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We first introduce and analyze an algorithm of approximating solutions of maximal
monotone operators in Hilbert spaces. Using this result, we consider the convex mini-
mization problem of finding a minimizer of a proper lower-semicontinuous convex func-
tion and the variational problem of finding a solution of a variational inequality.
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1. Introduction

Throughout this paper, we assume that H is a real Hilbert space and T : H → 2H is a
maximal monotone operator. A well-known method for solving the equation 0∈ Tv in a
Hilbert space H is the proximal point algorithm: x1 = x ∈H and

xn+1 = Jrnxn, n= 1,2, . . . , (1.1)

where {rn} ⊂ (0,∞) and Jr = (I + rT)−1 for all r > 0. This algorithm was first introduced
by Martinet [1]. Rockafellar [2] proved that if liminfn→∞ rn > 0 and T−10 �= ∅, then the
sequence {xn} defined by (1.1) converges weakly to an element of T−10. Later, many re-
searchers have studied the convergence of the sequence defined by (1.1) in a Hilbert space;
see, for instance, [3–6] and the references mentioned therein. In particular, Kamimura
and Takahashi [7] proved the following result.

Theorem 1.1. Let T : H → 2H be a maximal monotone operator. Let {xn} be a sequence
defined as follows: x1 = u∈H and

xn+1 = αnu+
(
1−αn

)
Jrnxn, n= 1,2, . . . , (1.2)
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where {αn} ⊂ [0,1] and {rn} ⊂ (0,∞) satisfy limn→∞αn = 0,
∑∞

n=1αn =∞, and limn→∞ rn =
∞. If T−10 �= ∅, then the sequence {xn} defined by (1.2) converges strongly to Pu, where P
is the metric projection of H onto T−10.

Motivated and inspired by the above result, in this paper, we suggest and analyze an it-
erative algorithmwhich has strong convergence. Further, using this result, we consider the
convex minimization problem of finding a minimizer of a proper lower-semicontinuous
convex function and the variational problem of finding a solution of a variational in-
equality.

2. Preliminaries

Recall that a mapping U :H →H is said to be nonexpansive if ‖Ux−Uy‖ ≤ ‖x− y‖ for
all x, y ∈H . We denote the set of all fixed points of U by F(U). A multivalued operator
T : H → 2H with domain D(T) and range R(T) is said to be monotone if for each xi ∈
D(T) and yi ∈ Txi, i= 1,2, we have 〈x1− x2, y1− y2〉 ≥ 0.

A monotone operator T is said to be maximal if its graph G(T)= {(x, y) : y ∈ Tx} is
not properly contained in the graph of any other monotone operator. Let I denote the
identity operator on H and let T : H → 2H be a maximal monotone operator. Then we
can define, for each r > 0, a nonexpansive single-valued mapping Jr :H →H by Jr = (I +
rT)−1. It is called the resolvent (or the proximal mapping) of T . We also define the Yosida
approximation Ar by Ar = (I − Jr)/r. We know that Arx ∈ TJrx and ‖Arx‖ ≤ inf{‖y‖ :
y ∈ Tx} for all x ∈H .

Before starting the main result of this paper, we include some lemmas.

Lemma 2.1 (see [8]). Let {xn} and {zn} be bounded sequences in a Banach space X and
let {αn} be a sequence in [0,1] with 0 < liminfn→∞αn ≤ limsupn→∞αn < 1. Suppose xn+1 =
αnxn + (1− αn)zn for all integers n ≥ 0 and limsupn→∞(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.
Then, limn→∞‖zn− xn‖ = 0.

Lemma 2.2 (the resolvent identity). For λ,μ > 0, there holds the identity

Jλx = Jμ

(
μ

λ
x+
(
1− μ

λ

)
Jλx
)
, x ∈ X. (2.1)

Lemma 2.3 (see [9]). Let E be a real Banach space. Then for all x, y ∈ E

‖x+ y‖2 ≤ ‖x‖2 + 2
〈
y, j(x+ y)

〉 ∀ j(x+ y)∈ J(x+ y). (2.2)

Lemma 2.4 (see[10]). Let {an} be a sequence of nonnegative real numbers satisfying the
property an+1 ≤ (1− sn)an + sntn, n≥ 0, where {sn} ⊂ (0,1) and {tn} are such that

(i)
∑∞

n=0 sn =∞,
(ii) either limsupn→∞ tn ≤ 0 or

∑∞
n=0 |sntn| <∞.

