + ρ(y)
]
+ t ·max

{
d
(
f i(x), f j(y)

)
: i∈ Z+, j ∈ Z+

}
, (2.5)

then f has a unique fixed point if and only if inf{ρ(x) : x ∈ X} = 0.
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The proof of Theorem 2.3 is similar to that of Theorem 2.2, and is omitted.
In [16], Sharma and Thakur discussed the condition

d
(
f (x), f (y)

)≤ ad(x, y) + b
[
d
(
x, f (x)

)
+d
(
y, f (y)

)
]

+ c
[
d(x, f (y)

)
+d
(
y, f (x)

)]
+ e
[
d
(
x, f 2(x)

)
+d
(
y, f 2(y)

)]

+ g
[
d
(
f (x), f 2(x)

)
+d
(
f (y), f 2(x)

)]
,

(C)

where a, b, c, e, g are all nonnegative real numbers with 3a+2b+4c+5e+3g ≤ 1.
In Theorem 2.2, set s = b + e + g, μ ≡ 1− (a+ 2c + g), γ00 ≡ a, γ01 = γ10 ≡ c, γ21 ≡ g,

and γi j ≡ 0, otherwise. Then (C) implies (2.2). In Theorem 2.3, set s = b + e + g, and
t = a+2c+ g. Then (C) implies (2.5), too. Thus, by each of Theorems 2.2 and 2.3, we can
obtain the following theorem, which improves the main result of Sharma and Thakur
[16].

Theorem 2.4. Suppose that (X ,d) is a complete metric space, and f : X → X has closed
orbital diametral function. If (C) holds for any x, y ∈ X with a+2c+ g < 1, then inf{ρ(x) :
x ∈ X} = 0 if and only if f has a fixed point.

3. Weakly contractivemapswith anorbit onwhich themovingdistance being bounded

In Theorems 2.2 and 2.3, to determine whether f has a fixed point or not, we need the
condition that the infimum of orbital diameters is 0. In the following, we will not rely on
this condition and discuss some contractive maps whose contractive conditions are still
relatively weak. Throughout this section, we assume that f : X → X is continuous.

Let f : X → X be a given map. For any integers i≥ 0, j ≥ 0, and x, y ∈ X , write

di j(x)= di j f (x)= d
(
f i(x), f j(x)

)
,

di j(x, y)= di j f (x, y)= d
(
f i(x), f j(y)

)
.

(∗′)

Definition 3.1. Let Y ⊂ X , k ∈ N, and g : X → X be a self-mapping. If sup{d(gk(y), y) :
y ∈ Y} <∞, then the moving distance of gk on Y is bounded.

Obviously, we have the following.

Proposition 3.2. Let m∈N. If g(Y)⊂ Y and the moving distance of g on Y is bounded,
then the moving distance of gm on Y is also bounded.

However, the converse of the above proposition does not hold. In fact, we have the
following counterexample.

Example 3.3. Let R= (−∞,+∞). Define f :R→R by

f (x)=−x for x ∈R. (3.1)
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It is easy to see that the moving distance of f 2 on R is bounded (equal to 0), while the
moving distance of f on R is unbounded.

Theorem 3.4. Let m, n be two given positive integers, and let di j(x) be defined as in (∗′).
Suppose there exist nonnegative real numbers a0,a1,a2, . . . with

∑∞
i=0 ai < 1 such that

dn+m,n(x)≤
∞∑

i=0
aidi+m,i(x) ∀x ∈ X. (3.2)

Then the following statements are equivalent:
(1) f has a periodic point with period being some factor ofm;
(2) there is an orbitO(v, f ) such that the moving distance of f m onO(v, f ) is bounded;
(3) f has a bounded orbit.

Proof. (1)⇒(3)⇒(2) is clear. Now we prove (2)⇒(1). Let a =∑∞
i=0 ai, then a ∈ [0,1). If

a= 0, then (2)⇒(1) holds obviously, and hence we may assume a∈ (0,1). Let bi = ai/a,
then

∑∞
i=0 bi = 1. By (3.2) we get

dn+m,n(x)≤ a ·
∞∑

i=0
bidi+m,i(x) for any x ∈ X. (3.3)

Assume {d( f m(y), y) : y ∈O(v, f )} is bounded. We claim that

dn+m,n(v)≤ a ·max
{
di+m,i(v) : i∈ Zn−1

}
. (3.4)

In fact, if (3.4) does not hold, then by (3.3) there exists j > n such that

dj+m, j(v)≥ 1
a
·dn+m,n(v) > 0,

di+m,i(v) <
1
a
·dn+m,n(v), i= 0,1, . . . , j− 1.

