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1. Introduction and preliminaries

Let H be a real Hilbert space, C a nonempty closed convex subset of H , and T : C →
C a mapping. Recall that T is nonexpansive if ‖Tx−Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. A
point x ∈ C is called a fixed point of T provided Tx = x. Denote by F(T) the set of fixed
points of T , that is, F(T) = {x ∈ C : Tx = x}. Recall that a self-mapping f : C → C is a
contraction on C, if there exists a constant α∈ (0,1) such that ‖ f (x)− f (y)‖ ≤ α‖x− y‖
for all x, y ∈ C. We use ΠC to denote the collection of all contractions on C, that is, ΠC =
{ f | f : C→ C a contraction}. An operator A is strongly positive if there exists a constant
γ > 0 with the property

〈Ax,x〉 ≥ γ‖x‖2 ∀x ∈H. (1.1)

Iterative methods for nonexpansive mappings have recently been applied to solve con-
vex minimization problems (see, e.g., [1, 2] and the references therein). A typical prob-
lem is to minimize a quadratic function over the set of the fixed points of a nonexpansive
mapping on a real Hilbert space H :

min
x∈C

1
2
〈Ax,x〉− 〈x,b〉, (1.2)
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where C is the fixed point set of a nonexpansive mapping S, and b is a given point in H .
In [2], it is proved that the sequence {xn} defined by the iterative method below, with the
initial guess x0 ∈H chosen arbitrarily,

xn+1 =
(
I −αnA

)
Sxn +αnb, n≥ 0, (1.3)

converges strongly to the unique solution of the minimization problem (1.2) provided
the sequence {αn} satisfies certain conditions. Recently, Marino and Xu [1] introduced a
new iterative scheme by the viscosity approximation method

xn+1 =
(
I −αnA

)
Sxn +αnγ f

(
xn
)
, n≥ 0. (1.4)

They proved that the sequence {xn} generated by the above iterative scheme converges
strongly to the unique solution of the variational inequality 〈(A− γ f )x∗,x− x∗〉 ≥ 0,
x ∈ C, which is the optimality condition for the minimization problem

min
x∈C

1
2
〈Ax,x〉−h(x), (1.5)

where C is the fixed point set of a nonexpansive mapping S, and h is a potential function
for γ f (i.e., h′(x)= γ f (x) for x ∈H .)

Mann’s iteration process [3] is often used to approximate a fixed point of a nonexpan-
sive mapping, which is defined as

xn+1 = αnxn +
(
1−αn

)
Txn, n≥ 0, (1.6)

where the initial guess x0 is taken in C arbitrarily and the sequence {αn}∞n=0 is in the
interval [0,1]. But Mann’s iteration process has only weak convergence, in general. For
example, Reich [4] shows that if E is a uniformly convex Banach space and has a Frehet
differentiable norm and if the sequence {αn} is such that

∑
αn(1− αn) = ∞, then the

sequence {xn} generated by process (1.6) converges weakly to a point in F(T). Therefore,
many authors try to modify Mann’s iteration process to have strong convergence.

Kim and Xu [5] introduced the following iteration process:

x0 = x ∈ C arbitrarily chosen,

yn = βnxn +
(
1−βn

)
Txn,

xn+1 = αnu+
(
1−αn

)
yn.

(1.7)

They proved that the sequence {xn} defined by (1.7) converges strongly to a fixed point
of T provided the control sequences {αn} and {βn} satisfy appropriate conditions.

Recently, Yao et al. [6] also modified Mann’s iterative scheme (1.7) and got a strong
convergence theorem. They improved the results of Kim and Xu [5] to some extent.
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In this paper, we study the mappingWn defined by

Un0 = I ,

Un1 = γn1T1Un0 +
(
1− γn1

)
I ,

Un2 = γn2T2Un1 +
(
1− γn2

)
I ,

...