Then {an} converges to zero.
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3. Main result

Let T :H → 2H be a maximal monotone operator and let Jr :H →H be the resolvent of
T for each r > 0. Then we consider the following algorithm: for fixed u ∈ H and given
x0 ∈H arbitrarily, let the sequence {xn} is generated by

yn ≈ Jrnxn,

xn+1 = αnu+βnxn + δnyn,
(3.1)

where {αn}, {βn}, {δn} are three real numbers in [0,1] and {rn} ⊂ (0,∞). Here the crite-
rion for the approximate computation of yn in (3.1) will be

∥
∥yn− Jrnxn

∥
∥≤ σn, (3.2)

where
∑∞

n=0 σn <∞.

Theorem 3.1. Let T :H → 2H be a maximal monotone operator. Assume {αn}, {βn}, {δn},
and {rn} satisfy the following control conditions:

(i) αn +βn + δn = 1;
(ii) limn→∞αn = 0 and

∑∞
n=0αn =∞;

(iii) 0 < liminfn→∞βn ≤ limsupn→∞βn < 1;
(iv) rn ≥ ε > 0 for all n and rn+1− rn→ 0(n→∞).

If T−10 �= ∅, then {xn} defined by (3.1) under criterion (3.2) converges strongly to Pu, where
P is the metric projection of H onto T−10.

Proof. From T−10 �= ∅, there exists p ∈ T−10 such that Js p = p for all s > 0. Then we have

∥
∥xn+1− p

∥
∥≤ αn‖u− p‖+βn

∥
∥xn− p

∥
∥+ δn

∥
∥yn− p

∥
∥

≤ αn‖u− p‖+βn
∥
∥xn− p

∥
∥+ δn

(
σn +

∥
∥Jrnxn− p

∥
∥)

≤ αn‖u− p‖+βn
∥
∥xn− p

∥
∥+ δn

∥
∥xn− p

∥
∥+ δnσn

= αn‖u− p‖+ (1−αn
)∥∥xn− p

∥
∥+ δnσn.

(3.3)

An induction gives that

∥
∥xn− p

∥
∥≤max

{‖u− p‖,∥∥x0− p
∥
∥}+

n∑

k=0
σk (3.4)

for all n≥ 0. This implies that {xn} is bounded. Hence {Jrnxn} and {yn} are also bounded.
Define a sequence {zn} by

xn+1 = βnxn +
(
1−βn

)
zn, n≥ 0. (3.5)
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Then we observe that

zn+1− zn = xn+2−βn+1xn+1
1−βn+1

− xn+1−βnxn
1−βn

=
(

αn+1
1−βn+1

− αn
1−βn

)
u+

δn+1
1−βn+1

(
yn+1− yn

)

+
(

δn+1
1−βn+1

− δn
1−βn

)
yn.

(3.6)

If rn−1 ≤ rn, from Lemma 2.2, using the resolvent identity

Jrnxn = Jrn−1

(
rn−1
rn

xn +
(
1− rn−1

rn

)
Jrnxn

)
, (3.7)

we obtain

∥
∥Jrnxn− Jrn−1xn−1

∥
∥≤ rn−1

rn

∥
∥xn− xn−1

∥
∥+

(
rn− rn−1

rn

)∥
∥Jrnxn− xn−1

∥
∥

≤ ∥∥xn− xn−1
∥
∥+

1
ε
∣
∣rn−1− rn

∣
∣
∥
∥Jrnxn− xn−1

∥
∥.

(3.8)

Similarly, we can prove that the last inequality holds if rn−1 ≥ rn.
On the other hand, from (3.2), we have

∥
∥yn+1− yn

∥
∥≤ ∥∥yn+1− Jrn+1xn+1

∥
∥+

∥
∥yn− Jrnxn

∥
∥+

∥
∥Jrn+1xn+1− Jrnxn

∥
∥

≤ σn+1 + σn +
∥
∥Jrn+1xn+1− Jrnxn

∥
∥.

