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LetK be a nonempty closed convex subset of a reflexive Banach space Ewith a weakly continuous
dual mapping, and let {Ti}∞i=1 be an infinite countable family of asymptotically nonexpansive
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limn→∞kin = 1 for each i = 1, 2, . . .. In this paper, we introduce a new implicit iterative scheme
generated by {Ti}∞i=1 and prove that the scheme converges strongly to a common fixed point of
{Ti}∞i=1, which solves some certain variational inequality.
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1. Introduction and preliminaries

Let E be a Banach space and letK be a nonempty closed convex subset of E. Let T : K→K be
a mapping. Then T is called nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖ (1.1)

for all x, y ∈ K. T is called asymptotically nonexpansive if there exists a sequence {kn} ⊂
[1,∞) that converges to 1 as n→∞ such that

∥
∥Tnx − Tny

∥
∥ ≤ kn‖x − y‖ (1.2)

for all x, y ∈ K and all n ≥ 1. Obviously, a nonexpansive mapping is asymptotically
nonexpansive. In [1], Goebel and Kirk originally introduced the concept of asymptotically
nonexpansive mappings and proved that if E is a uniformly convex Banach space and K is
a nonempty closed convex bounded subset of E, then every asymptotically nonexpansive
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self-mapping onK has a fixed point. After that, many authors began to study the convergence
of the iterative scheme generated by asymptotically nonexpansive mappings [2–12].

In [8], the authors introduced an iterative scheme generated by a finite family of
asymptotically nonexpansive mappings:

xn = αnxn−1 +
(

1 − αn

)

Tln+1
rn xn, n ≥ 1, (1.3)

where {αn} is a sequence in [0, 1], {Ti}Ni=1 : K→K are N asymptotically nonexpansive
mappings, where K is a nonempty closed convex subset of a uniformly convex Banach
space satisfying Opial’s condition [13], and where n = lnN + rn for some integers ln ≥ 0
and 1 ≤ rn ≤ N. Then the authors proved that if ∩N

i=1F(Ti)/=φ, then {xn} generated by (1.3)
strongly converges to a common fixed point of {Ti}Ni=1.

LetK be a nonempty closed convex subset of a uniformly convex Banach space E. Let
S : K→K be a nonexpansive mapping and let T : K→K be an asymptotically nonexpansive
mapping. In [10], the authors introduced the following modified Ishikawa iteration sequence
with errors with respect to S and T :

yn = a′
nSxn + b′nT

nxn + c′nvn,

xn+1 = anSxn + bnT
nyn + cnun, ∀n ≥ 1,

(1.4)

where {a′
n}, {b′n}, {c′n} are three real numbers sequences in (0, 1) satisfying a′

n + b′n + c′n =
1, {an}, {bn}, {cn} are also three real numbers sequences in (0, 1) satisfying an + bn + cn = 1,
and {un} and {vn} are given bounded sequences in K. Then the authors proved that the
sequence {xn} generated by (1.4) strongly converges to a common fixed point of S and T if
some certain conditions are satisfied.

Let K be a nonempty closed convex subset of a Banach space E and let f : K→K be a
contraction with efficient λ (0 < λ < 1) such that

∥
∥f(x) − f(y)

∥
∥ ≤ λ‖x − y‖ (1.5)

for all x, y ∈ K. Shahzad and Udomene [9] studied the following implicit and explicit
iterative schemes for an asymptotically nonexpansive mapping T with the sequence {kn}
in a uniformly smooth Banach space:

xn =
(

1 − tn
kn

)

f
(

xn

)

+
tn
kn

Tnxn,

xn+1 =
(

1 − tn
kn

)

f
(

xn

)

+
tn
kn

Tnxn,

(1.6)

where {tn} is a sequence in (0, 1). They proved that the sequence {xn} converges strongly to
the unique solution of some variational inequality if the sequence {tn} satisfies some certain
conditions and the mapping T satisfies ‖Txn − xn‖→0 as n→∞.

