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This paper investigates the global asymptotic stability independent of the sizes of the delays of
linear time-varying systems with internal point delays which possess a limiting equation via fixed
point theory. The error equation between the solutions of the limiting equation and that of the
current one is considered as a perturbation equation in the fixed- point and stability analyses. The
existence of a unique fixed point which is later proved to be an asymptotically stable equilibrium
point is investigated. The stability conditions are basically concerned with the matrix measure
of the delay-free matrix of dynamics to be negative and to have a modulus larger than the
contribution of the error dynamics with respect to the limiting one. Alternative conditions are
obtained concerned with the matrix dynamics for zero delay to be negative and to have a modulus
larger than an appropriate contributions of the error dynamics of the current dynamicswith respect
to the limiting one. Since global stability is guaranteed under some deviation of the current solution
related to the limiting one, which is considered as nominal, the stability is robust against such
errors for certain tolerance margins.
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1. Introduction

Time-delay dynamic systems are an interesting field of research in dynamic systems and
functional differential equations. Their intrinsic related theoretical interest is due to the
fact that the necessary formalism lies in that of functional differential equations, being
infinite dimensional. Another reason for their interest relies on the wide range of their
applicability in modelling a number of physical systems like, for instance, transportation
systems, queuing systems, teleoperated systems, war/peace models, biological systems,
finite impulse response filtering, and so on [1–4]. Important particular interest has been
devoted to stability, stabilization, and model-matching of control systems where the object
to be controlled possesses delayed dynamics and the controller is synthesized incorporating
delayed dynamics or its structure may be delay-free (see, e.g., [1, 4–14]). The properties
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are formulated as either being independent of or dependent on the sizes of the delays. An
intrinsic problem which generated analysis complexity is the presence of infinitely many
characteristic zeros because of the functional nature of the dynamics. This fact generates
difficulties in the closed-loop pole-placement problem compared to the delay-free case [14],
as well as in the stabilization problem [2, 4–6, 8–11, 13, 15–20], including the case of singular
time-delay systems where the solution is sometimes nonunique and impulsive because
of the dynamics associated to a nilpotent matrix [15]. The properties of the associated
evolution operators have been investigated in [2, 6, 11]. This paper is devoted to obtain
results relying on a comparison and an asymptotic comparison of the solutions between
a nominal (unperturbed) functional differential equation involving wide classes of delays
and a perturbed version (describing the current dynamics) with some smallness in the
limit assumptions on the perturbed functional differential equation. The nominal equation
is defined as the limiting equation of the perturbed one since the parameters of the last
one converge asymptotically to those of its limiting counterpart. The problem of interest
arises since very often the perturbations related to a nominal model in dynamic systems
occur during the transients while they are asymptotically vanishing in the steady state or,
in the most general worst case, they grow at a smaller rate than the solution of the nominal
differential equation. In this context, the nominal differential equation may be viewed as
the limiting equation of the perturbed one. The comparison between the solutions of the
limiting differential equation and those of the perturbed one based on Perron-type results
has been studied classically for ordinary differential equations and more recently for the
case of functional equations [10, 21, 22]. Particular functional equations of interest are those
involving both point and distributed delays potentially including the last ones Volterra-
type terms [2, 5–7, 23]. On the other hand, fixed point theory [2, 21, 24] is a very powerful
mathematical tool to be used in many applications where stability is required. At a theoretical
level, fixed point theory is being of an increasing interest along the last years. For instance, the
concept of weak contractiveness is discussed in [25]where the contraction constant is allowed
to be unity but a negative vanishing term associated with some continuous nondecreasing
function is also allowed. Weak contractiveness still ensures the existence of a unique fixed
point. The existence of a unique fixed point has also been proved for asymptotic contractions
[26]. Also, the existence of a nonempty fixed point set in a self-map of X, where(X, d) is a
complete metric space allows guaranteeing the T -stability of iteration procedures [27]. In this
paper, linear time-varying functional differential equations with point constant delays are
investigated. Based on the contraction mapping principle, it is first proved the existence of
a unique fixed point. The related proofs are based on the convergence of the parameters of
the current equation to their counterparts of the limiting equation. The existence of such a
fixed point requires that a relevant matrix of the limiting equation (either that of the delay-
free dynamics or that of the zero-delay dynamics) be a stability matrix. Furthermore, an
inequality concerning the parameters of the absolute value of such a matrix with a measure
of all the remaining dynamics (formulated in terms of norms) has to be fulfilled. Once the
existence of a unique fixed point has been proved, simple extra conditions ensure that such
a point is a globally stable zero equilibrium point of the state-trajectory solution. This leads
immediately to prove the global asymptotic stability independent of the sizes of the delays of
the dynamic system. The analysis is then extended to the case of closed-loop systems obtained
via state or output linear feedback from the original uncontrolled dynamic system. Amethod
to synthesize both the time-invariant parts and the incremental ones of the controller matrices
is given so that the existence of a fixed point of the closed-loop system is guaranteed. The
obtained results are of robust stability type since the global asymptotic stability is guaranteed
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under a certain deviation from the current solution with respect to the limiting one, which is
considered the nominal dynamics.