Un,N−1 = γn,N−1TN−1Un,N−2 +
(
1− γn,N−1

)
I ,

Wn =UnN = γnNTNUn,N−1 +
(
1− γnN

)
I ,

(1.8)

where {γn1},{γn2}, . . . ,{γnN} ∈ (0,1]. Such a mappingWn is called theWn-mapping gen-
erated by T1,T2, . . . ,TN and {γn1},{γn2}, . . . ,{γnN}. Nonexpansivity of each Ti ensures the
nonexpansivity ofWn. It follows from [7, Lemma 3.1] that F(Wn)=∩N

i=1F(Ti).
Very recently, Xu [2] studied the following iterative scheme:

xn+1 = αnu+
(
I −αnA

)
Tn+1xn, n≥ 0, (1.9)

where A is a linear bounded operator, Tn = Tnmod N and the mod function takes values in
{1,2, . . . ,N}. He proved that the sequence {xn} generated by the above iterative scheme
converges strongly to the unique solution of the minimization problem (1.2) provided Tn

satisfy

F
(
TN ···T2T1

)= F
(
T1TN ···T3T2

)= ··· = F
(
TN−1 ···T1Tn

)
, (1.10)

and {αn} ∈ (0,1) satisfying the following control conditions:
(C1) limn→∞αn = 0;
(C2)

∑∞
n=1αn =∞;

(C3)
∑∞

n=1 |αn−αn+N | <∞ or limn→∞αn/αn+N = 0.

Remark 1.1. There are many nonexpansive mappings, which do not satisfy (1.10). For
example, if X = [0,1] and T1, T2 are defined by T1x = x/2 + 1/2 and T2x = x/4, then
F(T1T2)= {4/7}, whereas F(T2T1)= {1/7}.

In this paper, motivated by Kim and Xu [5], Marino and Xu [1], Xu [2], and Yao et
al. [6], we introduce a composite iteration scheme as follows:

x0 = x ∈ C arbitrarily chosen,

yn = βnxn +
(
1−βn

)
Wnxn,

xn+1 = αnγ f
(
xn
)
+
(
I −αnA

)
yn,

(1.11)

where f ∈ΠC is a contraction, and A is a linear bounded operator. We prove, under cer-
tain appropriate assumptions on the sequences {αn} and {βn}, that {xn} defined by (1.11)
converges to a common fixed point of the finite family of nonexpansive mappings, which
solves some variation inequality and is also the optimality condition for the minimization
problem (1.5).
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Now, we consider some special cases of iterative scheme (1.11). When A= I and γ = 1
in (1.11), we have that (1.11) collapses to

x0 = x ∈ C arbitrarily chosen,

yn = βnxn +
(
1−βn

)
Wnxn,

xn+1 = αn f
(
xn
)
+
(
1−αn

)
yn.

(1.12)

When A = I and γ = 1 in (1.11), N = 1 and {γn1} = 1 in (1.8), we have that (1.11) col-
lapses to the iterative scheme which was considered by Yao et al. [6]. When A = I and
γ = 1 in (1.11),N = 1 and {γn1} = 1 in (1.8), and f (y)= u∈ C for all y ∈ C in (1.11), we
have that (1.11) reduces to (1.7), which was considered by Kim and Xu [5].

In order to prove our main results, we need the following lemmas.

Lemma 1.2. In a Hilbert space H , there holds the inequality

‖x+ y‖2 ≤ ‖x‖2 + 2
〈
y, (x+ y)

〉
, x, y ∈H. (1.13)

Lemma 1.3 (Suzuki [8]). Let {xn} and {yn} be bounded sequences in a Banach space X and
let βn be a sequence in [0,1] with 0 < liminfn→∞βn ≤ limsupn→∞βn < 1. Suppose xn+1 =
(1−βn)yn +βnxn for all integers n≥ 0 and

limsup
n→∞

(∥∥yn+1− yn
∥
∥−∥∥xn+1− xn

∥
∥)≤ 0. (1.14)

Then limn→∞‖yn− xn‖ = 0.

Lemma 1.4 (Xu [2]). Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤
(
1− γn

)
αn + δn, (1.15)

where γn is a sequence in (0,1) and {δn} is a sequence such that
(i)
∑∞

n=1 γn =∞;
(ii) limsupn→∞ δn/γn ≤ 0 or

∑∞
n=1 |δn| <∞.

Then limn→∞αn = 0.

Lemma 1.5 (Marino and Xu [1]). Assume that A is a strongly positive linear bounded oper-
ator on a Hilbert spaceH with coefficient γ > 0 and 0 < ρ≤ ‖A‖−1, then ‖I − ρA‖ ≤ 1− ργ.

