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1. Introduction and preliminaries

The research about fixed points of expansive mapping was initiated by Machuca (see [1]).
Later, Jungck discussed fixed points for other forms of expansive mapping (see [2]). In 1982,
Wang et al. (see [3]) published a paper in Advances in Mathematics about expansive mapping
which draws great attention of other scholars. Also, Zhang has done considerable work in this
field. In order to generalize the results about fixed point theory, Zhang (see [4]) published his
work Fixed Point Theory and Its Applications, in which the fixed point problem for expansive
mapping is systematically presented in a chapter. As applications, he also investigated the
existence of solutions of equations for locally condensing mapping and locally accretive
mapping. In 1991, based on the results obtained by others, the author defined several new
kinds of expansive-type mappings in [5], which expanded the expansive-type mapping from
19 to 23, and gave some new applications. Recently, the study about fixed point theorem for
expansive mapping and nonexpansive mapping is deeply explored and has extended too
many other directions. Motivated and inspired by the works (see [1–13]), in this paper, we
define n times reasonable expansive mapping and discuss the existence of fixed point for
n times reasonable expansive mapping. For the sake of convenience, we briefly recall some
definitions.

Let (X, d) be a complete metric space and let T : X → X be a mapping.
Throughout this paper, we use N to denote the set of natural numbers and [x] to

denote the maximum integral value that is not larger than x.
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T : X → X is called an expansive mapping if there exists a constant h > 1 such that
d(Tx, Ty) ≥ hd(x, y), for all x, y ∈ X.

T : X → X is called a two times reasonable expansivemapping if there exists a constant
h > 1 such that d(x, T2x) ≥ hd(x, Tx), for all x ∈ X.

T : X → X is called a twenty-one type expansive mapping if there exists a constant
h > 1 such that

d(Tx, Ty) ≥ hmin
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
, ∀x, y ∈ X. (1.1)

T : X → X is called a twenty-three type expansive mapping if there exists a constant
h > 1 such that

d2(Tx, Ty) ≥ hmin
{
d2(x, y), d(x, y)·d(x, Tx), d(x, Tx)·d(y, Ty),
d2(x, Tx), d(y, Ty)·d(x, Ty), d(y, Ty)·d(y, Tx)}, ∀x, y ∈ X.

(1.2)

2. Main results

Definition 2.1. Let (X, d) be a complete metric space. T : X → X is called an n (n ≥ 2, n ∈ N)
times reasonable expansive mapping if there exists a constant h > 1 such that

d
(
x, Tnx

) ≥ hd(x, Tx), ∀x ∈ X (n ≥ 2, n ∈ N). (2.1)

Definition 2.2. Let (X, d) be a complete metric space. T : X → X is called an H1-type n (n ≥
2, n ∈ N) times reasonable expansive mapping if there exists a constant h > 1 such that

d
(
Tn−1x, Tn−1y

) ≥ hmin
{
d(x, y), d(x, Tx), d

(
Tn−2y, Tn−1y

)
,

d
(
x, Tn−1y

)
, d

(
Tn−2y, Tn−1x

)}
, ∀x, y ∈ X (n ≥ 2, n ∈ N).

(2.2)

Definition 2.3. Let (X, d) be a complete metric space. T : X → X is called an H2-type n (n ≥
2, n ∈ N) times reasonable expansive mapping if there exists a constant h > 1 such that

d2(Tn−1x, Tn−1y
) ≥ hmin

{
d2(x, y), d(x, y)·d(x, Tx), d(x, Tx)·d(Tn−2y, Tn−1y

)
, d2(x, Tx),

d
(
Tn−2y, Tn−1y

)·d(x, Tn−1y
)
, d

(
Tn−2y, Tn−1y

)·d(Tn−2y, Tn−1x
)}

,

∀x, y ∈ X (n ≥ 2, n ∈ N).
(2.3)

Lemma 2.4 (see [6]). Let (X, d) be a complete metric space, let A be a subset of X, and let the
mappings f, g : A → X satisfy the following conditions:

(i) f is a surjective mapping (f(A) = X);

(ii) there exists a functional ϕ : X → R which is lower semicontinuous bounded from below
such that d(f(x), g(x)) ≤ ϕ(f(x)) − ϕ(g(x)), for all x ∈ A.