1.1. Notation

C,R, and Z are the sets of complex, real, and integer numbers, respectively.
R+ and Z+ are the sets of positive real and integer numbers, respectively; C+ is the set

of complex numbers with positive real part.
C0+ := C+ ∪ {iω : ω ∈ R}, where i is the complex unity, R0+ := R+ ∪ {0}, and Z0+ :=

Z+ ∪ {0}.
R− and Z− are the sets of negative real and integer numbers, respectively; C− is the set

of complex numbers with negative real part.
C0− := C− ∪ {iω : ω ∈ R}, where i is the complex unity, R0− := R− ∪ {0}, and Z0− :=

Z− ∪ {0}.
N := {1, 2, . . . ,N} ⊂ Z0+, “∨” is the logic disjunction, and “∧” is the logic conjunction.

[t/h] is the integer part of the rational quotient t/h.
σ(M) denotes the spectrum of the real or complex square matrix M (i.e., its set of

distinct eigenvalues).
‖ ‖ denotes any vector or induced matrix norm. Also, ‖m‖p and ‖M‖p are the �p-norms

of the vector m or (induced) real or complex matrix M, and μp(M) denote the �p measure of
the square matrixM [4]. The matrix measure μp(M) is defined as the existing limit μp(M) :=
limε→ 0+(‖In + εX‖p − ε)/ε which has the property max(−‖M‖p,maxi∈nreλi(M)) ≤ μp(M) ≤
‖M‖p for any square n-matrix M of spectrum σ(M) = {λi(M) ∈ C : 1 ≤ i ≤ n}. An important
property for the investigation of this paper is that μ2(M) < 0 ifM is a stability matrix, that is,
if reλi(M) < 0; 1 ≤ i ≤ n.

‖ ‖∞ denotes the supremum norm on R0+, or its induced supremum metric, for
functions or vector and matrix functions without specification of any pointwise particular
vector or matrix norm for each t ∈ R0+. If pointwise vector or matrix norms are specified, the
corresponding particular supremum norms are defined by using an extra subscript. Thus,
‖m‖p∞ := supt∈R0+

‖m(t)‖p and ‖M‖p∞ := supt∈R0+
‖M(t)‖p are, respectively, the supremum

norms on for vector and matrix functions of domains in R0+ × R
n, respectively, in R0+ × R

n×m

defined from their �p pointwise respective norms for each t ∈ R0+.
In is the nth identity matrix.
Kp(M) is the condition number of the matrix M with respect to the �p-norm.

2. Linear systems with point constant delays and the contraction mapping theorem

Consider the following time-varying linear system subject to r constant point delays:

ẋ(t) =
r∑

i=0

Âi(t)x
(
t − ri

)
=

r∑

i=0

Aix
(
t − ri

)
+

r∑

i=0

Ãi(t)x
(
t − ri

)
, (2.1)

where ri (i ∈ r) are the r (in general incommensurate delays) 0 = r0 < ri (i ∈ r) subject to the
system piecewise continuous bounded matrix functions of dynamics Âi : R0+ → R

n×n (i ∈
r ∪ {0}) which are decomposable as a (nonunique) sum of a constant matrix plus a matrix
function of time Âi(t) = Ai+Ãi(t), ∀t ∈ R0+. Equation (2.1) is assumed subject to any piecewise
continuous real vector function of initial conditions ϕ : [−rr , 0] → R

n with ϕ(0) = x(0) = x0,
that is, ϕ ∈ BPC(0)([−rr , 0]),Rn). Thus, it has a unique solution [−rr , 0] ∪ R0+, satisfying
x ≡ ϕ, ∀t ∈ [−rr , 0] and the differential system (2.1), ∀t ∈ R+ for any bounded piecewise
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continuous set Ãi : [−ri, 0] → R
n×n (i ∈ r ∪ {0}) what follows from Picard-Lindeloff’s

theorem, [4, 11, 15]. Such a unique solution is

x(t) = eA0t

[
x0 +

∫ t

0
e−A0τ Ã0(τ)x(τ)dτ

+
r∑

i=1

(∫ ri

0
e−A0τ Âi(τ)ϕ

(
τ − ri

)
dτ +

∫ t

ri

e−A0τ Âi(τ)x
(
τ − ri

)
dτ

)]
.

