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The convex feasibility problem (CFP) of finding a point in the nonempty intersection
∩N

i=1Ci is considered, where N ≥ 1 is an integer and each Ci is assumed to be the fixed
point set of a nonexpansive mapping Ti : E → E, where E is a reflexive Banach space
with a weakly sequentially continuous duality mapping. By using viscosity approxima-
tion methods for a finite family of nonexpansive mappings, it is shown that for any given
contractive mapping f : C→ C, where C is a nonempty closed convex subset of E and for
any given x0 ∈ C the iterative scheme xn+1 = P[αn+1 f (xn) + (1−αn+1)Tn+1xn] is strongly
convergent to a solution of (CFP), if and only if {αn} and {xn} satisfy certain conditions,
where αn ∈ (0,1),Tn = Tn(mod N) and P is a sunny nonexpansive retraction of E onto C.
The results presented in the paper extend and improve some recent results in Xu (2004),
O’Hara et al. (2003), Song and Chen (2006), Bauschke (1996), Browder (1967), Halpern
(1967), Jung (2005), Lions (1977), Moudafi (2000), Reich (1980), Wittmann (1992), Re-
ich (1994).

Copyright © 2007 Shih-Sen Chang et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We are concerned with the following convex feasibility problem (CFP):

finding an x ∈
N⋂

i=1
Ci, (1.1)

where N ≥ 1 is an integer and each Ci is assumed to be the fixed point set of a nonex-
pansive mapping Ti : E→ E, i = 1,2, . . . ,N . There is a considerable investigation on CFP
in the setting of Hilbert spaces which captures applications in various disciplines such as
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image restoration [13–15], computer tomography [16], and radiation therapy treatment
planning [17].

The aim of this paper is to study the CFP in the setting of Banach space. For that
purpose, we first briefly state our iterative scheme and its history.

Let E be a Banach space, let C be a nonempty closed convex subset of E, and let
T1,T2, . . . ,TN be N nonexpansive mappings on E such that Ci = F(Ti), the fixed point
set of Ti. The iterative scheme that we are going to discuss is

xn+1 = P
(
αn+1 f

(
xn
)
+
(
1−αn+1

)
Tn+1xn

)
, ∀n≥ 0, (1.2)

where x0 ∈ E is any given initial data, f (x) : C→ C is a given contractive mapping, Tn =
Tn(modN), {αn} is a sequence in [0,1] and P is a sunny nonexpansive retraction of E ontoC.

Next we consider some special cases of iterative scheme (1.2).
(1) If E is a Hilbert space, f (x)≡ u (a given point in C),N = 1 and T is a nonexpansive

mapping on C, then the iterative scheme (1.2) is equivalent to the following iterative
scheme:

xn+1 = αn+1u+
(
1−αn+1

)
Txn, ∀n≥ 0, (1.3)

which was first introduced and studied by Halpern [6] in 1967. He proved that the itera-
tive sequence (1.3) converges strongly to a fixed point of T , provided {αn} satisfies certain
conditions two of which are

(C1) limn→∞αn = 0;
(C2)

∑∞
n=0αn =∞.

In 1992, Wittmann [11] proved that if {αn} satisfies the conditions (C1), (C2), and the
following condition:

(C4)
∑∞

n=1 |αn−αn+1| <∞,
then the iterative sequence (1.3) converges strongly to a fixed point of T which improves
and extends the corresponding results of Halpern [6], Lions [8].

In 1980 Reich [10] extended Halpern’s result to all uniformly smooth Banach space
and in 1994 he extended Wittmann’s result to those uniformly smooth spaces with a
weakly sequentially continuous dualitymapping (see Reich [12, Theorem and Remark 1]).
In 1997, Shioji and Takahashi [18] extended Wittmann’s result to a wider class of Banach
space.

(2) If E is a Hilbert space, C is a nonempty closed convex subset of E, Ti : C → C is
a nonexpansive mapping, i= 1,2, . . . ,N , and f (x)= u (a given point in C), then (1.2) is
equivalent to the following iterative sequence:

xn+1 = αn+1u+
(
1−αn+1

)
Tn+1xn, ∀n≥ 0, (1.4)

(where Tn = Tn(modN)) which was introduced and studied in Bauschke [4] in 1996. He
proved that the iterative sequence (1.4) converges strongly to a common fixed point of
T1,T2, . . . ,TN , provided {αn} satisfies conditions (C1), (C2), and the following condition:

(C5)
∑∞

n=0 |λn− λn+N | <∞.
(3) If E either is a uniformly smooth Banach space or a reflexive Banach space with a

weakly sequentially continuous duality mapping and C a nonempty closed convex subset
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of E. Assume that T : C → C is a nonexpansive mapping and f : C → C is a contractive
mapping, then (1.2) is equivalent to the following sequence:

xn+1 = αn+1 f
(
xn
)
+
(
1−αn+1

)
Txn, ∀n≥ 0, (1.5)

which was first introduced and studied by Moudafi [9] in the setting of Hilbert space. In
2004, Xu [1] extended and improved the corresponding results of Moudafi [9] to uni-
formly smooth Banach space and proved the following result.

Theorem 1.1 (Xu [1, Theorem 4.2]). Let E be a uniformly smooth Banach space, let C
be a nonempty closed convex subset of E, let T : C → C be a nonexpansive mapping with
F(T) 	= ∅. Let f : C→ C be a contractive mapping, let x0 ∈ C be any given point, let {αn}
be a real sequence in (0,1), and let {xn} be the iterative sequence defined by (1.5). If the
following conditions are satisfied:

(i) limn→∞αn = 0;
(ii)

∑∞
n=0αn =∞;

(iii)
∑∞

n=0 |αn+1−αn| <∞ or limn→∞αn/αn+1 = 1,
then {xn} converges strongly to a fixed point p ∈ C ofT which solves the following variational
inequality:

〈
(I − f )p, J(p−u)

〉≤ 0, ∀u∈ F(T). (1.6)

Very recently, Song and Chen [3] extended Xu’s result to the cases that T is a non-
expansive nonself-mapping and E is a reflexive Banach space with a weakly sequentially
continuous duality mapping.

