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Let (X, d) be a complete metric space and T a self-map of X. Let xn+1 = f(T, xn) be some itera-
tion procedure. Suppose that F(T), the fixed point set of T , is nonempty and that xn converges
to a point q ∈ F(T). Let {yn} ⊂ X and define εn = d(yn+1, f(T, yn)). If lim εn = 0 implies that
limyn = q, then the iteration procedure xn+1 = f(T, xn) is said to be T -stable. Without loss of
generality, we may assume that {yn} is bounded, for if {yn} is not bounded, then it cannot
possibly converge. If these conditions hold for xn+1 = Txn, that is, Picard’s iteration, then we
will say that Picard’s iteration is T -stable.

We will obtain sufficient conditions that Picard’s iteration is T -stable for an arbitrary
self-map, and then demonstrate that a number of contractive conditions are Picard T -stable.

We will need the following lemma from [1].

Lemma 1. Let {xn}, {εn} be nonnegative sequences satisfying xn+1 ≤ hxn + εn, for all n ∈ N, 0 ≤ h <
1, lim εn = 0. Then, limxn = 0.

Theorem 1. Let (X, d) be a nonempty complete metric space and T a self-map of X with F(T)/=∅. If
there exist numbers L ≥ 0, 0 ≤ h < 1, such that

d(Tx, q) ≤ Ld(x, Tx) + hd(x, q) (1)
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for each x ∈ X, q ∈ F(T), and, in addition,

limd
(
yn, Tyn

)
= 0, (2)

then Picard’s iteration is T -stable.

Proof. First, we show that the fixed point q of T is unique. Suppose p is another fixed point of
T , then

d(p, q) = d(Tp, q) ≤ Ld(p, Tp) + hd(p, q) = hd(p, q). (3)

Since 0 ≤ h < 1, so d(p, q) = 0, that is, p = q.
Let {yn} ⊂ X, εn = d(yn+1, Tyn), and lim εn = 0. We need to show that limyn = q.
Using (1), (2), and Lemma 1,

d
(
yn+1, q

) ≤ d
(
yn+1, Tyn

)
+ d

(
Tyn, q

) ≤ εn + Ld
(
yn, Tyn

)
+ hd

(
yn, q

)
, (4)

and limyn = q.

Corollary 1. Let (X, d) be a nonempty complete metric space and T a self-map of X satisfying the
following: there exists 0 ≤ h < 1, such that, for each x, y ∈ X,

d(Tx, Ty) ≤ hmax
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
. (5)

Then, Picard’s iteration is T -stable.

Proof. From [2, Theorem 11], T has a unique fixed point q. Also, T satisfies (1). It remains to
show that (2) is satisfied.

Define pn to be the diameter of the orbit of yn; that is, pn = δ(O(yn, Tyn, . . .)). First, we
show that pn is bounded:

d
(
Tyn, q

) ≤ hmax
{
d
(
yn, q

)
, d

(
yn, Tyn

)
, d

(
yn, Tq

)
, d

(
q, Tyn

)
, d

(
q, Tq)

}

≤ hmax
{
d
(
yn, q

)
, d

(
yn, Tyn

)
, d

(
yn, q

)
, d

(
q, Tyn

)
, 0
}

= hmax
{
d
(
yn, q

)
, d

(
yn, Tyn

)
, d

(
yn, q

)
, d

(
q, Tyn

)}
.

(6)

Hence, d(Tyn, q) ≤ hd(yn, q) or d(Tyn, q) ≤ hd(yn, Tyn) or d(Tyn, q) ≤ hd(q, Tyn).
If d(Tyn, q) ≤ hd(yn, q), it is clear that

d
(
Tyn, q

) ≤ hd
(
yn, q

) ≤ h

1 − h
d
(
yn, q

)
. (7)

If d(Tyn, q) ≤ hd(q, Tyn), then

d
(
Tyn, q

)
= 0 ≤ h

1 − h
d
(
yn, q

)
. (8)
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If d(Tyn, q) ≤ hd(yn, Tyn), then

d
(
yn, Tyn

) ≤ d
(
Tyn, q

)
+ d

(
yn, q

) ≤ hd
(
yn, Tyn

)
+ d

(
yn, q

)
. (9)

Hence, d(Tyn, q) ≤ (h/(1 − h))d(yn, q). Now it is easy to see that {Tyn} is bounded and so is
{pn}, since {yn} is bounded.

For any i, j ≥ n, using (5),

d
(
Tyi, Tyj

) ≤ hmax
{
d
(
yi, yj

)
, d

(
yi, Tyi

)
, d

(
yj, Tyj

)
, d

(
yi, Tyj

)
, d

(
yj, Tyi

)} ≤ hpn. (10)

Thus,

d
(
yi, Tyj

) ≤ d
(
yi, Tyi−1

)
+ d

(
Tyi−1, Tyj

) ≤ εi−1 + hpn−1. (11)

But

d
(
yi, yj

)≤d(yi, Tyi−1
)
+d

(
Tyi−1, Tyj−1

)
+d

(
Tyj−1, yj

)≤εi−1+hpn−1+εi−1, (12)

which implies that

pn ≤ 2εi−1 + hpn−1, (13)

and lim pn = 0 by Lemma 1. Since d(yn, Tyn) ≤ pn, limd(yn, Tyn) = 0.
The conclusion now follows from Theorem 1.

Corollary 2 (see [3, Theorem 1]). Let (X, d) be a nonempty complete metric space and T a self-map
of X satisfying

d(Tx, Ty) ≤ Ld(x, Tx) + ad(x, y) (14)

for all x, y ∈ X, where L ≥ 0, 0 ≤ a < 1. Suppose that T has a fixed point p. Then, T is Picard T -stable.

Proof. Since T satisfies (14) for all x, y ∈ X, then T satisfies inequality (1) of our paper. Let
{yn} ⊂ X and define εn = d(yn+1, yn). From the proof of Theorem 1 of [3], limd(yn, Tyn) = 0.
Therefore, by our theorem (Theorem 1), T is Picard T -stable.

Definition (5) of this paper is actually Definition (24) of [2]. Therefore, many contractive
conditions are special cases of (5), and, for each of these, Picard’s iteration is T -stable. For
example, Theorems 1 and 2 of [4] and Theorem 1 of [5] are special cases of Corollary 1.

We will not examine the analogues of Theorem 1 for Mann, Ishikawa, Kirk, or any other
iteration scheme since, if one obtains convergence to a fixed point for a map using Picard’s
iteration, there is no point in considering any other more complicated iteration procedure.
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