(2.2)

According to Lyapunov’s stability theory, global stability means that the state-trajectory
solution is uniformly bounded for any bounded function of initial conditions. Global
asymptotic stability implies also that there is a unique asymptotically stable equilibrium point
which is then a global attractor. See, for instance, [2, 4–11, 13, 16, 21, 24, 28]. Generic relations
of stability with fixed point theory have been reported in [2, 21, 24, 27, 29, 30]. It turns out
that a system whose state-trajectory solutions are all bounded and converge to a unique
point is globally asymptotically stable to its equilibrium in Lyapunov’s sense, provided that
such equilibrium is unique. The following simple result is well known. Assume the system
(2.1) with Ai = 0 (∀i ∈ r), Ãi(t) = 0 (∀i ∈ r ∪ {0}), then the resulting linear time-invariant
delay-free system (2.1) is globally asymptotically stable if A0 is a stability matrix so that
if μ2(A0) < 0. Nonasymptotic stability is guaranteed if μ2(A0) ≤ 0. The subsequent result
is concerned with global stability independent of the sizes of the delays and it is obtained
from the contraction mapping theorem for the case when (2.1) has a limiting equation with a
unique asymptotically stable equilibrium point. It is assumed that the matrices defining the
delayed dynamics have sufficiently small norms and that the norm of the error matrix of the
delay-free dynamics with respect to its limiting value is also sufficiently small.

Theorem 2.1. The following properties hold.
(i) Assume that A0 is a stability matrix of �2-matrix measure μ2(A0) and that

supt∈R+
0
(‖Ã0(t)‖2 +

∑r
i=1‖Âi(t + ri)‖2) < ρ0/K0 = (|μ2(A0)| − ρ̃0)/K0 for some real constants

K0 ≥ 1 and ρ̃0 ∈ (0, |μ2(A0)|) and any real constant ρ0 ∈ (0, |μ2(A0)|) such that the C0-semigroup of
the infinitesimal generator A0 satisfies ‖eA0t‖2 ≤ K0e

−ρ0t. Assume also that limt→∞Âi(t) = Ai, ∀i ∈
r ∪ {0} and that (

∑r
i=0Ai) is nonsingular. Then, the system (3.1) is globally asymptotically stable

independent of the sizes of the delays.
(ii) If all the eigenvalues of A0 are distinct, then global asymptotic stability independent of

the sizes of the delays delay holds if supt∈R+
0
(‖Ã0(t)‖2 +

∑r
i=1‖Âi(t + ri)‖2) < |μ2(A0)|/K0, since

ρ0 ∈ (0, |μ2(A0)|], with the remaining conditions being identical.

Proof. (i) The pointwise difference between the two solutions x(t) and z(t) of (2.1) subject to
respective initial conditions ϕx : [−rr , 0] → R

n and ϕz : [−rr , 0] → R
n is

x(t) − z(t) = eA0t

[
(
x0 − z0

)
+
∫ t

0
e−A0τ Ã0(τ)

(
x(τ) − z(τ)

)
dτ

+
r∑

i=1

(∫ ri

0
e−A0τ Âi(τ)

(
φx

(
τ − ri

) − φz

(
τ − ri

))
dτ

+
∫ t

ri

e−A0τ Âi(τ)
(
x
(
τ − ri) − z

(
τ − ri

))
dτ

)]
.

(2.3)
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Define the complete metric space (M, ‖·‖∞)with the supremum metric ‖·‖∞ and

M :=
{
φ ∈ BC(0)(

R,Rn) : φ ≡ ϕ ∈ BPC(0)([ − rr , 0
])
,Rn)}, (2.4)

where BC(0)(R,Rn) is the set of bounded continuous n-vector functions on R. Now, define
P : M → M as the subsequent bounded continuous function:

(Pφ)(t) := eA0t

[
ϕ(0) +

∫ t

0
e−A0τ Ã0(τ)φ(τ)dτ

+
r∑

i=1

(∫ ri

0
e−A0τ Âi(τ)ϕ

(
τ − ri

)
dτ +

∫ t

ri

e−A0τ Âi(τ)φ
(
τ − ri

)
dτ

)]
.