The purpose of this paper is by using viscosity approximation methods for a finite
family of nonexpansive mappings to prove that for any given contractive mapping f :
C → C and for any given x0 ∈ C the iterative scheme {xn} defined by (1.2) converges
strongly to a solution of CFP, if and only if {αn} and {xn} satisfy certain conditions,
where αn ∈ (0,1), Tn = Tn(modN) and P is a sunny nonexpansive retraction of E onto C.
The results presented in the paper extend and improve some recent results in Xu [1],
O’Hara et al. [2], Song and Chen [3], Bauschke [4], Browder [5], Halpern [6], Jung [7],
Lions [8], Moudafi [9], Reich [10], Wittmann [11], Reich [12].

2. Preliminaries

For the sake of convenience, we first recall some definitions, notations, and conclusions.
Throughout this paper, we assume that E is a real Banach space, E∗ is the dual space

of E, C is a nonempty closed convex subset of E, F(T) is the set of fixed points of map-
ping T , 〈·,·〉 is the generalized duality pairing between E and E∗, and J : E→ 2E

∗
is the

normalized duality mapping defined by

J(x)= { f ∈ E∗, 〈x, f 〉 = ‖x‖‖ f ‖, ‖ f ‖ = ‖x‖}, x ∈ E. (2.1)

When {xn} is a sequence in E, then xn → x (resp., xn⇀ x, xn⇀∗x) denotes strong (resp.,
weak and weak∗) convergence of the sequence {xn} to x.
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Defintion 2.1. (1) A mapping f : C → C is said to be a Banach contraction on C with a
contractive constant β ∈ (0,1) if ‖ f (x)− f (y)‖ ≤ β‖x− y‖ for all x, y ∈ C.

(2) Let T : C→ C be a mapping. T is said to be nonexpansive, if

‖Tx−Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C. (2.2)

(3) Let P : E→ C be a mapping. P is said to be
(a) sunny, if for each x ∈ C and t ∈ [0,1], we have

P
(
tx+ (1− t)Px

)= Px; (2.3)

(b) a retraction of E onto C, if Px = x for all x ∈ C;
(c) a sunny nonexpansive retraction, if P is sunny, nonexpansive retraction of E ontoC;
(d) C is said to be a sunny nonexpansive retract of E, if there exists a sunny nonexpan-

sive retraction of E onto C.

Defintion 2.2. LetU = {x ∈ E : ‖x‖ = 1}. E is said to be a smooth Banach space, if the limit

lim
t→0

‖x+ ty‖−‖x‖
t

(2.4)

exists for each x, y ∈U .

The following results give some characterizations of normalized duality mapping and
sunny nonexpansive retractions on a smooth Banach space.

Lemma 2.3. (1) A Banach space E is smooth if and only if the normalized duality mapping
J : E→ 2E

∗
is single-valued. In this case, the normalized duality mapping J is strong-weak∗

continuous (see, e.g., [19]).
(2) Let E be a smooth Banach space and let C be a nonempty closed convex subset of E.

If P : E→ C is a retraction and J is the normalized duality mapping on E, then the following
conclusions are equivalent (see, [20–23]):

(a) P is sunny and nonexpansive;
(b) ‖Px−Py‖2 ≤ 〈x− y, J(Px−Py)〉 for all x, y ∈ E;
(c) 〈x−Px, J(y−Px)〉 ≤ 0 for all x ∈ E and y ∈ C.

Remark 2.4. It should be pointed out that in the recent papers [24, 25] the authors deal
with the construction of sunny nonexpansive retractions onto common fixed point sets
of certain families of nonexpansive mappings in Banach spaces. Current information on
(sunny) nonexpansive retracts in Banach spaces can be found in Kopecká and Reich [23].

Defintion 2.5 (Browder [5]). A Banach space is said to admit a weakly sequentially con-
tinuous normalized duality mapping J , if J : E→ E∗ is single-valued and weak-weak∗ se-
quentially continuous, that is, if xn⇀ x in E, then J(xn)⇀∗ J(x) in E∗.
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The following results can be obtained from Definition 2.5.

Lemma 2.6. If E admits a weakly sequentially continuous normalized duality mapping, then
(1) E satisfies the Opial’s condition, that is, whenever xn ⇀ x in E and y 	= x, then

limsupn→∞‖xn− x‖ < limsupn→∞‖xn− y‖ (see, Lim and Xu [26]).
(2) If T : E→ E is a nonexpansive mapping, then the mapping I −T is demiclosed, that

is, for any sequence {xn} in E, if xn⇀ x and (xn −Txn)→ y, then (I −T)x = y (see, e.g.,
Goebel and Kirk [27]).

Defintion 2.7. (1) Let C be a nonempty closed convex subset of a Banach space E. Then
for each x ∈ C, the set IC(x) defined by

IC(x)=
{
y ∈ E : y = x+ λ(z− x), z ∈ C, λ≥ 0

}
(2.5)

is called a inward set.
(2) A mapping T : C → E is said to satisfy the weakly inward condition, if Tx ∈ IC(x)

(the closure of IC(x)) for each x ∈ C.

Lemma 2.8. Let E be a real smooth Banach space, let C be a nonempty closed convex subset
of E which is also a sunny nonexpansive retract of E, and let P be a sunny nonexpansive
retraction from E onto C. Let Ti : E→ E, i= 1,2, . . . ,N , be nonexpansive mappings satisfying
the following conditions:

(i)
⋂N

i=1(F(Ti)
⋂
C) 	= ∅;

(ii)

N⋂

i=1
F
(
Ti
)=

N⋂

i=1
F
(
T1TN ···T3T2

)= ··· = F
(
TNTN−1, . . . ,T1

)= F(S), (2.6)

where

S= TNTN−1, . . . ,T1; (2.7)

(iii) S : C→ E satisfies the weakly inward condition.

Then
⋂N

i=1(F(Ti)
⋂
C)= F(PS).

Proof. If x ∈⋂N
i=1(F(Ti)

⋂
C), then x = Tix ∈ C, i= 1,2, . . . ,N , and so x = Sx ∈ C. Since

P is a sunny nonexpansive retraction from E onto C, we have Px = PSx = x. This implies
that x ∈ F(PS), and so

⋂N
i=1(F(Ti)

⋂
C)⊂ F(PS).