(3.5)

Combining (3.5) we obtain

dj+m, j(v) > a ·max
{
di+m,i(v) : i∈ Z j−1

}
. (3.6)

Similarly, we can obtain an infinite sequence of integers j0 < j1 < j2 < ··· satisfying

djk+m, jk (v)≥
1
a
·djk−1+m, jk−1 (v), k = 1,2,3, . . . . (3.7)

However, this contradicts to that {d( f m(y), y) : y ∈O(v, f )} is bounded. Therefore, (3.4)
must hold.

For any k ∈ Z+, O( f k(v), f )⊆O(v, f ). Replacing v in (3.4) with f k(v), we have

dn+m+k,n+k(v)≤ a ·max
{
di+m+k,i+k(v) : i∈ Zn−1

}
. (3.8)
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Write b =max{di+m,i(v) : i∈ Zn−1}. For j = 0,1,2, . . . ,n− 1, by (3.8) we can successively
get

dn+ j+m,n+ j(v)≤ ab,

d2n+ j+m,2n+ j(v)≤ a2b,

...

(3.9)

In general, we have

dkn+ j+m,kn+ j(v)≤ akb, k = 1,2, . . . . (3.10)

Therefore, it follows from 0 < a < 1 and (3.10) that v, f m(v), f 2m(v), f 3m(v), . . . is a Cauchy
sequence. We may assume it converges to w ∈ X . Then f m(w)= w, and hence w is a pe-
riodic point of f with period being some factor ofm. Theorem 3.4 is proved. �

As a corollary of Theorem 3.4, we have the following.

Theorem 3.5. Let n be a given positive integer, and let di j(x) be defined as in (∗′). Suppose
there exist nonnegative real numbers a0,a1,a2, . . . with

∑∞
i=0 ai < 1 such that

dnn(x, y)≤
∞∑

i=0
aidii(x, y) for any x, y ∈ X. (3.11)

Then the following statements are equivalent:
(1) f has a fixed point;
(2) f has an orbit O(v, f ) such that for some m ∈ N the moving distance of f m on

O(v, f ) is bounded; and
(3) f has a bounded orbit.

Proof. (1)⇒(3)⇒(2) is clear. It remains to prove (2)⇒(1). Suppose the moving distance
of f m on O(v, f ) is bounded. Let x = f m(v), y = v, then (3.11) implies (3.2). Therefore,
by Theorem 3.4, there exists w ∈ X such that f m(w)=w.

Since O(w, f ) is a finite set, there exist p,q ∈N such that dpq(w)= ρ(w). By (3.11) we
have

ρ(w)= dpq(w)= dnn
(
f (m−1)n+p(w), f (m−1)n+q(w)

)

≤
∞∑

i=0
aidii

(
f (m−1)n+p(w), f (m−1)n+q(w)

)≤
( ∞∑

i=0
ai

)

· ρ(w). (3.12)

Therefore, it follows from
∑∞

i=0 ai < 1 that ρ(w)=0. Hencew is a fixed point of f . Theorem
3.5 is proved. �

Remark 3.6. In Theorem 3.5, from (3.11) it follows that f has at most one fixed point,
and f has no other periodic point except this point.
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Remark 3.7. Equation (3.11) implies that

dnn(x, y)≤
( ∞∑

i=0
ai

)

diam
(
O(x, f )∪O(y, f )

)
for any x, y ∈ X , (3.13)

which is still a particular case of the condition (C3) introduced by Walter [6]. However,
all orbits of f are assumed to be bounded in Walter’s [6, Theorem 1], while it suffices
to assume that f has a bounded orbit in Theorem 3.5. Thus, Theorem 3.5 cannot be
deduced from [6, Theorem 1] as a particular case.

Example 3.8. Let X = [0,+∞)⊂R, and let f (x)= 2x for any x ∈ X . It is easy to see that
O(0, f ) is the unique bounded orbit of f , and for n = 1, (3.11) is satisfied with ai =
(1/22i+1) (i= 0,1,2, . . .).