(2.5)

Since eA0t is an infinitesimal generator of the C0-semigroup of the infinitesimal generator A0,
there exist real constants K0 ≥ 1 (which is norm dependent) and ρ0, satisfying 0 > −ρ0 ≥
μ2(A0) := maxi∈ϑ(Reλi : λi ∈ σ(A0)), since A0 is a stability matrix, such that for any matrix
norm ‖eA0t‖ ≤ K0e

−ρ0t; ∀t ∈ R0+.Then, one gets from (2.4)-(2.5) that the supremum metric,
induced by the supremum norm, is then the supremum norm

∥∥(Pφ)(t) − (Pη)(t)
∥∥

=

∥∥∥∥∥e
A0t

[∫ t

0
e−A0τ Ã0(τ)

(
φ(τ) − η(τ)

)
dτ +

r∑

i=1

∫ t

ri

e−A0τ Âi(τ)
(
φ
(
τ − ri

) − η
(
τ − ri

))
dτ

]∥∥∥∥∥

≤ K0

ρ0

(
∥∥Ã0

∥∥
∞ +

r∑

i=1

∥∥Âi

∥∥
∞

)
‖φ − η‖∞; ∀φ, η ∈ M, ∀t ≥ rr

(2.6)

for any vector of matrix norms on R0+. Now, P is a contraction if (K0/ρ0)(‖Ã0‖∞ +∑r
i=1‖Âi‖∞) < 1 and then there is a unique point φ ∈ M such that Pϕ = ϕ from the

contraction mapping theorem [21, 24]. P is also a contraction if (K0/ρ0)supt∈R0+
(‖Ã0(t)‖2 +∑r

i=1‖Âi(t)‖2) < 1 holds. The above conditions may be also tested with any supremum norm
associated with the supremum metric. For instance, the �2 supremum real vector function
norm ‖v‖2∞ = supt∈R0+

‖v(t)‖2 = supt∈R0+

√
(vT (t)v(t)) for any v : R0+ → R

m and its
induced real matrix function norm ‖G‖2∞ = supt∈R0+

‖G(t)‖2 = supt∈R0+

√
λmax(GT (t)G(t)) =

supt∈R0+
max0/= ‖v‖2≤1(‖G(t)v‖/‖v‖2) for G : R0+ → R

n×mprovided that such norms exist,
where λmax(Q) denotes the maximum (real) eigenvalue of the square symmetric matrix (Q).
Note that P is a contraction if (K0/ρ0)(‖Ã0‖∞ +

∑r
i=1‖Âi‖∞) < 1 holds for any ρ0 ∈ R+

satisfying

0 > −ρ0 = ρ̃0 −
∣∣μ2

(
A0

)∣∣ > μ2
(
A0

)
= max

i∈ϑ

(
Reλi : λi ∈ σ

(
A0

))
(2.7)

for some R+ � ρ̃0 ∈ (0, |μ2(A0)|), where σ(A0) is the spectrum of A0 of cardinal ϑ :=
cardσ(A0) ≤ n and any given vector norm and corresponding induced matrix norm.
The limiting equation of (3.1) is ẋ∗(t) =

∑r
i=0Aix

∗(t − ri). Since (
∑r

i=0Ai) is nonsingular,
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ker(
∑r

i=0Ai) = {0 ∈ R
n}. Thus, the unique fixed point x∗ = 0 in R

n of the limiting equation,
and then that of (3.1) whose uniqueness follows from the contraction mapping theorem,
is {0}. As a result, the unique fixed point {0} is a global attractor so that (2.1) is globally
asymptotically stable. Property (i) has been proven.

(ii) If all the eigenvalues of A0 are distinct, that is, card σ(A0) = n, then Property (i)
holds for all ρ0 ∈ (0, |μ2(A0)|] and ρ̃0 ∈ [0, |μ2(A0)|).

A stronger result than Theorem 2.1 with the replacement (|μ2(A0)| − ρ̃0)/K0 →
|μ2(A0)| in the relevant first inequality is now given. In other words, K0 may be taken as
unity and ρ̃0 may be zeroed.

