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In real Hilbert spaceH , from an arbitrary initial point x0 ∈H , an explicit iteration scheme
is defined as follows: xn+1 = αnxn + (1 − αn)Tλn+1xn,n ≥ 0, where Tλn+1xn = Txn −
λn+1μF(Txn), T :H →H is a nonexpansive mapping such that F(T) = {x ∈ K : Tx = x}
is nonempty, F :H →H is a η-strongly monotone and k-Lipschitzian mapping, {αn} ⊂
(0,1), and {λn} ⊂ [0,1). Under some suitable conditions, the sequence {xn} is shown to
converge strongly to a fixed point of T and the necessary and sufficient conditions that
{xn} converges strongly to a fixed point of T are obtained.

Copyright © 2007 Lin Wang. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original work is properly cited.

1. Introduction

LetH be aHilbert space with inner product 〈·,·〉 and norm ‖ · ‖. AmappingT :H →H is
said to be nonexpansive if ‖Tx−Ty‖ ≤ ‖x− y‖ for any x, y ∈H . Amapping F :H →H is
said to be η-strongly monotone if there exists constant η > 0 such that 〈Fx−Fy,x− y〉 ≥
η‖x− y‖2 for any x, y ∈H . F :H →H is said to be k-Lipschitzian if there exists constant
k > 0 such that ‖Fx−Fy‖ ≤ k‖x− y‖ for any x, y ∈H .

The interest and importance of construction of fixed points of nonexpansive map-
pings stem mainly from the fact that it may be applied in many areas, such as imagine
recovery and signal processing (see, e.g., [1–3]). Iterative techniques for approximat-
ing fixed points of nonexpansive mappings have been studied by various authors (see,
e.g., [1, 4–10], etc.), using famous Mann iteration method, Ishikawa iteration method,
and many other iteration methods such as, viscosity approximation method [6] and CQ
method [7].

Let F : H → H be a nonlinear mapping and K nonempty closed convex subset of
H . The variational inequality problem is formulated as finding a point u∗ ∈ K such
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that
(
VI(F,K)

)〈
F
(
u∗
)
,v−u∗

〉≥ 0, ∀v ∈ K. (1.1)

The variational inequalities were initially studied by Kinderlehrer and Stampacchia [11],
and ever since have been widely studied. It is well known that the VI(F,K) is equivalent
to the fixed point equation

u∗ = PK
(
u∗ −μF

(
u∗
))
, (1.2)

where PK is the projection from H onto K and μ is an arbitrarily fixed constant. In
fact, when F is an η-strongly monotone and Lipschitzian mapping on K and μ > 0 small
enough, then the mapping defined by the right-hand side of (1.2) is a contraction.

For reducing the complexity of computation caused by the projection PK , Yamada [12]
proposed an iteration method to solve the variational inequalities VI(F,K). For arbitrary
u0 ∈H ,

un+1 = Tun− λn+1μF
(
T
(
un
))
, n≥ 0, (1.3)

where T is a nonexpansive mapping from H into itself, K is the fixed point set of T , F
is an η-strongly monotone and k-Lipschitzian mapping on K , {λn} is a real sequence in
[0,1), and 0 < μ < 2η/k2. Then Yamada [12] proved that {un} converges strongly to the
unique solution of the VI(F,K) as {λn} satisfies the following conditions:

(1) limn→∞ λn = 0,
(2)

∑∞
n=0 λn =∞,

(3) limn→∞(λn− λn+1)/λ2n+1 = 0.
Motivated by the above work, we propose a new explicit iteration scheme with map-

ping F to approximate the fixed point of nonexpansive mapping T in Hilbert space. The
strong and weak convergence theorems to a fixed point of T are obtained. The necessary
and sufficient conditions for strong convergence of this iteration scheme are obtained,
too.