Theorem 3.9. Letm, n be two given positive integers, v ∈ X , and let di j(x) be defined as in

(∗′). Suppose there exist nonnegative real numbers a0,a1,a2, . . . ,an−1 with
∑n−1

i=0 ai ≤ 1 such
that

dn+m,n(x)≤
n−1∑

i=0
aidi+m,i(x) for any x ∈O(v, f ). (3.14)

Then the moving distance of f m on O(v, f ) is bounded.

Proof. Write b =max{di+m,i(v) : i∈ Zn−1}. Let a=
∑n−1

i=0 ai, then a∈ [0,1]. Without loss
of generality, we may assume, by increasing one of the numbers a0,a1,a2, . . . ,an−1 if nec-
essary, that a= 1. For j = n,n+1,n+2, . . . , by (3.14) we can successively get

dj+m, j(v)≤ b. (3.15)

By (3.15) we have d( f m(y), y)≤ b for any y ∈O(v, f ). Therefore, the moving distance
of f m on O(v, f ) is bounded. Theorem 3.9 is proved. �

By Theorems 3.9 and 3.4, we can immediately obtain the following.

Corollary 3.10. Let m, n be two given positive integers, and let di j(x) be defined as in

(∗′). Suppose there exist nonnegative real numbers a0,a1,a2, . . . ,an−1 with
∑n−1

i=0 ai < 1 such
that

dn+m,n(x)≤
n−1∑

i=0
aidi+m,i(x) for any x ∈ X. (3.16)

Then f has a periodic point with period being some factor ofm.

Corollary 3.11. Let m, n be two given positive integers, v ∈ X , and let di j(x) be defined
as in (∗′). Suppose there exist nonnegative real numbers a0,a1,a2, . . . ,an−1 and b0,b1,b2, . . .
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with
∑n−1

i=0 ai ≤ 1 and
∑∞

j=0 bj < 1 such that, for any x ∈O(v, f ),

dn+m,n(x)≤min

{n−1∑

i=0
aidi+m,i(x),

∞∑

j=0
bjdj+m, j(x)

}

. (3.17)

Then the moving distance of f on O(v, f ) is bounded.

Proof. It follows from (3.17) and Theorem 3.9 that the moving distance of f m on O(v, f )
is bounded. Therefore, by (3.17) and the proof of Theorem 3.4, v, f m(v), f 2m(v), . . . con-
verges to a k-period point w of f , where k is a factor of m. Hence (v, f (v), f 2(v), . . .) (re-
garded as a sequence of points) converges to the periodic orbit O(w, f ). Thus O(v, f ) is
bounded, and the moving distance of f on O(v, f ) is bounded. Corollary 3.11 is proved.

�

Coefficients in the preceding contractive conditions (3.2), (3.11), (3.14), (3.16), and
(3.17) are all constants. Now we discuss the cases in which coefficients are variables.

Theorem 3.12. Letm, n be two given positive integers, and let di j(x) be defined as in (∗′).
If there exists a decreasing function γi : [0,∞)→ [0,1] for each i∈ Z+ satisfying

∞∑

i=0
γi(t) < 1 for any t > 0, (3.18)

such that

dn+m,n(x)≤
∞∑

i=0
γi
(
di+m,i(x)

) ·di+m,i(x) for any x ∈ X , (3.19)

then limi→∞di+m,i(v)= 0 for any v ∈ X if and only if the moving distance of f m on O(v, f )
is bounded.

Proof. The necessity is obvious. Now we show the sufficiency. For any i ∈ Z+, we may
assume γi(0)= limt→+0 γi(t), and

γi(t)≥ γi(0)
2

for any t > 0. (3.20)

In fact, if it is not true, we may define γ′i : [0,∞)→ [0,1] by γ′i (0) = limt→+0 γi(t) and
γ′i (t) =max{γi(t),γ′i (0)/2} (for any t > 0), and replace γ′i with γi, then both (3.18) and
(3.19) still hold.