Quite recently, Ceng et al. [12] introduced the following two implicit and explicit
iterative schemes generated by a finite family of asymptotically nonexpansive mappings
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{Ti}Ni=1 with the same sequence {kn} in a reflexive Banach space with a weakly continuous
duality map:

xn =
(

1 − 1
kn

)

xn +
1 − tn
kn

f
(

xn

)

+
tn
kn

Tn
rnxn,

xn+1 =
(

1 − 1
kn

)

xn +
1 − tn
kn

f
(

xn

)

+
tn
kn

Tn
rnxn,

(1.7)

where rn = n mod N and {tn} is a sequence in [0, 1]. Then they proved that if the control
sequence {tn} satisfies some certain condition and Tixn−xn→0 as n→∞ for each i = 1, 2, . . . ,N,
then both schemes (1.7) strongly converge a common fixed point x∗ of {Ti}Ni=1 which solves
the variational inequality

〈

(I − f)x∗, J
(

p − x∗)〉 ≥ 0, p ∈
N⋂

i=1

F
(

Ti
)

, (1.8)

where F(Ti) denotes the set of fixed points of the mapping Ti for each i = 1, 2, . . . ,N.
Let E be a Banach space and let E∗ be the dual space of E. Given a continuous strictly

increasing function ϕ : R+→R+ such that ϕ(0) = 0 and limt→∞ϕ(t) = ∞, we associate a
(possibly multivalued) generalized duality map Jϕ : E→2E

∗
, defined as

Jϕ(x) =
{

x∗ ∈ E∗ : x∗(x) = ‖x‖ϕ(‖x‖), ‖x∗‖ = ϕ
(‖x‖)} (1.9)

for every x ∈ E. We call the function ϕ a gauge. If ϕ(t) = t for all t ≥ 0, then we call Jϕ a
normalized duality mapping and write it as J .

A Banach space E is said to have a weakly continuous generalized duality map if there
exists a continuous strictly increasing function ϕ : R+→R+ such that ϕ(0) = 0, limt→∞ϕ(t) = ∞,
and Jϕ is single valued and sequentially continuous from E with the weak topology to E∗

with the weak∗ topology. For instance, every lp-space (1 < p < ∞) has a weakly continuous
generalized duality map for ϕ(t) = tp−1.

For each t ≥ 0, let Φ(t) =
∫ t

0ϕ(x)dx. The following property may be seen in many
literatures.

Property 1.1. Let E be a real Banach space and let Jϕ be the duality map associated with the
gauge ϕ. Then for all x, y ∈ E and j(x + y) ∈ Jϕ(x + y) one holds

Φ
(‖x + y‖) ≤ Φ

(‖x‖) + 〈

y, j(x + y)
〉

. (1.10)

One also holds

‖x + y‖2 ≤ ‖x‖2 + 2
〈

y, j(x + y)
〉

(1.11)

for all x, y ∈ E and j(x + y) ∈ J(x + y).
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Lemma 1.2 (see [14]). Let E be a Banach space satisfying a weakly continuous duality map and let K
be a nonempty closed convex subset of E. Let T : K→K be an asymptotically nonexpansive mapping
with fixed point. Then I − T is demiclosed at zero.

2. Strong convergence results

In this section, let E be a reflexive Banach space with a weakly continuous duality map Jϕ,
where ϕ is a gauge and let K be a nonempty closed convex subset of E. Let {Ti}∞i=1 : K→K be
an infinite countable family of asymptotically nonexpansive mappings such that

∥
∥Tn

i x − Tn
i y

∥
∥ ≤ kin‖x − y‖ (2.1)

for all x, y ∈ K, where the sequence {kin} ⊂ [1,∞) and limn→∞kin = 1 for each i = 1, 2, . . . .
For each n = 1, 2, . . . , let b′n = sup{kin | i = 1, 2, . . .} and assume

sup
{

b′n | n = 1, 2, . . .
}

< ∞,

lim
n→∞

b′n = b < ∞.
(2.2)