2. Preliminaries

Let T be a nonexpansive mapping from H into itself, F : H → H an η-strongly mono-
tone and k-Lipschitzian mapping, {λn} ⊂ (0,1), {λn} ⊂ [0,1), and μ a fixed constant in
(0,2η/k2). Starting with an initial point x0 ∈H , the explicit iteration scheme with map-
ping F is defined as follows:

xn+1 = αnxn +
(
1−αn

)(
Txn− λn+1μF

(
Txn

))
, n≥ 0. (2.1)

For simplicity, we define a mapping Tλ :H →H by

Tλx = Tx− λμF(Tx), ∀x ∈H. (2.2)

Then (2.1) may be written as follows:

xn+1 = αnxn +
(
1−αn

)
Tλn+1xn, n≥ 0. (2.3)
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In fact, as λn = 0, n≥ 1, then the iteration scheme (2.3) reduces to the famous Mann
iteration scheme.

A Banach space E is said to satisfy Opial’s condition if for any sequence {xn} in E,
xn⇀ x implies that limsupn→∞‖xn − x‖ < limsupn→∞‖xn− y‖ for all y ∈ E with y = x,
where xn⇀ x denotes that {xn} converges weakly to x. It is well known that every Hilbert
space satisfies Opial’s condition.

Amapping T : K → E is said to be semicompact if, for any sequence {xn} inK such that
‖xn−Txn‖→ 0 (n→∞), there exists subsequence {xnj} of {xn} such that {xnj} converges
strongly to x∗ ∈ K .

A mapping T with domain D(T) and range R(T) in E is said to be demiclosed at p; if
whenever {xn} is a sequence in D(T) such that {xn} converges weakly to x∗ ∈D(T) and
{Txn} converges strongly to p, then Tx∗ = p.

Lemma 2.1 [13]. Let {αn} and {tn} be two nonnegative sequences satisfying

αn+1 ≤
(
1+ an

)
αn + bn, ∀n≥ 1. (2.4)

If
∑∞

n=1 an <∞ and
∑∞

n=1 bn <∞, then limn→∞αn exists.

Lemma 2.2 [12]. Let Tλx = Tx− λμF(Tx), where T :H →H is a nonexpansive mapping
fromH into itself and F is an η-strongly monotone and k-Lipschitzian mapping fromH into
itself. If 0≤ λ < 1 and 0 < μ < 2η/k2, then Tλ is a contraction and satisfies

∥
∥Tλx−Tλy

∥
∥≤ (1− λτ)‖x− y‖, ∀x, y ∈H , (2.5)

where τ = 1−
√
1−μ(2η−μk2).

Lemma 2.3 [14]. Let K be a nonempty closed convex subset of a real Hilbert space H and T
a nonexpansive mapping from K into itself. If T has a fixed point, then I −T is demiclosed
at zero, where I is the identity mapping of H , that is, whenever {xn} is a sequence in K
weakly converging to some x ∈ K and the sequence {(I −T)xn} strongly converges to some
y, it follows that (I −T)x = y.

3. Main results

Lemma 3.1. Let H be a Hilbert space, T :H →H a nonexpansive mapping with F(T) = φ,
and F :H →H an η-strongly monotone and k-Lipschitzian mapping. For any given x0 ∈H ,
{xn} is defined by

xn+1 = αnxn +
(
1−αn

)
Tλn+1xn, n≥ 0, (3.1)

where {αn} and {λn} ⊂ [0,1) satisfy the following conditions:
(1) α≤ αn ≤ β for some α,β ∈ (0,1);
(2)

∑∞
n=1 λn <∞;

(3) 0 < μ < 2η/k2.
Then,

(1) limn→∞‖xn− q‖ exists for each q ∈ F(T);
(2) limn→∞‖xn−Txn‖ = 0.
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Proof. (1) For any q ∈ F(T), we have

∥
∥xn+1− q

∥
∥2 = ∥∥αn

(
xn− q

)
+
(
1−αn

)(
Tλn+1xn− q

)∥∥2

= αn
∥
∥xn− q

∥
∥2 +

(
1−αn

)∥∥Tλn+1xn− q‖2−αn
(
1−αn

)∥∥xn−Tλn+1xn
∥
∥2,

(3.2)

where (by Lemma 2.2)

∥
∥Tλn+1xn− q

∥
∥= ∥∥Tλn+1xn−Tλn+1q+Tλn+1q− q

∥
∥

≤ ∥∥Tλn+1xn−Tλn+1q
∥
∥+

∥
∥Tλn+1q− q

∥
∥

≤ (1− λn+1τ
)∥∥xn− q

∥
∥+ λn+1μ

∥
∥F(q)

∥
∥.