Let c = limsupi→∞di+m,i(v). Since {d( f m(y), y) : y ∈ O(v, f )} is bounded, c <∞. As-
sume c > 0. Let ai = γi(c/2), and a=

∑∞
i=0 ai, then a < 1. Choose δ > 0 such that a(c+ δ) <

c− δ. Choose an integer k > n such that dk+m,k(v) > c− δ and sup{dj+m, j(v) : j ≥ k−n} <
c+ δ. Write

M1 =
{
i≥ 0 : di+m,i

(
f k−n(v)

)
>
c

2

}
,

M2 =
{
i≥ 0 : di+m,i

(
f k−n(v)

)≤ c

2

}
.

(3.21)
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By (3.19) we get

c− δ < dk+m,k(v)= dn+m,n
(
f k−n(v)

)≤
∞∑

i=0
γidi+m,i

(
f k−n(v)

) ·di+m,i
(
f k−n(v)

)

=
(
∑

i∈M1

+
∑

i∈M2

)

γi
(
di+m,i

(
f k−n(v)

)) ·di+m,i
(
f k−n(v)

)

≤
∑

i∈M1

γi

(
c

2

)
· (c+ δ) +

∑

i∈M2

γi(0) · c2 ≤
∞∑

i=0
γi

(
c

2

)
· (c+ δ)= a(c+ δ) < c− δ,

(3.22)

which is a contradiction. Thus we have c = 0. Theorem 3.12 is proved. �

Remark 3.13. In Theorem 3.12, if (3.2) does not hold, then only by (3.18) and (3.19) it is
not enough to deduce that f has periodic points. Now we present such a counterexample.

Example 3.14. Let X = {√n : n ∈ N}, then X is a complete subspace of the Euclidean
space R. Define f : X → X by f (

√
n)=√n+1 (for any n∈N), then f is uniformly con-

tinuous. For any k ≥ 1, take γk(t) ≡ 0 (for any t > 0). Let ck = (
√
m+n+ k−√n+ k)/

(
√
m+ k−√k), then {ck}∞k=1 is an increasing sequence. Choose arbitrarily a decreasing

function γ0 : [0,∞)→ [0,1] such that γ0(
√
m+ k−√k)= ck, then both (3.18) and (3.19)

hold for any x ∈ X . However, it is clear that f has no periodic points.

4. Weakly contractive maps with bounded orbits

Throughout this section, we assume that (X ,d) is a complete metric space, and f : X → X
is a continuous map. For any given f , let di j(x, y) be defined as in (∗′).
Theorem 4.1. Let p, q be two given positive integers. Assume there exist decreasing functions
γi j : [0,∞)→ [0,1] for all (i, j)∈ Z2

+ satisfying

∞∑

i=0

∞∑

j=0
γi j(t) < 1 for any t > 0, (4.1)

such that

dpq(x, y)≤
∞∑

i=0

∞∑

j=0
γi j
(
di j(x, y)

) ·di j(x, y) for any x, y ∈ X. (4.2)

Then f has at most one fixed point, and f has a fixed point if and only if f has a bounded
orbit.

Proof. It follows from (4.2) that f has at most one fixed point. If f has a fixed point w,
then O(w, f ) is bounded. Conversely, suppose f has a bounded orbit O(v, f ). Write vi =
f i(v). Let c = limi→∞ ρ(vi), then c <∞. If (v,v1,v2, . . .) is not a Cauchy sequence of points,
then c > 0. Analogous to the proof of Theorem 3.12, we may assume γi j(t)≥ γi j(0)/2 for
any (i, j) ∈ Z2

+ and t > 0. Let a =∑∞
i=0
∑∞

j=0 γi j(c/2), then a < 1. Choose δ > 0 such that
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a(c + δ) < c− δ. Choose n > k > p + q such that d(vn,vk) > c− δ and ρ(O(vk−p−q, f )) <
c+ δ. By (4.2) we get

c− δ < d
(
vn,vk

)= dpq
(
vn−p,vk−q

)≤
∞∑

i=0

∞∑

j=0
γi j
(
di j
(
vn−p,vk−q

)) ·di j
(
vn−p,vk−q

)
. (4.3)

Furthermore, similar to (3.22), splitting the sum on the right of (4.3) into two sums
according to whether di j(vn−p,vk−q) is greater than c/2 or not, we get

c− δ <
∞∑

i=0

∞∑

j=0
γi j

(
c

2

)
· (c+ δ)= a(c+ δ) < c− δ, (4.4)

which is a contradiction. Thus v,v1,v2, . . . is a Cauchy sequence of points. Assume it con-
verges to w. By (4.2) we have

lim
i→∞

d
(
vi+1,vi

)= lim
i→∞

dp,q
(
vi+1−p,vi−q

)= 0. (4.5)

Therefore, by the continuity of f we conclude that w is a fixed point of f . Theorem 4.1 is
proved. �

Appendix

Weakly contractive maps with the infimum of orbital diameters being 0 were also dis-
cussed in [17], of which the following two theorems are the main results.