Then, f and g have a coincidence point, that is, there exists at least an x ∈ A such that
f(x) = g(x).

Especially, if one letsA = X, g = IX (the identity mapping on X), then f has a fixed point
in X.
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Theorem 2.5. Let (X, d) be a complete metric space and let T : X → X be a continuous and surjective
mapping if there exists a constant h > 1 such that

d
(
Tn−1x, Tnx

) ≥ hd(x, Tx), ∀x ∈ X (n ≥ 2, n ∈ N). (2.4)

Then, T has a fixed point in X.

Proof. By (2.4), we have

d
(
Tn−1x, Tnx

) − d(x, Tx) ≥ hd(x, Tx) − d(x, Tx), ∀x ∈ X. (2.5)

Thus,

d(x, Tx) ≤ 1
h − 1

[
d
(
Tn−1x, Tnx

) − d(x, Tx)
]
, ∀x ∈ X. (2.6)

Let ϕ(x) = (1/(h − 1))[d(Tn−1x, Tn−2x) + d(Tn−2x, Tn−3x) + · · · + d(T2x, Tx) + d(Tx, x)].
Thenwe have d(x, Tx) ≤ ϕ(Tx)−ϕ(x), for all x ∈ X. From the continuity of d,we know

that ϕ(x) is continuous. Thus ϕ(x) is lower semicontinuous bounded from below. Therefore
the conclusion follows immediately from Lemma 2.4.

Theorem 2.6. Let (X, d) be a complete metric space and let T : X → X be a continuous and surjective
n (n ≥ 2, n ∈ N) times reasonable expansive mapping. Assume that either (i) or (ii) holds:

(i) T is anH1-type n times reasonable expansive mapping;

(ii) T is anH2-type n times reasonable expansive mapping.

Then, T has a fixed point in X.

Proof. In the case of (i), taking y = Tx in (2.2), we have

d
(
Tn−1x, Tnx

) ≥ hmin
{
d(x, Tx), d(x, Tx), d

(
Tn−1x, Tnx

)
, d

(
x, Tnx

)
, d

(
Tn−1x, Tn−1x

)}

= hmin
{
d(x, Tx), d

(
Tn−1x, Tnx

)
, d

(
x, Tnx

)}
.

(2.7)

Because T is an n times reasonable expansive mapping, we have

d
(
x, Tnx

) ≥ hd(x, Tx) > d(x, Tx). (2.8)

Thus, we obtain

d
(
Tn−1x, Tnx

) ≥ hmin
{
d(x, Tx), d

(
Tn−1x, Tnx

)}
. (2.9)

If d(Tn−1x, Tnx) = min{d(x, Tx), d(Tn−1x, Tnx)}, then d(Tn−1x, Tnx) ≥ hd(Tn−1x, Tnx).
Hence, d(Tn−1x, Tnx) = 0 (otherwise, d(Tn−1x, Tnx) > d(Tn−1x, Tnx), which is a

contradiction). Therefore, Tn−1x = Tnx, that is Tn−1x = T(Tn−1x), which implies that Tn−1x
is a fixed point of T in X.