(3.3)

Furthermore,

∥
∥Tλn+1xn− q

∥
∥2 ≤ (1− λn+1τ

)∥∥xn− q
∥
∥2 +

λn+1μ2

τ

∥
∥F(q)

∥
∥2. (3.4)

Thus,

∥
∥xn+1− q

∥
∥2 ≤ αn

∥
∥xn− q

∥
∥2 +

(
1−αn

)(
1− λn+1τ

)∥∥xn− q
∥
∥2

+
(
1−αn

)λn+1μ2

τ

∥
∥F(q)

∥
∥2−αn

(
1−αn

)∥∥xn−Tλn+1xn
∥
∥2

≤ αn
∥
∥xn− q

∥
∥2 +

(
1−αn

)(
1− λn+1τ

)∥∥xn− q
∥
∥2

+
(
1−αn

)λn+1μ2

τ

∥
∥F(q)

∥
∥2−αn

∥
∥xn+1− xn

∥
∥2

≤ ∥∥xn− q
∥
∥2 +

λn+1μ2

τ

∥
∥F(q)

∥
∥2−αn

∥
∥xn+1− xn

∥
∥2.

(3.5)

Since
∑∞

n=1 λn <∞, it follows from Lemma 2.1 that limn→∞‖xn − q‖ exists for each q ∈
F(T). It also implies that {xn} is bounded.

(2) From (3.5), we have

α
∥
∥xn+1− xn

∥
∥2 ≤ αn

∥
∥xn+1− xn

∥
∥2 ≤ ∥∥xn− q

∥
∥2−∥∥xn+1− q

∥
∥2 +

λn+1μ2

τ

∥
∥F(q)

∥
∥2. (3.6)

Therefore, limn→∞‖xn+1− xn‖ = 0. In addition,

(1−β)
∥
∥xn−Tλn+1xn

∥
∥≤ (1−αn

)∥∥xn−Tλn+1xn
∥
∥= ∥∥xn+1− xn

∥
∥. (3.7)

Hence, limn→∞‖xn−Tλn+1‖ = 0. Thus,
∥
∥xn−Txn

∥
∥= ∥∥xn−Tλn+1xn +Tλn+1xn−Txn

∥
∥

≤ ∥∥xn−Tλn+1xn
∥
∥+ λn+1μ

∥
∥F
(
Txn

)∥∥.
(3.8)

Since {xn} is bounded, then {Txn} and {F(Txn)} are bounded, as well. Therefore,
limn→∞‖xn−Txn‖ = 0. The proof is completed. �
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Theorem 3.2. Let H be a Hilbert space, T :H →H a nonexpansive mapping with F(T) =
φ, and F :H →H an η-strongly monotone and k-Lipschitzian mapping. For any given x0 ∈
H , {xn} is defined by

xn+1 = αnxn +
(
1−αn

)
Tλn+1xn, n≥ 0, (3.9)

where {αn} and {λn} ⊂ [0,1) satisfy the following conditions:
(1) α≤ αn ≤ β for some α,β ∈ (0,1);
(2)

∑∞
n=1 λn <∞;

(3) 0 < μ < 2η/k2.
Then,

(1) {xn} converges weakly to a fixed point of T ;
(2) {xn} converges strongly to a fixed point of T if and only if liminfn→∞d(xn,F(T))= 0.

Proof. (1) It follows from Lemma 3.1 that {xn} is bounded. Thus, let q1 and q2 be weak
limits of subsequences {xnk} and {xnj} of {xn}, respectively. It follows from Lemmas 2.3
and 3.1 that q1,q2 ∈ F(T). Assume q1 = q2, then by Opial’s condition, we obtain

lim
n→∞

∥
∥xn− q1

∥
∥= lim

k→∞
∥
∥xnk − q1

∥
∥ < lim

k→∞
∥
∥xnk − q2

∥
∥

= lim
j→∞

∥
∥xnj − q2

∥
∥ < lim

k→∞
∥
∥xnk − q1

∥
∥= lim

n→∞
∥
∥xn− q1

∥
∥,

(3.10)

which is a contradiction; hence, q1 = q2. Then, {xn} converges weakly to a common fixed
point of T .