Conversely, if x ∈ F(PS), then x = PSx ∈ C. Since P is a sunny nonexpansive retraction
from E onto C, by Lemma 2.3(2)(c), we have

〈
Sx− x, J(y− x)

〉≤ 0, ∀y ∈ C. (2.8)
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By condition (iii), Sx ∈ IC(x). Hence for each n ≥ 1, there exist zn ∈ C and λn ≥ 0 such
that the sequence yn = x + λn(zn − x)→ Sx (n→∞). It follows from (2.8) and the posi-
tively homogeneous property of normalized duality mapping J that

0≥ λn
〈
Sx− x, J

(
zn− x

)〉

= 〈Sx− x, J
(
λn
(
zn− x

))〉

= 〈Sx− x, J
(
yn− x

)〉
.

(2.9)

Since E is smooth, it follows from Lemma 2.3(1) that the normalized duality mapping J
is single-valued and strong-weak∗ continuous. Letting n→∞ in (2.9), we have

‖Sx− x‖2 = 〈Sx− x, J(Sx− x)
〉

= lim
n→∞

〈
Sx− x, J

(
yn− x

)〉≤ 0,
(2.10)

that is, x = Sx. Since x ∈ C, we know that x ∈ F(S)
⋂
C. It follows from condition (ii) that

x ∈⋂N
i=1(F(xi)

⋂
C). This shows that F(PS)⊂⋂N

i=1(F(xi)
⋂
C).

The conclusion of Lemma 2.8 is proved. �

Lemma 2.9 [28]. Let E be a real Banach space, and let J : E→ 2E
∗
be the normalized duality

mapping, then for any x, y ∈ E the following conclusions hold:

‖x+ y‖2 ≤ ‖x‖2 + 2
〈
y, j(x+ y)

〉
, ∀ j(x+ y)∈ J(x+ y);

‖x+ y‖2 ≥ ‖x‖2 + 2
〈
y, j(x)

〉
, ∀ j(x)∈ J(x).

(2.11)

Lemma 2.10 (Liu [29]). Let {an}, {bn}, {cn} be three nonnegative real sequences satisfying
the following conditions:

an+1 ≤
(
1− λn

)
an + bn + cn, ∀n≥ n0, (2.12)

where n0 is some nonnegative integer, {λn} ⊂ (0,1) with
∑∞

n=0 λn = ∞, bn = o(λn), and∑∞
n=0 cn <∞, then an→ 0 (as n→∞).

3. Main results

Let E be a real Banach space, let C be a nonempty closed convex subset of E which is also a
sunny nonexpansive retract of E. Let Ti : E→ E, i= 1,2, . . . ,N , be nonexpansive mappings
and f : C→ C a Banach contraction mapping with a contractive constant 0 < β < 1. For
given t ∈ (0,1), define a mapping St : C→ C by

St(x)= P
(
t f (x) + (1− t)S(x)

)
, x ∈ C, (3.1)

where P is the sunny nonexpansive retraction from E ontoC and S is themapping defined
by (2.7). It is easy to see that St : C → C is a Banach contraction mapping. By Banach’s
contraction, principle yields a unique fixed point zt ∈ C of St, that is, zt is the unique
solution of the equation

zt = P
(
t f
(
zt
)
+ (1− t)S

(
zt
))
, t ∈ (0,1). (3.2)



Shih-Sen Chang et al. 7

For the net {zt}, we have the following result.
Theorem 3.1. Let E be a real Banach space, let C be a nonempty closed convex subset of E
which is also a sunny nonexpansive retract of E. Let Ti : E→ E, i= 1,2, . . . ,N , be nonexpan-
sive mappings, and let f : C→ C be a given Banach contraction mapping with a contractive
constant 0 < β < 1. Let {zt : t ∈ (0,1)} be the net defined by (3.2), where P is the sunny
nonexpansive retraction of E onto C. If the following conditions are satisfied:

(i)
⋂N

i=1(F(Ti)
⋂
C) 	= ∅;

(ii)

N⋂

i=1
F
(
Ti
)=

N⋂

i=1
F
(
T1TN ···T3T2

)= ··· = F
(
TNTN−1, . . . ,T1

)= F(S), (3.3)

where S= TNTN−1, . . . ,T1.
Then the following conclusions hold:
(1) 〈zt − f (zt), j(zt − u)〉 ≤ 0, for all u ∈⋂N

i=1(F(Ti)
⋂
C), for all j(zt − u) ∈ J(zt −

u);
(2) {zt} is bounded.

Proof. (1) For any u∈⋂N
i=1(F(Ti)

⋂
C), we have

(1− t)u+ t f
(
zt
)= P

(
(1− t)u+ t f

(
zt
))
. (3.4)

Hence we have
∥∥zt −

[
(1− t)u+ t f

(
zt
)]∥∥= ∥∥P(t f (zt

)
+ (1− t)S

(
zt
))−P

(
(1− t)u+ t f

(
zt
))∥∥

≤ (1− t)
∥∥Szt −u

∥∥≤ (1− t)
∥∥zt −u

∥∥.
(3.5)

By Lemma 2.9, we have

∥∥zt −
[
(1− t)u+ t f

(
zt
)]∥∥2 = ∥∥(1− t)

(
zt −u

)
+ t
(
zt − f

(
zt
))∥∥2

≥ (1− t)2
∥∥zt −u

∥∥2 + 2t
〈
zt − f

(
zt
)
, j
(
(1− t)

(
zt −u

))〉

= (1− t)2
∥∥zt −u

∥∥2 + 2t(1− t)
〈
zt − f

(
zt
)
, j
(
zt −u

)〉
.
(3.6)

It follows from (3.5) that

2t(1− t)
〈
zt − f

(
zt
)
, j
(
zt −u

)〉

≤ ∥∥zt −
[
(1− t)u+ t f

(
zt
)]∥∥2− (1− t)2

∥∥zt −u
∥∥2 ≤ 0.