Lemma 1.6 (Marino and Xu [1]). LetH be aHilbert space. LetA be a strongly positive linear
bounded selfadjoint operator with coefficient γ > 0. Assume that 0 < γ < γ/α. Let T : C→ C
be a nonexpansive mapping with a fixed point xt ∈ C of the contraction C � x �→ tγ f (x) +
(1− tA)Tx. Then {xt} converges strongly as t→ 0 to a fixed point x of T , which solves the
variational inequality

〈
(A− γ f )x,z− x

〉≤ 0, z ∈ F(T). (1.16)

2. Main results

Theorem 2.1. Let C be a closed convex subset of a Hilbert space H . Let A be a strongly pos-
itive linear bounded operator with coefficient γ > 0 andWn is defined by (1.8). Assume that
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0 < γ < γ/α and F =∩N
i=1F(Ti) �= ∅. Given a map f ∈ΠC, the initial guess x0 ∈ C is chosen

arbitrarily and given sequences {αn}∞n=0 and {βn}∞n=0 in (0,1), the following conditions are
satisfied:

(C1)
∑∞

n=0αn =∞;
(C2) limn→∞αn = 0;
(C3) 0 < liminfn→∞βn ≤ limsupn→∞βn < 1;
(C4) limn→∞ |γn,i− γn−1,i| = 0, for all i= 1,2, . . . ,N .

Let {xn}∞n=1 be the composite process defined by (1.11). Then {xn}∞n=1 converges strongly to
q ∈ F, which also solves the following variational inequality:

〈
γ f (q)−Aq, p− q

〉≤ 0, p ∈ F. (2.1)

Proof. First, we observe that {xn}∞n=0 is bounded. Indeed, take a point p ∈ F and notice
that

∥
∥yn− p

∥
∥≤ βn

∥
∥xn− p

∥
∥+

(
1−βn

)∥∥Wnxn− p
∥
∥≤ ∥∥xn− p

∥
∥. (2.2)

It follows that

∥
∥xn+1− p

∥
∥= ∥∥αn

(
γ f
(
xn
)−Ap

)
+
(
I −αnA

)(
yn− p

)∥∥

≤ [1−αn(γ− γα)
]∥∥xn− p

∥
∥+αn

∥
∥γ f (p)−Ap

∥
∥.

(2.3)

By simple inductions, we have ‖xn−p‖ ≤max{‖x0−p‖,‖Ap− γ f (p)‖/(γ− γα)}, which
gives that the sequence {xn} is bounded, so are {yn} and {zn}.

Next, we claim that

∥
∥xn+1− xn

∥
∥−→ 0. (2.4)

Put ln = (xn+1−βnxn)/(1−βn). Now, we compute ln+1− ln, that is,

xn+1 =
(
1−βn

)
ln +βnxn, n≥ 0. (2.5)

Observing that

ln+1− ln = αn+1γ f
(
xn+1

)
+
(
I −αn+1A

)
yn+1−βn+1xn+1

1−βn+1

− αnγ f
(
xn
)
+
(
I −αnA

)
yn−βnxn

1−βn

= αn+1
(
γ f
(
xn+1

)−Ayn+1
)

1−βn+1
− αn

(
γ f
(
xn
)−Ayn

)

1−βn

+Wn+1xn+1−Wnxn,

(2.6)
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we have

∥
∥ln+1− ln

∥
∥≤ αn+1

1−βn+1

∥
∥γ f

(
xn+1

)−Ayn+1
∥
∥+

αn
1−βn

∥
∥Ayn− γ f

(
xn
)∥∥

+
∥
∥xn+1− xn

∥
∥+

∥
∥Wn+1xn−Wnxn

∥
∥.