Corollary 2.2. Assume that A0 is a stability matrix of �2-matrix measure μ2(A0) and that
supt∈R0+

(‖Ã0(t)‖2+
∑r

i=1‖Âi(t+ri)‖2) < |μ2(A0)|.Assume also that limt→∞Âi(t) = Ai, ∀i ∈ r∪{0}
and that (

∑r
i=0Ai) is nonsingular. Then, the system (2.1) is globally asymptotically stable independent

of the sizes of the delays.

Proof. Rearrange K0e
−ρ0t = (K0e

−ε0t)e−(ρ0−ε0)t for any R � ε0 ∈ (0, ρ0). Then, K0e
−ρ0t ≤

e−(ρ0−ε0)t, ∀t ≥ t0 = ln(K0/ε0), where t0 depends on ε0 and K0. Redefine the bounded
continuous function Pa(t0) : Ma(t0) → Ma(t0), replacing P : M → M of Theorem 2.1,
with the set in (2.4) being redefined as

Ma

(
t0
)
:=

{
φ ∈ BC(0)(

R,Rn) : φ ≡ ϕ ∈ BPC(0)([ − rr , 0
])
,Rn), φ ≡ ϕ ∈ BC(0)((0, t0

)
,Rn)},

(2.8)

so that the fixed point is looked for any potential perturbation in [t0,∞) and not in [−rr , t0).
First, note that Pa(t0) is still continuous everywhere in its definition domain and also
uniformly bounded since A0 being a stability matrix and P : M → M being bounded imply

∥∥(Pa

(
t0
)
φ
)
(t)

∥∥
2≤

∥∥(Pφ
)
(t)

∥∥
2+K0

∫ t0

0

∥∥∥∥∥

r∑

i=1

e−ρ0(t−τ)Âi

(
τ+ri

)
φ(τ)

∥∥∥∥∥
2

dτ ≤∥∥(Pφ)(t)∥∥2+K1<∞,

(2.9)

∀t ≥ t0 for some finite K1 = K1(t0) ∈ R+ since t0 is finite. Thus, (3.11)may be replaced with

∥∥(Pa

(
t0
)
φ
)
(t) − (

Pa

(
t0
)
η
)
(t)

∥∥
2

=

∥∥∥∥∥e
A0t

[∫ t

t0

e−A0τ Ã0(τ)
(
φ(τ)−η(τ))dτ+

r∑

i=1

∫ t

t0+ri
e−A0τ Âi(τ)

(
φ
(
τ−ri

)−η(τ−ri
))
dτ

]∥∥∥∥∥
2

≤ 1
ρ0 − ε0

(
∥∥Ã0

∥∥
2∞ +

r∑

i=1

∥∥Âi

∥∥
2∞

)
‖φ − η‖2∞; ∀φ, η ∈ Ma

(
t0
)
, ∀t ≥ max

(
t0, rr

)
,

(2.10)

so that Pa(t0) is a contraction if (1/(|μ2(A0)| − ε10 − ε0))(‖Ã0‖2 +
∑r

i=1‖Âi‖2) = (1/(ρ0 −
ε0))(‖Ã0‖2 +

∑r
i=1‖Âi‖2) < 1, since ρ0 may be chosen either fulfilling ρ0 < |μ2(A0)| (the

stability abscissa of A0 is associated with a multiple eigenvalue), but arbitrarily close to
μ2(A0), or ρ0 ≤ |μ2(A0)| (the dominant eigenvalue of A0 is single). As a result, Pa(t0) has a
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unique fixed point in Ma(t0). Since any positive and arbitrarily close to zero real constant
ε10 + ε0 may be used, Pa(t0) is a contraction if (1/|μ2(A0)|)(‖Ã0‖2 +

∑r
i=1‖Âi‖2) < 1. In

addition, since (3.1) converges to a limiting equation and since ker(
∑r

i=0Ai) = {0}, the
unique fixed point is zero which is a global asymptotic attractor independent of the sizes
of the delays. Therefore, no state-trajectory solution may converge to a distinct point or to
be oscillatory since the attractor is global and asymptotic, and no state-trajectory solution
may be unbounded (since Pa(t0) : Ma(t0) → Ma(t0) is bounded). Therefore, the constraint
(1/|μ2(A0)|)(‖Ã0‖∞ +

∑r
i=1‖Âi‖∞) < 1 leads to a contraction and then to a fixed point for the

mapping P : M → M and the result has been proven.