(3.7)

This shows that

〈
zt − f

(
zt
)
, j
(
zt −u

)〉≤ 0, ∀u∈
N⋂

i=1

(
F
(
Ti
)⋂

C
)
, ∀ j

(
zt −u

)∈ J
(
zt −u

)
. (3.8)
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(2) Since f : C→ C is a Banach contraction mapping with a contractive constant 0 <
β < 1. Hence for any u∈⋂N

i=1(F(Ti)
⋂
C), we have

〈
f
(
zt
)− f (u), j

(
zt −u

)〉≤ β
∥∥zt −u

∥∥2. (3.9)

Again since

〈
zt − f

(
zt
)
, j
(
zt −u

)〉= 〈zt −u+u− f (u) + f (u)− f
(
zt
)
, j
(
zt −u

)〉

= ∥∥zt −u
∥∥2 +

〈
u− f (u), j

(
zt −u

)〉

+
〈
f (u)− f

(
zt
)
, j
(
zt −u

)〉

≥ ∥∥zt −u
∥∥2 +

〈
u− f (u), j

(
zt −u

)〉

−∥∥ f (u)− f
(
zt
)∥∥∥∥zt −u

∥∥

≥ (1−β)
∥∥zt −u

∥∥2 +
〈
u− f (u), j

(
zt −u

)〉
.

(3.10)

It follows from the conclusion (1) that

(1−β)
∥∥zt −u

∥∥2 +
〈
u− f (u), j

(
zt −u

)〉≤ 0, (3.11)

that is,

(1−β)
∥∥zt −u

∥∥2 ≤ 〈u− f (u), j
(
u− zt

)〉≤ ∥∥u− f (u)
∥∥ ·∥∥zt −u

∥∥. (3.12)

Therefore we have

∥∥zt −u
∥∥≤

∥∥u− f (u)
∥∥

1−β
. (3.13)

This shows that {zt} is bounded. �

Theorem 3.2. Let E be a reflexive Banach space which admits a weakly sequentially con-
tinuous normalized duality mapping J from E to E∗. Let C be a nonempty closed convex
subset of E which is also a sunny nonexpansive retract of E. Let f : C→ C be a given Banach
contraction mapping with a contractive constant 0 < β < 1, and let Ti : E→ E, i= 1,2, . . . ,N ,
be nonexpansive mappings satisfying the following conditions:

(i)
⋂N

i=1(F(Ti)
⋂
C) 	= ∅;

(ii)

N⋂

i=1
F
(
Ti
)=

N⋂

i=1
F
(
T1TN ···T3T2

)= ··· = F
(
TNTN−1, . . . ,T1

)= F(S), (3.14)

where S= TNTN−1, . . . ,T1;
(iii) The mapping S : C→ E satisfies the weakly inward condition.
Let {zt : t ∈ (0,1)} be the net defined by (3.2), where P is the sunny nonexpansive re-

traction of E onto C. Then as t → 0, {zt} converges strongly to some common fixed point
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p ∈⋂N
i=1(F(Ti)

⋂
C) such that p is the unique solution of the following variational inequal-

ity:

〈
(I − f )(p), J(p−u)

〉≤ 0, ∀u∈
N⋂

i=1

(
F
(
Ti
)⋂

C
)
. (3.15)

Proof. It follows from Theorem 3.1(2) that the net {zt, t ∈ (0,1)} is bounded and so
{S(zt), t ∈ (0,1)} and { f (zt), t ∈ (0,1)} both are bounded. Hence from (3.2), we have

∥∥zt −PS
(
zt
)∥∥= ∥∥P(t f (zt

)
+ (1− t)S

(
zt
))−PSzt

∥∥

≤ ∥∥t f (zt
)
+ (1− t)S

(
zt
)− S

(
zt
)∥∥

= t
∥∥ f
(
zt
)− S

(
zt
)∥∥−→ 0 (as t −→ 0),

(3.16)

and so we have

lim
t→0

∥∥zt −PS
(
zt
)∥∥= 0. (3.17)

Next we prove that {zt : t ∈ (0,1)} is relatively compact. Indeed, since E is reflexive and
{zt} is bounded, for any subsequence {ztn} ⊂ {zt}, there exists a subsequence of {ztn} (for
simplicity we still denote it by {ztn}) (where tn is a sequence in (0,1)) such that ztn ⇀ p
(as tn→ 0). Since PS : C→ C is nonexpansive, by virtue of (3.17) we have

∥∥ztn −PS
(
ztn
)∥∥−→ 0

(
as tn −→ 0

)
. (3.18)

It follows from Lemma 2.6(2) that I −PS has the demiclosed property, and so p ∈ F(PS).
Therefore it follows from Lemma 2.8 that

p ∈ F(PS)=
N⋂

i=1

(
F
(
Ti
)⋂

C
)
. (3.19)

Taking u= p in (3.12), we have

∥∥ztn − p
∥∥2 ≤

〈
p− f (p), J

(
p− ztn

)〉

(1−β)
. (3.20)

Since J is weakly sequentially continuous, we get that

lim
tn→0

∥∥ztn − p
∥∥2 ≤ lim

tn→0

〈
p− f (p), J

(
p− ztn

)〉

(1−β)
= 0, (3.21)

that is, ztn → p (as n→∞).
This shows that {zt} is relatively compact.
Finally, we prove that the entire net {zt, t ∈ (0,1)} converges strongly to p.
Suppose the contrary that there exists another subsequence {ztj} of {zt} such that ztj →

q (as t j → 0). By the same method as given above, we can also prove that q ∈ F(S)
⋂
C =

⋂N
i=1(F(Ti)

⋂
C).
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Next we prove that p = q and p is the unique solution of the following variational
inequality:

〈
(I − f )p, j(p−u)

〉≤ 0, ∀u∈
N⋂

i=1

(
F
(
Ti
)⋂

C
)
. (3.22)

Indeed, for each u ∈ ⋂N
i=1(F(Ti)

⋂
C), the sets {zt − u} and {zt − f (zt)} both are

bounded and the normalized duality mapping J : E → E∗ is single-valued and weakly
sequentially continuous. Hence it follows from ztj → q (as t j → 0) that

∣∣〈(I − f )
(
ztj
)
, J
(
ztj −u

)〉− 〈(I − f )(q), J(q−u)
〉∣∣

= ∣∣〈(I − f )
(
ztj
)− (I − f )(q), J

(
ztj −u

)〉

+
〈
(I − f )(q), J

(
ztj −u

)− J(q−u)
〉∣∣

≤ ∥∥(I − f )
(
ztj
)− (I − f )(q)

∥∥ ·∥∥ztj −u
∥∥

+
∣∣〈(I − f )(q), J

(
ztj −u

)− J(q−u)
〉∣∣−→ 0

(
as t j −→ 0

)
.