Taking bn = max{b′n, b} for each n = 1, 2, . . . , obviously, we have

lim
n→∞

bn = b ≥ 1,

b′ = sup
{

bn | n = 1, 2, . . .
}

< ∞.
(2.3)

Moreover, the following inequality

∥
∥Tn

i x − Tn
i y

∥
∥ ≤ bn‖x − y‖ (2.4)

holds for all x, y ∈ K and each i = 1, 2 . . . .
Take an integer r > 1 arbitrarily. For each n ≥ 1, define the mapping Sni : K→K by

Sni = T(n−1)r+i (2.5)

for each i = 1, 2, . . . , r, that is,

S11 = T1, . . . , S1r = Tr, S21 = Tr+1, . . . , S2r = T2r , . . . . (2.6)
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For each i = 1, 2, . . . , r, let {αni} ⊂ (0, 1) be a sequence real numbers. For each n ≥ 1,
define the mapping Wn of K into itself by

Wn = Unr = αnrS
n
nrUnr−1 +

(

1 − αnr

)

I, (2.7)

where

Un1 = αn1S
n
n1 +

(

1 − αn1
)

I,

Un2 = αn2S
n
n2Un1 +

(

1 − αn2
)

I,

...

Unr−1 = αnr−1Sn
nr−1Unr−2 +

(

1 − αnr−1
)

I.

(2.8)

We call Wn aW-mapping generated by Sn1, Sn2, . . . , Snr and αn1, αn2, . . . , αnr.

Let f : K→K be a λ-contraction with 0 < λ < 1/b′r . Take a sequence of real
numbers{tn} ⊂ [0, b] such that

lim
n→∞

tn = 0, tn <
b(1 − brnλ)
(1 − λ)brn

, n ≥ 1. (2.9)

Note that since λ < 1/b′r , one has 0 < b(1 − brnλ)/(1 − λ)brn ≤ b. Therefore, the sequence {tn}
can be taken easily to satisfy the condition (2.9), for example, tn = (1/n)(b(1−brnλ)/(1−λ)brn).

Then, we introduce an implicit iterative scheme

xn =
(

1 − b

br+1n

)

xn +
b − tn

br+1n

f
(

Wnxn

)

+
tn

br+1n

Wnxn, n ≥ 1. (2.10)

By using the following lemmas, we will prove that the implicit scheme (2.10) is well defined.

Lemma 2.1. Let {Ti}∞i=1 : K→K be an infinite countable family of asymptotically nonexpansive
mappings with the sequences {kin} and let Wn be a W-mapping generated by (2.7) for each n =
1, 2, . . . . If ∩∞

i=1F(Ti)/=φ, then ∩∞
i=1F(Ti) ⊂ F(Wn) for each n = 1, 2, . . . .

Proof. The conclusion is obtained directly from the definition of Wn.

Lemma 2.2. Let {Ti}∞i=1 : K→K with the sequences {kin} and let Wn be the W-mapping generated
by (2.7) for each n = 1, 2, . . . . Then one holds

∥
∥Wnx −Wny

∥
∥ ≤ brn‖x − y‖ (2.11)

for all n ≥ 1 and all x, y ∈ K.
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Proof. For any x, y ∈ K all n ≥ 1, we first see (noting that bn ≥ 1)

∥
∥Un1x −Un1y

∥
∥ =

∥
∥
(

αn1S
n
n1 +

(

1 − αn1
)

I
)

x − (

αn1S
n
n1 +

(

1 − αn1
)