Similar results to Theorem 2.1 and Corollary 2.2 may be obtained by comparing the
dynamic time-delay system (3.1) with the obtained one for zero delays. The system (2.1) is
equivalently written as

ẋ(t) =

(
r∑

i=0

Âi(t)

)
x(t) +

r∑

i=1

Âi(t)
(
x
(
t − ri

) − x(t)
)
. (2.11)

By stating the analogy with (2.2), the state-trajectory solution of (2.11), being equivalent to
(2.2), is given by

x(t) = eAt

[
x0 +

∫ t

0
e−AτÃ(τ)x(τ)dτ

+
r∑

i=1

(∫ ri

0
e−AτÂi(τ)

(
ϕ
(
τ − ri

) − ϕ(τ)
)
dτ +

∫ t

ri

e−AτÂi(τ)
(
x
(
τ − ri

) − x(τ)
)
dτ

)]
,

(2.12)

where the delay-free system is given by ż(t) = (
∑r

i=0Âi(t))z(t) of limiting counterpart ż∗(t) =
(
∑r

i=0Ai)z∗(t),with

A :=
r∑

i=0

Ai, Ã(t) :=
r∑

i=0

Âi(t) −A. (2.13)

Use again the complete metric space (M, ‖·‖∞) with the supremum metric ‖·‖∞ and M
defined in (2.4) and replace the continuous mapping (2.5), using (2.12), by Pα : M → M
defined as

(
Pαφ

)
(t) := eAt

[
ϕ(0) +

∫ t

0
e−AτÃ0(τ)φ(τ)dτ

+
r∑

i=1

(∫ ri

0
e−AτÂi(τ)

(
ϕ
(
τ−ri

)−ϕ(τ))dτ+
∫ t

ri

e−AτÂi(τ)
(
x
(
τ−ri

)−x(τ))dτ
)]

.

(2.14)
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The constraint (2.6) changes to

∥∥(Pαφ
)
(t) − (

Pαη
)
(t)

∥∥
∞ ≤ K

ρ

(
∥∥Ã0

∥∥
∞ + 2

r∑

i=1

∥∥Âi

∥∥
∞

)
‖φ − η‖∞; ∀φ, η ∈ M, (2.15)

where R � K ≥ 1 (norm-dependent) and ρ ∈ R+ (provided that A is a stability matrix) are
such that, for instance, for the supremum on R0+ of the �2 vector (and induced matrix) norm,
‖eAt‖2 ≤ Ke−ρt, ∀t ∈ R0+ so that (2.15) becomes

sup
t∈R0+

∥∥(Pαφ
)
(t)−(Pαη

)
(t)

∥∥
2≤

K

ρ
sup
t∈R0+

(
∥∥Ã0(t)

∥∥
2+2

r∑

i=1

∥∥Âi(t)
∥∥
2

)
sup
t∈R0+

∥∥φ(t)−η(t)∥∥2; ∀φ, η∈M.

(2.16)

Thus, Theorem 2.1 and Corollary 2.2 are modified as follows.

Theorem 2.3. The following properties hold.

(i) Assume thatA is a stability matrix of �2-matrix measure μ2(A) and that supt∈R+
0
(‖Ã(t)‖2+

2
∑r

i=1‖Âi(t + ri)‖2) < ρ/K = (|μ2(A)| − ρ̃)/K for some real constants K ≥ 1 and
ρ̃ ∈ (0, |μ2(A)|) and any real constant ρ ∈ (0, |μ2(A)|) such that the C0-semigroup of
the infinitesimal generator A satisfies ‖eAt‖2 ≤ Ke−ρt. Assume also that limt→∞Âi(t) =
Ai, ∀i ∈ r ∪ {0}. Then, the system (2.1) is globally asymptotically stable independent of the
sizes of the delays.

(ii) If all the eigenvalues of A are distinct, then global asymptotic stability independent of the
sizes of the delays delay holds if supt∈R+

0
(‖Ã(t)‖2+2

∑r
i=1‖Âi(t+ri)‖2) < |μ2(A)|/K, since

ρ ∈ (0, |μ2(A)|], with the remaining conditions being identical.

Corollary 2.4. Assume that A is a stability matrix of �2-matrix measure μ2(A) and that
supt∈R+

0
(‖Ã(t)‖2 +2

∑r
i=1‖Âi(t+ ri)‖2) < |μ2(A)|. Assume also that limt→∞Âi(t) = Ai, ∀i ∈ r ∪{0}.