(3.23)

By Theorem 3.1(1) we have

〈
(I − f )(q), J(q−u)

〉= lim
t j→0

〈
(I − f )

(
ztj
)
, J
(
ztj −u

)〉≤ 0, (3.24)

that is,

〈
(I − f )(q), J(q−u)

〉≤ 0. (3.25)

Similarly we can also prove that

〈
(I − f )(p), J(p−u)

〉≤ 0. (3.26)

Taking u= p in (3.25) and u= q in (3.26) and then adding up these two inequalities, we
have

〈
(I − f )(p)− (I − f )(q), J(p− q)

〉≤ 0, (3.27)

and so we have

‖p− q‖2 ≤ 〈 f (p)− f (q), J(p− q)
〉≤ β‖p− q‖2. (3.28)

This implies that p = q. The proof of Theorem 3.2 is completed. �

We are now in a position to prove the following result.

Theorem 3.3. Let E be a reflexive Banach space which admits a weakly sequentially contin-
uous normalized duality mapping J from E to E∗. Let C be a nonempty closed convex subset
of E which is also a sunny nonexpansive retract of E and P a sunny nonexpansive retraction
from E onto C. Let f : C → C be a given Banach contraction mapping with a contractive
constant 0 < β < 1, and let Ti : E→ E, i = 1,2, . . . ,N , be nonexpansive mappings satisfying
the following conditions:
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(i)
⋂N

i=1(F(Ti)
⋂
C) 	= ∅;

(ii)

N⋂

i=1
F
(
Ti
)=

N⋂

i=1
F
(
T1TN ···T3T2

)= ··· = F
(
TNTN−1, . . . ,T1

)= F(S), (3.29)

where S= TNTN−1, . . . ,T1;
(iii) The mapping S : C→ E satisfies the weakly inward condition.
For any given x0 ∈ C, let {xn} be the iterative sequence defined by

xn+1 = P
(
αn+1 f

(
xn
)
+
(
1−αn+1

)
Tn+1xn

)
, (3.30)

where Tn = Tn(modN). Then the following hold.
(1) {xn} converges strongly to some p ∈⋂N

i=1(F(Ti)
⋂
C) if and only if the following con-

ditions are satisfied:
(a) limn→∞αn = 0;
(b)

∑∞
n=0αn =∞;

(c) ‖xn−PSxn‖→ 0.
(2) If xn→ p ∈⋂N

i=1(F(Ti)
⋂
C), then this p is the unique solution of the following vari-

ational inequality:

〈
(I − f )(p), J(p−u)

〉≤ 0, ∀u∈
N⋂

i=1

(
F
(
Ti
)⋂

C
)
. (3.31)

Proof of conclusion (1) of Theorem 3.3 (sufficiency). (I) For themapping S : E→ E defined
above, it is easy to see that S is a nonexpansive mapping. For given f : C→ C, t ∈ (0,1),
we define a contraction mapping St : C→ C by

Stx = P
(
t f (x) + (1− t)Sx

)
, x ∈ C, (3.32)

where P is the sunny nonexpansive retraction from E onto C. Let zt ∈ C be the unique
fixed point St, that is, it is the unique solution of the equation

zt = P
(
t f
(
zt
)
+ (1− t)Szt

)
. (3.33)

By Theorem 3.2, {zt, t ∈ (0,1)} is bounded and as t→ 0, {zt} converges strongly to some
p ∈⋂N

i=1(F(Ti)
⋂
C) such that p is the unique solution of the following variational in-

equality:

〈
(I − f )(p), J(p−u)

〉≤ 0, ∀u∈
N⋂

i=1

(
F
(
Ti
)⋂

C
)
. (3.34)
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(II) Now we prove that the sequence {xn} defined by (3.30) is bounded. In fact, for any
u∈⋂N

i=1(F(Ti)
⋂
C) and for any n≥ 0 we have

∥∥xn−u
∥∥= ∥∥P((1−αn

)
Tnxn−1 +αn f

(
xn−1

))−Pu
∥∥

≤ (1−αn
)∥∥Tnxn−1−u

∥∥+αn
∥∥ f
(
xn−1

)−u
∥∥

≤ (1−αn
)∥∥xn−1−u

∥∥+αn
{∥∥ f

(
xn−1

)− f (u)
∥∥+

∥∥ f (u)−u
∥∥}

≤ (1−αn
)∥∥xn−1−u

∥∥+αn
{
β
∥∥xn−1−u

∥∥+
∥∥ f (u)−u

∥∥}

= (1−αn(1−β)
)∥∥xn−1−u

∥∥+αn
∥∥ f (u)−u

∥∥

≤max

{
∥∥xn−1−u

∥∥,
∥∥ f (u)−u

∥∥

1−β

}
.

(3.35)

By induction, we can prove that

∥∥xn−u
∥∥≤max

{
∥∥x0−u

∥∥,
∥∥ f (u)−u

∥∥

1−β

}
∀n≥ 0. (3.36)

This shows that {xn} is bounded. Let

M = sup
t≥0

sup
n≥0

{∥∥xn− p
∥∥2 +

∥∥xn− p
∥∥+

∥∥zt − xn
∥∥+

∥∥zt − xn
∥∥2} <∞, (3.37)

where p is the strong limit of the sequence {zt} defined by (3.33).
(III) Now we prove that

limsup
n→∞

〈
(I − f )(p), J

(
p− xn

)〉≤ 0. (3.38)

Indeed, since E is reflexive and {xn} is bounded, we can take a subsequence {xnk} ⊂ {xn}
such that xnk ⇀ x∗ and

limsup
n→∞

〈
(I − f )(p), J

(
p− xn

)〉= lim
nk→∞

〈
(I − f )(p), J

(
p− xnk

)〉
. (3.39)

By condition (c), we have

∥∥xnk −PSxnk
∥∥−→ 0

(
as nk −→∞

)
. (3.40)

It follows from Lemmas 2.6(2) and 2.8 that

x∗ ∈ F(PS)=
N⋂

n=1

(
F
(
Ti
)⋂

C
)
. (3.41)

Since the normalized duality J is weakly sequentially continuous, from (3.15) we have

limsup
n→∞

〈
(I − f )(p), J

(
p− xn

)〉

= lim
nk→∞

〈
(I − f )(p), J

(
p− xnk

)〉= 〈(I − f )(p), J
(
p− x∗

)〉≤ 0.
(3.42)
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The conclusion (3.38) is proved.
(IV) Letting γn =max{〈(I − f )(p), J(p− xn)〉,0} ≥ 0, we prove that γn→ 0 (as n→∞).
Indeed, it follows from (3.38) that for any given ε > 0, there exists a positive integer n1

such that

〈
(I − f )(p), J

(
p− xn

)〉
< ε ∀n≥ n1, (3.43)

and so we have 0 ≤ γn < ε, for all n ≥ n1. In view of the arbitrariness of ε > 0, we know
that γn→ 0.