I
)

y
∥
∥

≤ αn1
∥
∥Sn

n1x − Sn
n1y

∥
∥ +

(

1 − αn1
)‖x − y‖

= αn1
∥
∥Tn

(n−1)r+1x − Tn
(n−1)r+1y

∥
∥ +

(

1 − αn1
)‖x − y‖

≤ αn1k(n−1)r+1n‖x − y‖ + (

1 − αn1
)‖x − y‖

≤ αn1bn‖x − y‖ + (

1 − αn1
)‖x − y‖

≤ αn1bn‖x − y‖ + (

1 − αn1
)

bn‖x − y‖
= bn‖x − y‖,

∥
∥Un2x −Un2y

∥
∥ =

∥
∥
(

αn2S
n
n2Un1 +

(

1 − αn2
)

I
)

x − (

αn2S
n
n2Un1 +

(

1 − αn2
)

I
)

y
∥
∥

≤ αn2
∥
∥Sn

n2Un1x − Sn
n2Un1y

∥
∥ +

(

1 − αn2
)‖x − y‖

= αn2
∥
∥Tn

(n−1)r+2Un1x − Tn
(n−1)r+2Un1y

∥
∥ +

(

1 − αn2
)‖x − y‖

≤ αn2k(n−1)r+2n
∥
∥Un1x −Un1y

∥
∥ +

(

1 − αn2
)‖x − y‖

≤ αn2bn
∥
∥Un1x −Un1y

∥
∥ +

(

1 − αn2
)‖x − y‖

≤ αn2b
2
n‖x − y‖ + (

1 − αn1
)

b2n‖x − y‖
= b2n‖x − y‖.

(2.12)

Similarly, for each i = 3, . . . , r − 1, we have

‖Unix −Uniy‖ ≤ bin‖x − y‖. (2.13)

Hence,

∥
∥Wnx −Wny

∥
∥ =

∥
∥
(

αnrS
n
nrUnr−1 +

(

1 − αnr

)

I
)

x − (

αnrS
n
nrUnr−1 +

(

1 − αnr

)

I
)

y
∥
∥

≤ αnr

∥
∥Sn

nrUnr−1x − Sn
nrUnr−1y

∥
∥ +

(

1 − αnr

)‖x − y‖
≤ brn‖x − y‖.

(2.14)

This completes the proof.

Now we prove that the implicit scheme (2.10) is well defined. Since 0 < tn < b(1 −
brnλ)/(1 − λ)brn, we obtain

0 < 1 − b

br+1n

+
b − tn
bn

λ +
tn
bn

< 1. (2.15)

Hence, the mapping

x → Tx :
(

1 − b

br+1n

)

x +
b − tn

br+1n

f
(

Wnx
)

+
tn

br+1n

Wnx (2.16)



Shenghua Wang et al. 7

is a contraction on K. In fact, to see this, taking any x, y ∈ K, by Lemma 2.2 we have

‖Tx − Ty‖ =
∥
∥
∥
∥

(

1 − b

br+1n

)

(x − y) +
b − tn

br+1n

(

f(Wnx) − f
(

Wny
))

+
tn

br+1n

(

Wnx −Wny
)
∥
∥
∥
∥

≤
(

1 − b

br+1n

)

‖x − y‖ + (b − tn)λbrn
br+1n

‖x − y‖ + tn

br+1n

brn‖x − y‖

=
(

1 − b

br+1n

+
b − tn
bn

λ +
tn
bn

)

‖x − y‖

≤ ‖x − y‖,

(2.17)

which implies that the implicit scheme (2.10) is well defined.
For the implicit scheme (2.10), we have strong convergence as follows.

Theorem 2.3. Assume (2.9), F(T) = ∩∞
i=1F(Ti)/=φ and limn→∞‖xn−Tixn‖ = 0 for each i = 1, 2, . . . .