If d(x, Tx) = min{d(x, Tx), d(Tn−1x, Tnx)}, then d(Tn−1x, Tnx) ≥ hd(x, Tx).
By Theorem 2.5, we obtain that T has a fixed point in X.
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In the case of (ii), taking y = Tx in (2.3), we have

d2(Tn−1x, Tnx
) ≥ hmin

{
d2(x, Tx), d(x, Tx)·d(x, Tx), d(x, Tx)·d(Tn−1x, Tnx

)
,

d2(x, Tx), d
(
Tn−1x, Tnx

)·d(x, Tnx
)
, d

(
Tn−1x, Tnx

)·d(Tn−1x, Tn−1x
)}

= hmin
{
d2(x, Tx), d(x, Tx)·d(Tn−1x, Tnx

)
, d

(
Tn−1x, Tnx

)·d(x, Tnx
)}

.

(2.10)

Because T is an n (n ≥ 2, n ∈ N) times reasonable expansive mapping, we have

d
(
x, Tnx

) ≥ hd(x, Tx) > d(x, Tx) . (2.11)

Hence, d(x, Tnx)·d(Tn−1x, Tnx) > d(x, Tx)·d(Tn−1x, Tnx).
Therefore, we have

d2(Tn−1x, Tnx
) ≥ hmin

{
d2(x, Tx), d(x, Tx)·d(Tn−1x, Tnx

)}
. (2.12)

If d2(x, Tx) = min{d2(x, Tx), d(x, Tx)·d(Tn−1x, Tnx)}, then

d2(Tn−1x, Tnx
) ≥ hd2(x, Tx) ∀x ∈ X, (2.13)

that is, d(Tn−1x, Tnx) ≥
√
hd(x, Tx).

Because
√
h > 1, by Theorem 2.5, we obtain that T has a fixed point in X.

If d(x, Tx)·d(Tn−1x, Tnx) = min{d2(x, Tx), d(x, Tx)·d(Tn−1x, Tnx)}, then d2(Tn−1x,
Tnx) ≥ hd(x, Tx)·d(Tn−1x, Tnx), that is

d
(
Tn−1x, Tnx

)·(d(Tn−1x, Tnx
) − hd(x, Tx)

) ≥ 0. (2.14)

If d(Tn−1x, Tnx) = 0, then Tn−1x = Tnx, that is Tn−1x = T(Tn−1x), which implies that
Tn−1x is a fixed point of T in X.

If d(Tn−1x, Tnx) /= 0, then d(Tn−1x, Tnx) ≥ hd(x, Tx). By Theorem 2.5, we obtain that T
has a fixed point in X.

Therefore, by induction we derive that T has a fixed point in X.

Corollary 2.7. Let (X, d) be a complete metric space. If T : X → X is a continuous and surjective
twenty-one type expansive mapping and T : X → X is a two times reasonable expansive mapping,
then T has a fixed point in X.

Proof. We denote y = Toy; taking n = 2 under the condition (i) of Theorem 2.6, Corollary 2.7
is proved immediately.

Similarly, we denote y = Toy; taking n = 2 under the condition (ii) of Theorem 2.6, we
can obtain the following Corollary 2.8.

Corollary 2.8. Let (X, d) be a complete metric space. If T : X → X is a continuous and surjective
twenty-three type expansive mapping and T : X → X is a two times reasonable expansive mapping,
then T has a fixed point in X.

Remark 2.9. Corollaries 2.7 and 2.8 are Theorems 2.3 and 2.5 in [5], respectively. Thus,
Theorems 2.3 and 2.5 in [5] are the special examples of Theorem 2.6.
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Theorem 2.10. Let (X, d) be a complete metric space and let T : X → X be a continuous and
surjective n (n ≥ 2, n ∈ N) times reasonable expansive mapping. If there exists a constant h > 1 such
that

d
(
Tnx, Tny

) ≥ hmin
{
d(x, y), d

(
y, Tny

)}
, ∀x, y ∈ X (n ≥ 2, n ∈ N) , (2.15)

then T has a fixed point.