(V) Finally, we prove that xn → p where p is the limit of {zt} (as t → 0) and p ∈⋂N
i=1(F(Ti)

⋂
C). In fact, it follows from (3.30) and Lemma 2.9 that

∥∥xn+1− p
∥∥2 = ∥∥P((1−αn+1

)
Tn+1xn +αn+1 f

(
xn
))−P(p)

∥∥2

≤ ∥∥(1−αn+1
)(
Tn+1xn− p

)
+αn+1

(
f
(
xn
)− p

)∥∥2

≤ (1−αn+1
)2∥∥Tn+1xn− p

∥∥2 + 2αn+1
〈
f
(
xn
)− p, J

(
xn+1− p

)〉

≤ (1−αn+1
)2∥∥xn− p

∥∥2

+ 2αn+1
〈
f
(
xn
)− f (p) + f (p)− p, J

(
xn+1− p

)〉

≤ (1−αn+1
)2∥∥xn− p

∥∥2 + 2αn+1β
∥∥xn− p

∥∥ ·∥∥xn+1− p
∥∥

+2αn+1
〈
f (p)− p, J

(
xn+1− p

)〉

≤ (1−αn+1
)2∥∥xn− p

∥∥2 +αn+1β
{∥∥xn− p

∥∥2 +
∥∥xn+1− p

∥∥2}

+2αn+1
〈
f (p)− p, J

(
xn+1− p

)〉
.

(3.44)

Since the normalized duality mapping J defined by (2.1) is odd, that is, J(−x) = −J(x),
x ∈ E, therefore we have

〈
f (p)− p, J

(
xn+1− p

)〉= 〈p− f (p), J
(
p− xn+1

)〉≤ γn+1. (3.45)

Substituting it into (3.44) and simplifying, we have

(
1−βαn+1

) ·∥∥xn+1− p
∥∥2 ≤ [(1−αn+1

)2
+αn+1β

]∥∥xn− p
∥∥2

+ 2αn+1
〈
f (p)− p, J

(
xn+1− p

)〉

≤ (1−αn+1(2−β)
)∥∥xn− p

∥∥2

+α2n+1
∥∥xn− p

∥∥2 + 2αn+1γn+1

≤ (1−αn+1(2−β)
)∥∥xn− p

∥∥2 +α2n+1M +2αn+1γn+1.

(3.46)

Since αn→ 0, therefore there exists a positive integer n2 such that

1−βαn+1 >
1
2
, ∀n≥ n2. (3.47)
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It follows from (3.46) that

∥∥xn+1− z
∥∥2 ≤ 1−αn+1(2−β)

1−βαn+1

∥∥xn− p
∥∥2

+ 2αn+1
{
αn+1M +2γn+1

} ∀n≥ n2.
(3.48)

Again since

1−αn+1(2−β)
1−βαn+1

= 1− 2αn+1(1−β)
1−βαn+1

≤ 1− 2αn+1(1−β), (3.49)

from (3.48) we have

∥∥xn+1− z
∥∥2 ≤ {1− 2αn+1(1−β)

}∥∥xn− p
∥∥2

+ 2αn+1
{
αn+1M +2γn+1

} ∀n≥ n2.
(3.50)

Take an = ‖xn − p‖2, λn = 2αn+1(1− β), bn = 2αn+1{αn+1M + 2γn+1}, and cn = 0 for all
n≥ n2 in Lemma 2.10. By the assumptions, it is easy to see that

∑∞
n=0 λn =∞, bn = o(λn)

and
∑∞

n=0 cn = 0, hence the conditions in Lemma 2.10 are satisfied, and so we have

lim
n→∞

∥∥xn− p
∥∥= 0, that is, xn −→ p ∈

N⋂

i=

(
F
(
Ti
)⋂

C
)
. (3.51)

The sufficiency of conclusion (1) of Theorem 3.3 is proved.
(Necessity). Suppose that the sequence {xn} defined by (3.30) converges strongly to a

fixed point p ∈⋂N
i=1(F(Ti)

⋂
C)= F(S)

⋂
C. Therefore we have that

∥∥PSxn− xn
∥∥= ∥∥PSxn−Pxn

∥∥≤ ∥∥Sxn− xn
∥∥

≤ ∥∥Sxn− p
∥∥+

∥∥xn− p
∥∥

≤ 2
∥∥xn− p

∥∥−→ 0 (n−→∞).

(3.52)

The necessity of condition (c) is proved.
Now we prove the necessity of condition (a). Take f ≡ u, u ∈ C with u 	= p and Ti is

nonexpansive mapping from C to C for all i= 1,2, . . . ,N . Then the sequence {xn} defined
by (3.30) is equivalent to the following iterative sequence:

x0 ∈ C,

xn+1 = αn+1u+
(
1−αn+1

)
Tn+1xn,

(3.53)
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where Tn = Tn(modN). Since each Ti : C→ C, i= 1,2, . . . ,N , is nonexpansive, we get

∥∥Tn+1xn− p
∥∥≤ ∥∥xn− p

∥∥−→ 0, that is, Tn+1xn −→ p (as n−→∞). (3.54)

Again from (3.53) we have that

αn+1
∥∥u−Tn+1xn

∥∥= ∥∥xn+1−Tn+1xn
∥∥

≤ ∥∥xn+1− p
∥∥+

∥∥Tn+1xn− p
∥∥

≤ ∥∥xn+1− p
∥∥+

∥∥xn− p
∥∥−→ 0 (as n−→∞).