Theorem A.1 (see [17, Theorem 2]). Suppose that (X ,d) is a complete metric space, and
f : X → X is a continuous map. Assume there exist ai ≥ 0 (i= 0,1, . . . ,10) satisfying

3a0 + a1 + a2 + 2a3 + 2a4 + 2a5 + 3a6 + a7 + 2a8 + 4a9 + 6a10 ≤ 1 (A.1)

such that, for any x, y ∈ X ,

d
(
f (x), f (y)

)≤ a0d(x, y) + a1d
(
x, f (x)

)
+ a2d

(
y, f (y)

)
+ a3d

(
x, f (y)

)

+ a4d
(
y, f (x)

)
+ a5d

(
x, f 2(x)

)
+ a6d

(
y, f 2(x)

)
+ a7d

(
f (x), f 2(x)

)

+ a8d
(
f (y), f 2(x)

)
+ a9d

(
f 2(y), f 3(x)

)
+ a10d

(
f 3(y), f 4(x)

)
.

(A.2)
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Then the following three statements are equivalent:
(1) f has a fixed point;
(2) inf{d(x, f (x)) : x ∈ X} = 0;
(3) inf{ρ(x) : x ∈ X} = 0.

Theorem A.2 (see [17, Theorem 4]). Suppose that (X ,d) is a complete metric space, and
f : X → X is a continuous map. Assume there exist ci ≥ 0 (ci = 0,1, . . . ,6) and bj ≥ 0 ( j =
0,1, . . . ,k) satisfying

3c0 + c1 + c2 + 2c3 + 2c4 + c5 + 3c6 + 2b0 + 2
k∑

j=1
jbj ≤ 1 (A.3)

such that, for any x, y ∈ X ,

d
(
f (x), f (y)

)≤ c0d(x, y) + c1d
(
x, f (x)

)
+ c2d

(
y, f (y)

)

+ c3d
(
x, f (y)

)
+ c4d

(
x, f 2(x)

)
+ c5d

(
f (x), f 2(x)

)

+ c6d
(
y, f 2(x)

)
+

k∑

j=0
bjd
(
f j(y), f j+1(x)

)
.

(A.4)

Then the following three statements are equivalent:
(i) f has a fixed point;
(ii) inf{d(x, f (x)) : x ∈ X} = 0;
(iii) inf{ρ(x) : x ∈ X} = 0.

The equivalence of (1) (or (i)) and (3) (or (iii)) follows from our Theorem 2.2 or
Theorem 2.3. However, (2) (or (ii)) is not equivalent to each of (1) (or (i)) and (3) (or
(iii)). Thus, there are some mistakes in the main results of [17]. In fact, we have such a
counterexample.

Example A.3. Let X={xi j : i, j∈N}. Define f : X → X by f (xi j)=xi+1, j (for any i, j∈N).
Define a metric d on X as follows:

d
(
xi j ,xmn

)= d
(
xmn,xi j

)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if i=m, j = n;

1
n
, if j = n, i= 1,m= 2;

1, otherwise.

(A.5)

Then (X ,d) is a discrete space. Thus X is complete, f is continuous, and infx∈X d(x,
f (x)) = infn∈Nd(x1n,x2n) = infn∈N 1/n = 0. Let c5 = a7 ≥ 0 be a real number, and let
other coefficients ai, cj , and bk be all 0, then both (A.1) and (A.3) hold. For the given
(X ,d) and f : X → X , since d( f (x), f (y))≤ 1, and c5d( f (x), f 2(x))= a7d( f (x), f 2(x))=
1, both (A.2) and (A.4) hold, too. However, it is clear that f has no fixed points, and each
of its orbital diameter is 1. Thus, in [17], the condition (2) (or (ii)) in Theorems 2 and 4
does not imply each of (1) (or (i)) and (3) (or (iii)).
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