Then, the system (2.1) is globally asymptotically stable independent of the sizes of the delays.

Note that the requirement that (
∑r

i=0Ai) is nonsingular is imposed in Theorem 2.3 and
Corollary 2.4, since A = (

∑r
i=0Ai) is directly nonsingular as it is a stability matrix. Note also

that A = (
∑r

i=0Ai) being a stability matrix is also a direct consequence of Theorem 2.1 and
Corollary 2.2, which give a result of asymptotic stability independent of the delays thus being
valid for zero delays. However, such condition of nonsingularity ofA (and even the strongest
one of A being a stability matrix) is neither required to apply of the contraction mapping
principle [21, 24], nor a direct consequence of it in Theorem 2.1 and Corollary 2.2. As a result,
it cannot be invoked prior to stability but only being a consequence after stability has been
proven.

Remark 2.5. Note that concerning the system matrices of the delay-free limiting systems and
ż∗(t) = Az∗(t), with A =

∑r
i=0Ai, and of zero ż∗0(t) = A0z

∗
0(t) delayed dynamics and zero

delays, respectively, one has the respective �2-matrix measures μ2(A) = (1/2)max(Reλ(A +
AT ));μ2(A0) = (1/2)max(Reλ(A0 + AT

0 )). Provided they are stable, those limiting systems
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possess the respective Lyapunov’s functions V ∗(t) = z∗(t)z∗(t) and V ∗
0 (t) = z∗0(t)z

∗
0(t) with

respective time-derivatives:

V̇ ∗(t) = 2ż∗
T

(t)z∗(t) = z∗
T

(t)
(
A +AT)z∗(t) ≤ 2μ2(A)V ∗(t),

V̇ ∗
0 (t) = 2ż∗

T

0 (t)z∗0(t) = z∗
T

0 (t)
(
A0 +AT

0
)
z∗0(t) ≤ 2μ2

(
A0

)
V ∗
0 (t),

(2.17)

so that

d

dt

∥∥z∗(t)
∥∥2
2 ≤ 2μ2(A)

∥∥z∗(t)
∥∥2
2,

d

dt

∥∥z∗0(t)
∥∥2
2 ≤ 2μ2

(
A0

)∥∥z∗0(t)
∥∥2
2. (2.18)

As a result, a stronger result than Theorem 2.1(i) holds by replacing (|μ2(A0)| − ρ̃0)/K0 →
|μ2(A0)| and also a stronger result than Theorem 2.1(ii) holds by replacing |μ2(A0)|/K0 →
|μ2(A0)|. In the same way, a stronger result than Theorem 2.3(i) holds by replacing (|μ2(A)| −
ρ̃)/K → |μ2(A)| and a stronger result than Theorem 2.3(ii) holds by replacing |μ2(A)|/K →
|μ2(A)|. Then, Corollaries 2.2 and 2.4 follow directly as stronger results than Theorem 2.1,
respectively, Theorem 2.3 via a very short modified proof by using simple Lyapunov’s theory.
In other words, global asymptotic stability of the current system holds under asymptotic
stability of the respective auxiliary limiting delay-free systems by taking K0 = K = 1, ρ0 =
|μ2(A0)|, ρ = |μ2(A)| and ρ̃0 = ρ̃ = 0 in the relevant inequalities of norms of Theorems 2.1 and
2.3 just as proven in Corollaries 2.2 and 2.4.

3. Feedback linear systems with point constant delays and
the contraction mapping theorem

The fixed point theory and associated stability results of Section 2 are used and extended
directly to state-feedback controlled systems as follows. Instead of the dynamic system (2.1),
consider the controlled dynamic system:

ẋ(t) =
r∑

i=0

Ai(t)x
(
t − ri

)
+ B(t)u(t)

=
r∑

i=0

(
A

∗
i + Ãi(t)

)
x
(
t − ri

)
+
(
B
∗
+ B̃(t)

)
u(t)

(3.1)

=
r∑

i=0

(
A

∗
i + Ãi(t)

)
x(t) +

r∑

i=1

(
A

∗
i + Ãi(t)

)(
x
(
t − ri

) − x(t)
)
+
(
B
∗
+ B̃(t)