(3.55)

Therefore we have

limsup
n→∞

αn+1
∥∥u−Tn+1xn

∥∥= limsup
n→∞

αn+1‖u− p‖ = 0. (3.56)

By the assumption that u 	= p, and so we have

limsup
n→∞

αn+1 = 0, (3.57)

that is,

lim
n→∞αn = 0. (3.58)

The necessity of condition (a) is proved.
Take f = 0, C = {x ∈ E : ‖x‖ ≤ 1} (closed unit ball in E), and Ti = (−I) : C→ C, for

all i= 1,2, . . . ,N , in (3.30), where I is the identity mapping. Since each Ti, i= 1,2, . . . ,N ,
is nonexpansive and 0 is the unique common fixed point of T1,T2, . . . ,TN in C, hence we
have

xn+1 = (−1)(1−αn+1
)
xn = (−1)2(1−αn+1

)(
1−αn

)
xn−1 = ··· = (−1)n+1

n+1∏

i=1

(
1−αi

)
x0.

(3.59)

If xn→ 0∈⋂N
i=1Fix(Ti), we have

0= lim
n→∞

∥∥xn+1− 0
∥∥= lim

n→∞

n+1∏

i=1

(
1−αi

)∥∥x0− 0
∥∥. (3.60)

This implies that

∞∏

i=1

(
1−αi

)= 0, that is,
∞∑

i=1
αi =∞. (3.61)

The necessity of condition (b) is proved.
Summing up the about argument, the conclusion (1) of Theorem 3.3 is proved.
The conclusion (2) of Theorem 3.3 can be obtained from Theorem 3.2 immediately.
The proof of Theorem 3.3 is completed. �
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4. Applications to some recent theorems

As applications of Theorem 3.3 we can obtain the following results.

Theorem 4.1. Let E be a reflexive Banach space which admits a weakly sequentially contin-
uous normalized duality mapping J from E to E∗. Let C be a nonempty closed convex subset
of E which is also a sunny nonexpansive retract of E and P a sunny nonexpansive retraction
from E onto C. Let f : C→ C be a given Banach contraction mapping with a contractive con-
stant 0 < β < 1, and let Ti : E→ E, i = 1,2, . . . ,N , be nonexpansive mappings satisfying the
conditions (i), (ii) and (iii) in Theorem 3.1. For any given x0 ∈ C, let {xn} be the sequence
defined by (3.30). If the following conditions are satisfied:

(i) limn→∞αn = 0;
(ii)

∑∞
n=0αn =∞;

(iii)
∑∞

n=0 |αn+1−αn| <∞ or limn→∞αn/αn+1 = 1,
then the sequence {xn} converges strongly to a point p ∈

⋂N
i=1(F(Ti)

⋂
C)which is the unique

solution of the following variational inequality:

〈
(I − f )(p), J(p−u)

〉≤ 0, ∀u∈
N⋂

i=1

(
F
(
Ti
)⋂

C
)
. (4.1)

Proof. It suffices to prove that under the conditions of Theorem 4.1 the condition ‖xn−
PSxn‖→ 0 (as n→∞) in Theorem 3.3 is satisfied.

In fact, for given contraction mapping f : C→ C with a contractive constant β ∈ (0,1)
and for given point u ∈⋂N

i=1(F(Ti)
⋂
C), by the same method as given in the proof of

(3.36), we can prove that

∥∥xn−u
∥∥≤max

{
∥∥x0−u

∥∥,
∥∥ f (u)−u

∥∥

1−β

}
∀n≥ 0. (4.2)

This implies that {xn} is bounded, and so {Sxn} and { f (xn)} both are bounded. Let

M = sup
n≥0

{∥∥ f
(
xn
)− Sxn

∥∥+
∥∥ f
(
xn
)− S

(
xn+1

)∥∥}. (4.3)

It follows from (3.30) that

∥∥xn+1− xn
∥∥= ∥∥P(αn+1 f

(
xn
)
+
(
1−αn+1

)
Sxn
)−P

(
αn f

(
xn−1

)
+
(
1−αn

)
Sxn−1

)∥∥

≤ ∥∥αn+1 f
(
xn
)
+
(
1−αn+1

)
Sxn−

(
αn f

(
xn−1

)
+
(
1−αn

)
Sxn−1

)∥∥

= ∥∥(1−αn+1
)(
Sxn− Sxn−1

)
+
(
αn+1−αn

)(
f
(
xn−1

)− Sxn−1
)

+αn+1
(
f
(
xn
)− f

(
xn−1

))∥∥

≤ (1−αn+1
)∥∥xn− xn−1

∥∥+
∣∣αn+1−αn

∣∣∥∥ f
(
xn−1

)− Sxn−1
∥∥

+αn+1β
∥∥xn− xn−1

∥∥

≤ (1−αn+1(1−β)
)∥∥xn− xn−1

∥∥+M
∣∣αn+1−αn

∣∣.

(4.4)
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(I) If the condition
∑∞

n=0 |αn+1−αn| <∞ is satisfied, then take an = ‖xn− xn−1‖, λn =
αn+1(1−β), bn = 0, and cn =M|αn+1−αn| in Lemma 2.10. It is easy to see that all condi-
tions in Lemma 2.10 are satisfied. Therefore we have

∥∥xn+1− xn
∥∥−→ 0 (as n−→∞). (4.5)

(II) If the condition limn→∞αn/αn+1 = 1 is satisfied, then take an = ‖xn − xn−1‖, λn =
αn+1(1−β), cn = 0 and

bn =M
∣∣αn+1−αn

∣∣=Mαn+1

∣∣∣∣
αn+1−αn
αn+1

∣∣∣∣=Mαn+1

∣∣∣∣1−
αn
αn+1

∣∣∣∣= 0
(
λn
)
. (4.6)

It is easy to see that all conditions in Lemma 2.10 are satisfied. Therefore (4.5) still holds.
From (3.30), we have

∥∥xn−PSxn
∥∥= ∥∥P(αn f

(
xn−1

)
+
(
1−αn

)
Sxn−1

)−PSxn
∥∥

≤ ∥∥αn f
(
xn−1

)
+
(
1−αn

)
Sxn−1− Sxn

∥∥

= ∥∥αn
[
f
(
xn−1

)− Sxn
]
+
(
1−αn

)(
Sxn−1− Sxn

)∥∥

≤ αn
∥∥ f
(
xn−1

)− Sxn
∥∥+

(
1−αn

)∥∥Sxn−1− Sxn
∥∥

≤ αnM +
(
1−αn

)∥∥xn−1− xn
∥∥.