Then {xn} converges strongly to a common fixed point x ∈ F(T), where x solves the variational
inequality

〈

(I − f)x, J(p − x)
〉 ≥ 0, p ∈ F(T). (2.18)

Proof. First, we prove that {xn} is bounded. By using Property 1.1, Lemmas 2.1, 2.2, for any
z ∈ F(T), we have (noting 0 < 1 − b/br+1n + ((b − tn)/bn)λ + tn/bn < 1)

‖xn − z‖2 =
∥
∥
∥
∥

(

1 − b

br+1n

)
(

xn − z
)

+
b − tn

br+1n

(

f
(

Wnxn

) − f(z)
)

+
tn

br+1n

(

Wnxn − z
)

+
b − tn

br+1n

(

f(z) − z
)
∥
∥
∥
∥

2

≤
∥
∥
∥
∥

(

1 − b

br+1n

)
(

xn − z
)

+
b − tn

br+1n

(

f
(

Wnxn

) − f(z)
)

+
tn

br+1n

(

Wnxn − z
)
∥
∥
∥
∥

2

+
2(b − tn)
br+1n

〈f(z) − z, j(xn − z)
〉

≤
[(

1 − b

br+1n

)
∥
∥xn − z

∥
∥ +

b − tn

br+1n

∥
∥f

(

Wnxn

) − f
(

Wnz
)∥
∥ +

tn

br+1n

∥
∥Wnxn −Wnz

∥
∥

]2

+
2(b − tn)
br+1n

〈

f(z) − z, j
(

xn − z
)〉

≤
(

1 − b

br+1n

+
(b − tn)λ

bn
+

tn
bn

)2
∥
∥xn − z

∥
∥
2 +

2(b − tn)
br+1n

〈

f(z) − z, j
(

xn − z
)〉

≤
(

1 − b

br+1n

+
(b − tn)λ

bn
+

tn
bn

)
∥
∥xn − z

∥
∥
2 +

2(b − tn)
br+1n

〈

f(z) − z, j
(

xn − z
)〉

=
(

1 − ηn
)∥
∥xn − z

∥
∥
2 +

2(b − tn)
br+1n

〈

f(z) − z, j
(

xn − z
)〉

,

(2.19)
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where

ηn =
b

br+1n

− b − tn
bn

λ − tn
bn

> 0. (2.20)

It follows from (2.19) that

∥
∥xn − z

∥
∥
2 ≤ 2(b − tn)

ηnb
r+1
n

〈

f(z) − z, j(xn − z)
〉

. (2.21)

Since limn→∞bn = b, limn→∞tn = 0, we have

lim
n→∞

b − tn

ηnb
r+1
n

=
1

1 − λbr
. (2.22)

Hence, {xn} is bounded.
Now we prove that {xn} strongly converges to a common fixed point x ∈ F(T). To see

this, we assume that x is a weak limit point of {xn} and a subsequence {xnj} of {xn} converges
weakly to x. Then by the assumption of the theorem and Lemma 1.2, we have x ∈ F(Ti) for
every i = 1, 2, . . . . In (2.21), replacing xn with xnj and z with x, respectively, and then taking
the limit as j→∞, we obtain by the weak continuity of the duality map J

lim
j→∞

‖xnj − x‖ = 0. (2.23)

Therefore, xnj→x. We further show that x solves the variational inequality

〈

(I − f)x, J(p − x)
〉 ≥ 0, p ∈ F(T). (2.24)

To see this result, taking any p ∈ F(T), then by using Property 1.1, Lemmas 2.1 and 2.2 we
compute

Φ
(∥
∥xn − p

∥
∥
)

= Φ
(∥
∥
∥
∥

(

1 − b

br+1n

)
(

xn − p
)

+
b − tn

br+1n

(

xn − p
)

+
tn

br+1n

(

Wnxn − p
)

+
b − tn

br+1n

(

f
(

Wnxn

) − xn

)
∥
∥
∥
∥

)

≤ Φ
(∥
∥
∥
∥

(

1 − tn

br+1n

)
(

xn − p
)

+
tn

br+1n

(

Wnxn − p
)
∥
∥
∥
∥

)