(2.7)

Next, we will useM to denote the possible different constants appearing in the following
reasoning. It follows from the definition ofWn that

∥
∥Wn+1xn−Wnxn

∥
∥

= ∥∥γn+1,NTNUn+1,N−1xn +
(
1− γn+1,N

)
xn− γn,NTNUn,N−1xn−

(
1− γn,N

)
xn
∥
∥

≤ ∣∣γn+1,N − γn,N
∣
∣
∥
∥xn
∥
∥+

∥
∥γn+1,NTNUn+1,N−1xn− γn,NTNUn,N−1xn

∥
∥

≤ ∣∣γn+1,N − γn,N
∣
∣
∥
∥xn
∥
∥+

∥
∥γn+1,N

(
TNUn+1,N−1xn−TNUn,N−1xn

)∥∥

+
∣
∣γn+1,N − γn,N

∣
∣
∥
∥TNUn,N−1xn

∥
∥

≤ 2M
∣
∣γn+1,N − γn,N

∣
∣+ γn+1,N

∥
∥Un+1,N−1xn−Un,N−1xn

∥
∥.

(2.8)

Next, we consider

∥
∥Un+1,N−1xn−Un,N−1xn

∥
∥

= ∥∥γn+1,N−1TN−1Un+1,N−2xn +
(
1− γn+1,N−1

)
xn

− γn,N−1TN−1Un,N−2xn−
(
1− γn,N−1

)
xn
∥
∥

≤ ∣∣γn+1,N−1− γn,N−1
∣
∣
∥
∥xn
∥
∥+ γn+1,N−1

∥
∥TN−1Un+1,N−2yn−TN−1Un,N−2xn

∥
∥

+
∣
∣γn+1,N−1− γn,N−1

∣
∣
∥
∥TN−1Un,N−2xn

∥
∥

≤ 2M
∣
∣γn+1,N−1− γn,N−1

∣
∣+

∥
∥Un+1,N−2xn−Un,N−2xn

∥
∥.

(2.9)

It follows that

∥
∥Un+1,N−1xn−Un,N−1xn

∥
∥

≤ 2M
∣
∣γn+1,N−1− γn,N−1

∣
∣+2M

∣
∣γn+1,N−2− γn,N−2

∣
∣+

∥
∥Un+1,N−3xn−Un,N−3xn

∥
∥

≤ 2M
N−1∑

i=2

∣
∣γn+1,i− γn,i

∣
∣+

∥
∥Un+1,1xn−Un,1xn

∥
∥

≤ 2M
N−1∑

i=1

∣
∣γn+1,i− γn,i

∣
∣.

(2.10)
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Substituting (2.10) into (2.8) yields that

∥
∥Wn+1xn−Wnxn

∥
∥≤ 2M

∣
∣γn+1,N − γn,N

∣
∣+2γn+1,NM

N−1∑

i=1

∣
∣γn+1,i− γn,i

∣
∣

≤ 2M
N∑

i=1

∣
∣γn+1,i− γn,i

∣
∣.

(2.11)

It follows that
∥
∥ln+1− ln

∥
∥−∥∥xn− xn−1

∥
∥

≤ αn+1
1−βn+1

∥
∥γ f

(
xn+1

)−Ayn+1
∥
∥+

αn
1−βn

∥
∥Ayn− γ f

(
xn
)∥∥+2M

N∑

i=1

∣
∣γn+1,i− γn,i

∣
∣.

(2.12)

Observing conditions (C1), (C4) and takeing the limits as n→∞, we get

limsup
n→∞

(∥∥ln+1− ln
∥
∥−∥∥xn+1− xn

∥
∥)≤ 0. (2.13)

We can obtain limn→∞‖ln− xn‖ = 0 easily by Lemma 1.3. Since xn+1− xn = (1− βn)(ln−
xn), we have that (2.4) holds. Observing that xn+1− yn = αn(γ f (xn)−Ayn), we can easily
get limn→∞‖yn− xn+1‖ = 0, which implies that

∥
∥yn− xn

∥
∥≤ ∥∥xn− xn+1

∥
∥+

∥
∥xn+1− yn

∥
∥, (2.14)

that is,

lim
n→∞

∥
∥yn− xn

∥
∥= 0. (2.15)

On the other hand, we have

∥
∥Wnxn− xn

∥
∥≤ ∥∥xn− yn

∥
∥+

∥
∥yn−Wnxn

∥
∥≤ ∥∥xn− yn

∥
∥+βn

∥
∥xn−Wnxn

∥
∥, (2.16)

which implies (1− βn)‖Wnxn − xn‖ ≤ ‖xn − yn‖. From condition (C3) and (2.15), we
obtain

∥
∥Wnxn− xn

∥
∥−→ 0. (2.17)