(3.9)

Thus it follows from (3.5) that
∥
∥zn+1− zn

∥
∥−∥∥xn+1− xn

∥
∥

≤
∣
∣
∣
∣

αn+1
1−βn+1

− αn
1−βn

∣
∣
∣
∣
(‖u‖+∥∥yn

∥
∥)+

δn+1
1−βn+1

∥
∥xn+1− xn

∥
∥

+
δn+1

1−βn+1

1
ε
∣
∣rn+1− rn

∣
∣×∥∥Jrn+1xn+1− xn

∥
∥+ σn+1 + σn−

∥
∥xn+1− xn

∥
∥

≤
∣
∣
∣
∣

αn+1
1−βn+1

− αn
1−βn

∣
∣
∣
∣
(‖u‖+∥∥yn

∥
∥)+ σn+1 + σn

+
δn+1

1−βn+1

1
ε
∣
∣rn+1− rn

∣
∣×∥∥Jrn+1xn+1− xn

∥
∥,

(3.10)

which implies that limsupn→∞(‖zn+1− zn‖−‖xn+1− xn‖)≤ 0. Hence, by Lemma 2.1, we
have limn→∞‖zn− xn‖ = 0. Consequently, it follows from (3.5) that

lim
n→∞

∥
∥xn+1− xn

∥
∥= lim

n→∞
(
1−βn

)∥∥zn− xn
∥
∥= 0. (3.11)

On the other hand,
∥
∥xn− yn

∥
∥≤ ∥∥xn+1− xn

∥
∥+

∥
∥xn+1− yn

∥
∥

≤ ∥∥xn+1− xn
∥
∥+αn

∥
∥u− yn

∥
∥+βn

∥
∥xn− yn

∥
∥,

(3.12)
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and so, by (ii), (iii), (3.11), and (3.12), we have limn→∞‖xn− yn‖ = 0. It follows that

∥
∥Arnxn

∥
∥≤ 1

rn

[∥∥xn− yn
∥
∥+

∥
∥yn− Jrnxn

∥
∥]≤ 1

ε
[∥∥xn− yn

∥
∥+ σn

]−→ 0. (3.13)

We next prove that

limsup
n→∞

〈
u−Pu,xn+1−Pu

〉≤ 0, (3.14)

where P is the metric projection of H onto T−10. To prove this, it is sufficient to show
limsupn→∞〈u− Pu, Jrnxn − Pu〉 ≤ 0, because xn+1 − Jrnxn → 0. Now there exists a subse-
quence {xni} ⊂ {xn} such that

lim
i→∞

〈
u−Pu, Jrni xni −Pu

〉= limsup
n→∞

〈
u−Pu, Jrnxn−Pu

〉
. (3.15)

Since {Jrnxn} is bounded, we may assume that {Jrni xni} converges weakly to some v ∈
H . Then it follows that v ∈ T−10. Indeed, since Arnxn ∈ TJrnxn and T is monotone, we
have 〈s− Jrni xni ,s

′ −Arni
xni〉 ≥ 0, where s′ ∈ Ts. From Arnxn→ 0, we obtain 〈s− v,s′〉 ≥ 0

whenever s′ ∈ Ts. Hence, from the maximality of T , we have v ∈ T−10. Since P is the
metric projection of H onto T−10, we obtain

limsup
n→∞

〈
u−Pu, Jrnxn−Pu

〉= lim
i→∞

〈
u−Pu, Jrni xni −Pu

〉= 〈u−Pu,v−Pu〉 ≤ 0. (3.16)

That is, (3.14) holds.
Finally, to prove that xn→ p, we apply Lemma 2.3 to get

∥
∥xn+1−Pu

∥
∥2 ≤ (∥∥βn

(
xn−Pu

)
+ δn

(
yn−Pu

)∥∥)2 + 2αn
〈
u−Pu,xn+1−Pu

〉

≤ (βn
∥
∥xn−Pu

∥
∥+ δn

∥
∥xn−Pu

∥
∥+ δnσn

)2
+ 2αn

〈
u−Pu,xn+1−Pu

〉

= ((1−αn
)∥∥xn−Pu

∥
∥+ δnσn

)2
+ 2αn

〈
u−Pu,xn+1−Pu

〉

≤ (1−αn
)∥∥xn−Pu

∥
∥2 + 2αn

〈
u−Pu,xn+1−Pu

〉
+Mσn,

(3.17)

where M > 0 is some constant such that 2(1− αn)δn‖xn − Pu‖+ δ2nσn ≤M. An applica-
tion of Lemma 2.4 yields that ‖xn−Pu‖→ 0. This completes the proof. �

Remark 3.2. It is clear that the algorithm (3.1) includes the algorithm (1.2) as a special
case. Our result can be considered as a complement of Kamimura and Takahashi [7] and
others.