+
b − tn

br+1n

〈

f
(

Wnxn

) − xn, Jϕ
(

xn − p
)〉

≤
(

1 − tn

br+1n

+ tn

)

Φ
(∥
∥xn − p

∥
∥
)

+
b − tn

br+1n

〈

f(Wnxn

) − xn, Jϕ
(

xn − p
)〉

,

(2.25)
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which implies that

〈

xn − f
(

Wnxn

)

, Jϕ
(

xn − p
)〉 ≤ (br+1n − 1)tn

b − tn
Φ
(‖xn − p‖). (2.26)

Now in (2.26), replacing xn with xnj and noting limn→∞bn = b and limn→∞tn = 0, we obtain

〈

x − f(x), Jϕ(x − p)
〉

= lim
j→∞

〈

xnj − f
(

Wnjxnj

)

, Jϕ
(

xnj − p
)〉

≤ lim sup
j→∞

(br+1nj
− 1)tnj

b − tnj

Φ
(∥
∥xnj − p

∥
∥
)

= 0,
(2.27)

which implies that x is a solution to (2.24).
Finally, we prove that the sequence {xn} strongly converges to x. It suffices to prove

that the variational inequality (2.24) can have only one solution. To see this, assuming that
both u ∈ F(T) and v ∈ F(T) are solutions to (2.24), we have

〈

(I − f)u, J(u − v)
〉 ≤ 0,

〈

(I − f)v, J(v − u)
〉 ≤ 0.

(2.28)

Adding them yields

〈

(I − f)u − (I − f)v, J(u − v)
〉 ≤ 0. (2.29)

However, since f is a λ-contraction, we have that

(1 − λ)‖u − v‖2 ≤ 〈

(I − f)u − (I − f)v, J(u − v)
〉

, (2.30)

which implies that u = v. This completes the proof.

Remark 2.4. In Theorem 2.3, the condition that limn→∞‖Tixn − xn‖ = 0 for each i = 1, 2, . . .
is necessary (see [9, 12]). This theorem shows that if for each n = 1, 2, . . ., the supremum
of the sequence {kin}, that is, sup{kin | i = 1, 2, . . .}, is finite and the limit of the sequence
sup {kin | i = 1, 2, . . .}∞n=1 exists, then by choosing the contraction constant λ and the control
sequence {tn} we can obtain the common fixed point of {Ti}∞i=1.

Corollary 2.5. Let {Ti}Ni=1K→K be a finite family of asymptotically nonexpansive mappings with the
sequences {kin} and let Wn be a W-mapping generated by T1, T2, . . . , TN and αn1, αn2, . . . , αnN for
each n = 1, 2, . . . . Let the sequence {tn} ⊂ [0, 1] and satisfy tn < (1−kN

n λ)/(1−λ)kN
n and tn→0, where

kn = max{k1n, k2n, . . . , kNn} for each n = 1, 2, . . . . Assume that k = sup{kn | n = 1, 2, . . .} < ∞. Let
f be a contraction with λ(0 < λ < 1/kN). Consider the implicit iterative scheme

xn =
(

1 − 1
kN+1
n

)

xn +
1 − tn

kN+1
n

f
(

Wnxn

)

+
tn

kN+1
n

Wnxn. (2.31)
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If {Ti}Ni=1 satisfy the condition ∩N
i=1F(Ti)/=φ and Tixn − xn→0 as n→∞ for each i = 1, 2, . . . ,N,

then {xn} converges strongly to a common fixed point x ∈ ∩N
i=1F(Ti), where x solves the variational

inequality

〈

(I − f)x, J(p − x)
〉 ≥ 0, p ∈

N⋂

i=1

F
(

Ti
)

. (2.32)

Proof. In Theorem 2.3, take bn = kn, b = limn→∞kn = 1, b′ = k, and r = N. Then, this corollary
can obtained directly from Theorem 2.3.
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