Next, we claim that

limsup
n→∞

〈
γ f (q)−Aq,xn− q

〉≤ 0, (2.18)

where q = limt→0 xt with xt being the fixed point of the contraction x �→ tγ f (x) + (I −
tA)Wnx. Then, xt solves the fixed point equation xt = tγ f (xt) + (I − tA)Wnxt. Thus, we
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have ‖xt − xn‖ = ‖(I − tA)(Wnxt − xn) + t(γ f (xt)−Axn)‖. It follows from Lemma 1.2
that

∥
∥xt − xn

∥
∥2 = ∥∥(I − tA)

(
Wnxt − xn

)
+ t
(
γ f
(
xt
)−Axn

)∥∥2

≤ (1− γt)2
∥
∥Wnxt − xn

∥
∥2 + 2t

〈
γ f
(
xt
)−Axn,xt − xn

〉

≤ (1− 2γt+ (γt)2
)∥∥xt − xn

∥
∥2 + fn(t)

+ 2t
〈
γ f
(
xt
)−Axt,xt − xn

〉
+2t

〈
Axt −Axn,xt − xn

〉
,

(2.19)

where

fn(t)=
(
2
∥
∥xt − xn

∥
∥+

∥
∥xn−Wnxn

∥
∥)
∥
∥xn−Wnxn

∥
∥−→ 0, as n−→ 0. (2.20)

It follows that

〈
Axt − γ f

(
xt
)
,xt − xn

〉≤ γt

2

〈
Axt −Axn,xt − xn

〉
+

1
2t

fn(t). (2.21)

Let n→∞ in (2.21) and note that (2.20) yields

limsup
n→∞

〈
Axt − γ f

(
xt
)
,xt − xn

〉≤ t

2
M, (2.22)

whereM > 0 is a constant such thatM ≥ γ〈Axt −Axn,xt − xn〉 for all t ∈ (0,1) and n≥ 1.
Taking t→ 0 from (2.22), we have limsupt→0 limsupn→∞〈Axt − γ f (xt),xt − xn〉 ≤ 0. Since
H is a Hilbert space, the order of limsupt→0 and limsupn→∞ is exchangeable, and hence
(2.18) holds. Now from Lemma 1.2, we have

∥
∥xn+1− q

∥
∥2 = ∥∥(I −αnA

)(
yn− q

)
+αn

(
γ f
(
xn
)−Aq

)∥∥2

≤ ∥∥(I −αnA
)(
yn− q

)∥∥2 + 2αn
〈
γ f
(
xn
)−Aq,xn+1− q

〉

≤ (1−αnγ
)2∥∥xn− q

∥
∥2 +αnγα

(∥
∥xn− q

∥
∥2 +

∥
∥xn+1− q

∥
∥2
)

+2αn
〈
γ f (q)−Aq,xn+1− q

〉
,

(2.23)

which implies that

∥
∥xn+1− q

∥
∥2 ≤

(
1−αnγ

)2
+αnγα

1−αnγα

∥
∥xn− q

∥
∥2 +

2αn
1−αnγα

〈
γ f (q)−Aq,xn+1− q

〉

≤
[
1− 2αn(γ−αγ)

1−αnγα

]∥
∥xn− q

∥
∥2

+
2αn(γ−αγ)
1−αnγα

[
1

γ−αγ

〈
γ f (q)−Aq,xn+1− q

〉
+

αnγ
2

2(γ−αγ)
M
]
.

(2.24)
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Put ln=2αn(γ−αnγ)/(1−αnαγ) and tn = 1/(γ−αγ)〈γ f (q)−Aq,xn+1− q〉+αnγ
2/(2(γ−

αγ))M, that is,

∥
∥xn+1− q

∥
∥2 ≤ (1− ln

)∥∥xn− q
∥
∥+ lntn. (2.25)

It follows from conditions (C1), (C2), and (2.22) that limn→∞ ln = 0,
∑∞

n=1 ln =∞, and
limsupn→∞ tn ≤ 0. Apply Lemma 1.4 to (2.25) to conclude that xn → q. This completes
the proof. �

Remark 2.2. Our results relax the condition of Kim and Xu [1] imposed on control se-
quences and also improve the results of Yao et al. [6] from one single mapping to a finite
family of nonexpansive mappings, respectively.
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