(2) Suppose that {xn} converges strongly to a fixed point q of T , then limn→∞‖xn −
q‖ = 0. Since 0≤ d(xn,F(T))≤ ‖xn− q‖, we have liminfn→∞d(xn,F(T))= 0.

Conversely, suppose that liminfn→∞d(xn,F(T)) = 0. For any p ∈ F(T), ‖F(p)‖ ≤
‖F(p)− F(xn)‖+ ‖F(xn)‖ ≤ k‖xn− p‖+ ‖F(xn)‖. Since {xn} and {F(xn)} are bounded,
‖F(p)‖ is bounded for any p ∈ F(T), that is, there exists constant M > 0
such that ‖F(p)‖ ≤M for all p ∈ F(T). In addition, it follows from (3.5) that

∥
∥xn+1− p

∥
∥2 ≤ ∥∥xn− p

∥
∥2 +

λn+1μ2

τ

∥
∥F(p)

∥
∥2. (3.11)

So,

∥
∥xn+1− p

∥
∥2 ≤ ∥∥xn− p

∥
∥2 +

λn+1μ2

τ

(
2k2
∥
∥xn− p

∥
∥2 + 2

∥
∥F
(
xn
)∥∥2
)

=
(
1+2k2

λn+1μ2

τ

)∥
∥xn− p

∥
∥2 + 2

λn+1μ2

τ

∥
∥F
(
xn
)∥∥2.

(3.12)

Thus,

[
d
(
xn+1,F(T)

)]2 ≤
(
1+2k2

λn+1μ2

τ

)
[
d
(
xn,F(T)

)]2
+ 2

λn+1μ2

τ

∥
∥F
(
xn
)∥∥2. (3.13)

In addition, we obtain that
∑∞

n=1 2k2(λn+1μ2/τ) <∞ and
∑∞

n=1 2(λn+1μ2/τ)‖F(xn)‖2 <
∞ since

∑∞
n=1 λn < ∞ and {F(xn)} is bounded. It follows from Lemma 2.1 that
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limn→∞d(xn,F(T)) exists. Furthermore, since liminfn→∞d(xn,F(T)) = 0, we have
limn→∞d(xn,F(T))= 0. We now prove that {xn} is a Cauchy sequence.

TakingM1 =max{2e(2μ2k2/τ)
∑∞

i=1 λi ,4(μ2M2/τ)e(2μ
2k2/τ)

∑∞
i=1 λi}, for any ε > 0, there exists

positive integer N such that d(xn,F(T)) <
√
ε/4M1 and

∑∞
i=n λi < ε/4M1 as n≥N . Taking

q ∈ F(T), for any n,m≥N , it follows from (3.12) that

∥
∥xn− xm

∥
∥2

2
≤ ∥∥xn− q

∥
∥2 +

∥
∥xm− q

∥
∥2

≤
(
1+2k2

λnμ2

τ

)∥
∥xn−1− q

∥
∥2 + 2

λnμ2

τ

∥
∥F
(
xn−1

)∥∥2

+
(
1+2k2

λmμ2

τ

)∥
∥xm−1− q

∥
∥2 + 2

λmμ2

τ

∥
∥F
(
xm−1

)∥∥2

≤
(
1+2k2

λnμ2

τ

)∥
∥xn−1− q

∥
∥2 + 2

λnμ2

τ
M2

+
(
1+2k2

λmμ2

τ

)∥
∥xm−1− q

∥
∥2 + 2

λmμ2

τ
M2

≤
n∏

i=N+1

(
1+2k2

λiμ2

τ

)∥
∥xN − q

∥
∥2 +

n−1∑

i=N+1

2
λiμ2

τ
M2

n∏

j=i+1

(
1+2k2

λjμ2

τ

)

+2
λnμ2

τ
M2 +

m∏

i=N+1

(
1+2k2

λiμ2

τ

)∥
∥xN − q

∥
∥2

+
m−1∑

i=N+1

2
λiμ2

τ
M2

m∏

j=i+1

(
1+2k2

λjμ2

τ

)
+2

λmμ2

τ
M2

≤ 2e(2μ
2k2/τ)

∑∞
i=N+1 λi

∥
∥xN − q

∥
∥2 + 4

μ2M2

τ
e(2μ

2k2/τ)
∑∞

i=N+1 λi
∞∑

i=N+1

λi.