Proof. Letting x = Ty in (2.15), we have

d
(
Tn+1y, Tny

) ≥ hmin
{
d(Ty, y), d

(
y, Tny

)}
, ∀y ∈ X. (2.16)

Since T is an n (n ≥ 2, n ∈ N) times reasonable expansive mapping, then

d
(
y, Tny

) ≥ hd(y, Ty) > d(y, Ty), ∀y ∈ X. (2.17)

By (2.16) and (2.17), we have d(Tn+1y, Tny) ≥ hd(Ty, y) for all y ∈ X.
It follows from Theorem 2.5 that T has a fixed point in X.

Remark 2.11. Generally speaking, n (n ≥ 2, n ∈ N) times reasonable expansive mapping does
not necessarily have a fixed point. This can be illustrated by the following examples.

Example 2.12. We denote by B1 the unit circle which takes the original point as its center and
1 as its radius on the complex plane, that is, B1 = {Z | |Z| = 1, Z ∈ C}. B1 can also be written
as {eiθ | eiθ ∈ C,−∞ < θ < +∞}. Suppose that T : B1 → B1 is a mapping defined as follows:

TZ = Teiθ = ei(θ+2π/3n). (2.18)

For every Z ∈ B1, that is, Z = eiθ,we have

TZ = Teiθ = ei(θ+2π/3n),

T2Z = T(TZ) = T
(
Teiθ

)
= Tei(θ+2π/3n) = ei(θ+2(2π/3n)),

· · ·

TkZ = ei(θ+k(2π/3n)),

· · ·

TnZ = ei(θ+n(2π/3n)) = ei(θ+2π/3).

(2.19)

From the above equations, we obtain

d
(
Z, TnZ

)
=
∣∣TnZ − Z

∣∣ =
∣∣ei(θ+2π/3) − eiθ

∣∣ =
∣∣eiθ

∣∣·∣∣ei(2π/3) − 1
∣∣

=
∣∣∣∣ cos

2π
3

+ i sin
2π
3

− 1
∣∣∣∣ =

∣∣∣∣ −
1
2
+
√
3
2

i − 1
∣∣∣∣ =

√
3,

d(Z, TZ) = |TZ − Z| = ∣∣ei(θ+2π/3n) − eiθ
∣∣ =

∣∣eiθ
∣∣·∣∣ei(2π/3n) − 1

∣∣ =
∣∣∣∣ cos

2π
3n

+ i sin
2π
3n

− 1
∣∣∣∣

=

√

2 − 2 cos
2π
3n

= 2
√
sin2 π

3n
= 2 sin

π

3n
(n ≥ 2, n ∈ N) .

(2.20)
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Since n ≥ 2, then sin(π/3n) ≤ 1/2. Thus d(Z, TnZ)/d(Z, TZ) ≥ √
3, for all Z ∈ B1, that

is, d(Z, TnZ) ≥ √
3d(Z, TZ), for all Z ∈ B1. We can take a constant h =

√
3, which means that

there exists a constant h > 1 such that d(Z, TnZ) ≥ hd(Z, TZ), for all Z ∈ B1 (n ≥ 2, n ∈ N).
Therefore, T is an n times reasonable expansive mapping. Since eiθ /= ei(θ+2π/3), then TZ /=Z,
for all Z ∈ B1. It implies that T does not have a fixed point.

Example 2.13. Suppose that T : R → R is a mapping defined as Tx = x + 1.
It is obvious that T is continuous and surjective and T does not have a fixed point.
Now, we prove T is an n times reasonable expansive mapping.
In fact, by the definition of T,we have Tnx = x + n (n ≥ 2, n ∈ N) .
Because d(x, Tnx) = |x + n − x| = n ≥ 2 and d(x, Tx) = |x + 1 − x| = 1, we have

d(x, Tnx) ≥ 2d(x, Tx). Thus, we can take a constant h = 2, which means that there exists a
constant h > 1 such that d(x, Tnx) ≥ hd(x, Tx), for all x ∈ R (n ≥ 2, n ∈ N) .

Therefore, T is an n times reasonable expansive mapping.
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