(4.7)

By virtue of (4.5) and condition (i), we obtain

lim
n→∞

∥∥xn−PSxn
∥∥−→ 0. (4.8)

This shows that the condition (iii) in Theorem 3.3 is satisfied. Hence the conclusion of
Theorem 4.1 can be obtained from Theorem 3.3 immediately. �

Theorem 4.2. Let E be a reflexive Banach space which admits a weakly sequentially contin-
uous normalized duality mapping J from E to E∗. Let C be a nonempty closed convex subset
of E which is also a sunny nonexpansive retract of E and P a sunny nonexpansive retraction
from E onto C. Let f : C→ C be a given Banach contraction mapping with a contractive con-
stant 0 < β < 1, and let T : C → E be a nonexpansive mapping with F(T) 	= ∅ and satisfy
the weakly inward condition.

For any given x0 ∈ C, let {xn} be the iterative sequence defined by

xn+1 = P
(
αn+1 f

(
xn
)
+
(
1−αn+1

)
Txn

)
. (4.9)

Then the following hold.
(1) {xn} converges strongly to a point p ∈ F(T) if and only if the following conditions are

satisfied:
(a) limn→∞αn = 0;
(b)

∑∞
n=0αn =∞;

(c) ‖xn−PTxn‖→ 0.
(2) If xn→ p ∈ F(T), then p is the unique solution of the following variational inequality:

〈
(I − f )(p), J(p−u)

〉≤ 0, ∀u∈ F(T). (4.10)
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Proof. The conclusion of Theorem 4.2 can be obtained from Theorem 3.3 immediately.
�

Remark 4.3. Theorem 4.2 improves and extends the main results in Xu [1], O’Hara et al.
[2], Song and Chen [3], Jung [7], Wittmann [11], Bauschke [4], Moudafi [9], Lions [8],
Halpern [6], Reich [10, 12], and Browder [5].

Acknowledgments

The authors would like to express their thanks to the referees for their helpful sugges-
tions to revise this paper. The third author was supported by the Kyungnam University
Research Fund, 2006.

References

[1] H.-K. Xu, “Viscosity approximation methods for nonexpansive mappings,” Journal of Mathe-
matical Analysis and Applications, vol. 298, no. 1, pp. 279–291, 2004.

[2] J. G. O’Hara, P. Pillay, and H.-K. Xu, “Iterative approaches to finding nearest common fixed
points of nonexpansive mappings in Hilbert spaces,”Nonlinear Analysis: Theory, Methods & Ap-
plications, vol. 54, no. 8, pp. 1417–1426, 2003.

[3] Y. Song and R. Chen, “Viscosity approximation methods for nonexpansive nonself-mappings,”
Journal of Mathematical Analysis and Applications, vol. 321, no. 1, pp. 316–326, 2006.

[4] H. H. Bauschke, “The approximation of fixed points of compositions of nonexpansive mappings
in Hilbert space,” Journal of Mathematical Analysis and Applications, vol. 202, no. 1, pp. 150–159,
1996.

[5] F. E. Browder, “Convergence of approximants to fixed points of nonexpansive non-linear map-
pings in Banach spaces,” Archive for Rational Mechanics and Analysis, vol. 24, no. 1, pp. 82–90,
1967.

[6] B. Halpern, “Fixed points of nonexpanding maps,” Bulletin of the American Mathematical Soci-
ety, vol. 73, pp. 957–961, 1967.

[7] J. S. Jung, “Iterative approaches to common fixed points of nonexpansive mappings in Banach
spaces,” Journal of Mathematical Analysis and Applications, vol. 302, no. 2, pp. 509–520, 2005.

[8] P.-L. Lions, “Approximation de points fixes de contractions,” Comptes Rendus de l’Académie des
Sciences (Paris), Série A, vol. 284, no. 21, pp. 1357–1359, 1977.

[9] A. Moudafi, “Viscosity approximation methods for fixed-points problems,” Journal of Mathe-
matical Analysis and Applications, vol. 241, no. 1, pp. 46–55, 2000.

[10] S. Reich, “Strong convergence theorems for resolvents of accretive operators in Banach spaces,”
Journal of Mathematical Analysis and Applications, vol. 75, no. 1, pp. 287–292, 1980.

[11] R. Wittmann, “Approximation of fixed points of nonexpansive mappings,” Archiv der Mathe-
matik, vol. 58, no. 5, pp. 486–491, 1992.

[12] S. Reich, “Approximating fixed points of nonexpansive mappings,” Panamerican Mathematical
Journal, vol. 4, no. 2, pp. 23–28, 1994.

[13] P. L. Combettes, “The convex feasibility problem: in image recovery,” in Advances in Imaging and
Electron Physics, P. Hawkes, Ed., vol. 95, pp. 155–270, Academic Press, Orlando, Fla, USA, 1996.

[14] T. Kotzer, N. Cohen, and J. Shamir, “Image restoration by a novel method of parallel projection
onto constraint sets,” Optics Letters, vol. 20, no. 10, pp. 1172–1174, 1995.

[15] D. C. Youla and H. Webb, “Image restoration by the method of convex projections—part 1-
theory,” IEEE Transactions on Medical Imaging, vol. 1, pp. 81–94, 1982.



Shih-Sen Chang et al. 19

[16] M. I. Sezan and H. Stark, “Application of convex projection theory to image recovery in tomo-
graph and related areas,” in Image Recovery: Theory and Application, H. Stark, Ed., pp. 155–270,
Academic Press, Orlando, Fla, USA, 1987.

[17] Y. Censor and S. A. Zenios, Parallel Optimization. Theory, Algorithms, and Applications, Numer-
ical Mathematics and Scientific Computation, Oxford University Press, New York, NY, USA,
1997.

[18] N. Shioji and W. Takahashi, “Strong convergence of approximated sequences for nonexpansive
mappings in Banach spaces,” Proceedings of the American Mathematical Society, vol. 125, no. 12,
pp. 3641–3645, 1997.

[19] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, vol. 62
ofMathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands,
1990.

[20] R. E. Bruck Jr., “Nonexpansive projections on subsets of Banach spaces,” Pacific Journal of Math-
ematics, vol. 47, pp. 341–355, 1973.

[21] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings,
vol. 83 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New
York, NY, USA, 1984.

[22] S. Reich, “Asymptotic behavior of contractions in Banach spaces,” Journal of Mathematical Anal-
ysis and Applications, vol. 44, no. 1, pp. 57–70, 1973.
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