(3.14)

Thus,

∥
∥xn− xm

∥
∥2 ≤ 2M1

∥
∥xN − q

∥
∥2 + 2M1

∞∑

i=N+1

λi. (3.15)

Taking the infimum for all q ∈ F(T), we have

∥
∥xn− xm

∥
∥2 ≤ 2M1

[
d
(
xN ,F(T)

)]2
+ 2M1

∞∑

i=N+1

λi < ε. (3.16)

This implies that {xn} is a Cauchy sequence. Therefore, there exists p ∈H such that {xn}
converges strongly to p. It follows from Lemma 3.1 that

‖p−Tp‖ ≤ ∥∥p− xn
∥
∥+

∥
∥xn−Txn

∥
∥−→ 0, as n−→∞. (3.17)

Hence, p ∈ F(T). The proof is completed. �
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Corollary 3.3. Under the conditions of Lemma 3.1, if T is completely continuous, then
{xn} converges strongly to a fixed point of T .
Proof. By Lemma 3.1, {xn} is bounded and limn→∞‖xn − Txn‖ = 0, then {Txn} is also
bounded. Since T is completely continuous, there exists subsequence {Txnj} of {Txn}
such that Txnj → p as j →∞. It follows from Lemma 3.1 that lim j→∞‖xnj −Txnj‖ = 0.
So by the continuity of T and Lemma 2.3, we have lim j→∞‖xnj − p‖ = 0 and p ∈ F(T).
Furthermore, by Lemma 3.1, we get that limn→∞‖xn− p‖ exists. Thus, limn→∞‖xn− p‖ =
0. The proof is completed. �

Corollary 3.4. Under the conditions of Lemma 3.1, if T is demicompact, then {xn} con-
verges strongly to a fixed point of T .

Proof. Since T is demicompact, {xn} is bounded and limn→∞‖xn−Txn‖ = 0, then there
exists subsequence {xnj} of {xn} such that {xnj} converges strongly to q ∈H . It follows
from Lemma 2.3 that q ∈ F(T). Thus, limn→∞‖xn − q‖ exists by Lemma 3.1. Since the
subsequence {xnj} of {xn} such that {xnj} converges strongly to q, then {xn} converges
strongly to the common fixed point q ∈ F(T). The proof is completed. �

For studying the strong convergence of fixed points of a nonexpansive mapping, Sen-
ter and Dotson [9] introduced Condition (A). Later on, Maiti and Ghosh [5] well as Tan
and Xu [10] studied Condition (A) and pointed out that Condition (A) is weaker than
the requirement of demicompactness for nonexpansive mappings. A mapping T : K → K
with F(T) = {x ∈ K : Tx = x} = φ is said to satisfy condition (A) if there exists a non-
decreasing function f : [0,∞)→ [0,∞) with f (0)= 0 and f (t) > 0 for all t ∈ (0,∞) such
that ‖x−Tx‖ ≥ f (d(x,F(T))) for all x ∈ K , where d(x,F(T))= inf{‖x− q‖ : q ∈ F(T)}.
Theorem 3.5. Under the conditions of Lemma 3.1, if T satisfies condition (A), then {xn}
converges strongly to a fixed point of T .

Proof. Since T satisfies condition (A), then f (d(xn,F(T)))≤ ‖xn−Txn‖. It follows from
Lemma 3.1 that liminfn→∞d(xn,F(T))= 0. Thus, it follows from Theorem 3.2 that {xn}
converges strongly to a fixed point of T . The proof is completed. �
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