4. Applications

Let f : H → (−∞,∞] be a proper lower semicontinuous convex function. Then we can
define the subdifferential ∂ f of f by

∂ f (x)= {z ∈H : f (y)≥ f (x) + 〈y− x,z〉 ∀y ∈H
}

(4.1)
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for all x ∈H . It is well known that ∂ f is a maximal monotone operator of H into itself;
see Minty [11] and Rockafellar [12, 13].

In this section, we investigate our algorithm in the case of T = ∂ f . Our discussion fol-
lows Rockafellar [14, Section 4]. If T = ∂ f , the algorithm (3.1) is reduced to the following
algorithm:

yn ≈ argmin
z∈H

{
f (z) +

1
2rn

∥
∥z− xn

∥
∥2
}
,

xn+1 = αnu+βnxn + δnyn, n∈N ,
(4.2)

with the following criterion:

d
(
0,Sn

(
yn
))≤ σn

rn
, (4.3)

where
∑∞

n=0 σn <∞, Sn(z) = ∂ f (z) + (z− xn)/rn, and d(0,A) = inf{‖x‖ : x ∈ A}. About
(4.3), the following lemma was proved in Rockafellar [2, Proposition 3].

Lemma 4.1. If yn is chosen according to criterion (4.3), then ‖yn− Jrnxn‖ ≤ σn holds, where
Jrn = (I + rn∂ f )−1.

Theorem 4.2. Let f : H → (−∞,∞] be a proper lower semicontinuous convex function.
Assume {αn}, {βn}, {δn}, and {rn} satisfy the same conditions (i)–(iv) as in Theorem 3.1.
If (∂ f )−10 �= ∅, then {xn} defined by (4.2) with criterion (4.3) converges strongly to v ∈H ,
which is the minimizer of f nearest to u.

Proof. Putting gn(z)= f (z) +‖z− xn‖2/2rn, we obtain

∂gn(z)= ∂ f (z) +
1
rn

(
z− xn

)= Sn(z) (4.4)

for all z ∈H and Jrnxn = (I + rn∂ f )−1xn = argminz∈H gn(z). It follows from Theorem 3.1
and Lemma 4.1 that {xn} converges strongly to v ∈H and f (v)=minz∈H f (z). This com-
pletes the proof. �

Next we consider a variational inequality. Let C be a nonempty closed convex subset
of H and let T be a single-valued operator of C into H . We denote by VI(C,T) the set of
solutions of the variational inequality, that is,

VI(C,T)= {w ∈ X : 〈s−w,Tw〉 ≥ 0, ∀s∈ C
}
. (4.5)

A single-valued operator T is called semicontinuous if T is continuous from each line
segment of C toH with the weak topology. Let F be a single-valued monotone and semi-
continuous operator of C into H and let NCz be the normal cone to C at z ∈ C, that is,
NCz = {w ∈H : 〈z− s,w〉 ≥ 0, ∀s∈ C}. Letting

Az =
⎧
⎨

⎩
Fz+NCz, z ∈ C,

∅, z ∈H \C, (4.6)
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we have that A is a maximal monotone operator (see Rockafellar [14, Theorem 3]). We
can also check that 0 ∈ Av if and only if v ∈ VI(C,F) and that Jrx = VI(C,Fr,x) for all
r > 0 and x ∈H , where Fr,xz = Fz + (z− x)/r for all z ∈ C. Then we have the following
result.

Corollary 4.3. Let F be a single-valued monotone and semicontinuous operator of C into
H . For fixed u∈H , let the sequence {xn} be generated by

yn ≈ VI
(
C,Frn,xn

)
,

xn+1 = αnu+βnxn + δnyn.
(4.7)

Here the criterion for the approximate computation of yn in (4.7) will be

∥
∥yn−VI

(
C,Frn,xn

)∥∥≤ σn, (4.8)

where
∑∞

n=0 σn <∞. Assume {αn}, {βn}, {δn}, and {rn} satisfy the same conditions (i)–(iv)
as in Theorem 3.1. If VI(C,F) �= ∅, then {xn} defined by (4.7) with criterion (4.8) converges
strongly to the point of VI(C,F) nearest to u.
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