)
u(t), (3.2)

where Ai : R0+ → R
n×n (i ∈ r ∪ {0}) and B ∈ R

n×n are piecewise continuous bounded matrix
functions, A

∗
i ∈ R

n×n (i ∈ r ∪ {0}), B∗ ∈ R
n×m and the control u : R0+ → R

m is generated
according to the state-feedback linear control law:

u(t) =
r∑

i=0

Ki(t)x
(
t − ri

)
=

r∑

i=0

(
K

∗
i + K̃i(t)

)
x
(
t − ri

)
, (3.3)
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where Ki : R0+ → R
n×n (i ∈ r ∪ {0}) are piecewise continuous bounded matrix functions

and K
∗
i ∈ R

n×m (i ∈ r ∪ {0}). The substitution of (3.3) into (3.1) leads to a closed-loop system
identical to (2.1) through the identities:

Ai = A
∗
i + B

∗
K

∗
i ,

Âi(t) = Ai + Ãi(t) = Ai(t) + B(t)Ki(t),

Ãi(t) = Ãi(t) + B
∗
K̃i(t) + B̃(t)

(
K

∗
i + K̃i(t)

)
=
(
Ãi(t) + B̃(t)K

∗
i

)
+ B(t)K̃i(t); ∀i ∈ r ∪ {0}.

(3.4)

Important properties of dynamic systems are those of controllability, observability, stabiliz-
ability, and detectability. For the linear time-invariant dynamic systems

ẋ(t) = Ax(t) + Bu(t); y(t) = Cx(t) (3.5)

of state x(t) of n state variables and control u(t) and output y(t) of respective dimensions
m and p, those properties are easily tested through the appropriate Popov-Belevitch-Hutus
rank tests [31]. Thus,

(1) the dynamic system is controllable (or, simply, the pair (A,B) is controllable) if and
only if rank [sIn−AB] = n; ∀s ∈ C.An equivalent test is that (A,B) is controllable if and only
if rank [BAB · · ·An−1B] = n. The meaning of this property is that for any bounded x∗ ∈ R

n,
there exists a piecewise continuous control u : [0, tf] ∩ R0+ → R

m such that x(tf) = x∗ for
some finite tf . An equivalent property is the existence of a controller of gain K ∈ R

m×n such
that a linear state-feedback control defined by u(t) = Kx(t) makes the matrix A = A + BK

feedback obtained system ẋ(t) = (A + BK)x(t) to possess a prescribed spectrum σ(A).
(2) The dynamic system is stabilizable (or, simply, the pair (A,B) is stabilizable) if and

only if rank [sIn − AB] = n; ∀s ∈ C0+. Its meaning is that there exists K ∈ R
m×n such that

the matrix of dynamics A of the closed-loop feedback system is a stability matrix; that is,
σ(A)∩C0+ = ∅ and any state-trajectory solution with bounded initial conditions is uniformly
bounded and converges asymptotically to the zero equilibrium, as a result. By comparing the
controllability and stabilizability tests, it turns out that controllability implies stabilizability
but the converse is not true in general.

(3) The dynamic system is observable (or, simply, the pair (A,C) is observable) if and
only if the pair (AT,CT ) is controllable. If A,B, and C are admitted to be complex matrices,
then transposes are replaced with conjugate transposes. Observability is related to the ability
of calculating the past-state vector from output measurements (usually p < n). Similarly, the
dynamic system is detectable (or, simply, the pair (A,C) is detectable) if and only if the pair
(AT,CT ) is stabilizable.

The above concepts are extendable with more involved tests to time-varying and
nonlinear dynamic systems. Related results have also been investigated related to fixed point
theory (see, e.g., [32, 33]). Recent stability results based on fixed point theory are provided
in [34, 35]. The following result follows directly from the controllability property of linear
systems. It will be then used for obtaining small left-hand side terms in the norms inequalities
of Theorems 2.1 and 2.3 via feedback under assumptions of controllability of relevant matrix
pairs.
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Lemma 3.1. The following properties hold.

(i) Assume that the pair (A
∗
i , B

∗
) is controllable for any given i ∈ r ∪ {0}. Then, for any

prescribed set of nonnecessarily distinct complex numbers SAi = {ρji ∈ C : j ∈ n},
there exists a controller matrix K

∗
i such that the spectrum of the obtained Ai via (3.4) is

σ(Ai) = SAi. As a result, μ2(Ai) = (1/2)λmax(Ai +AT
i ) is also predefined according to the

prescribed set SAi.

(ii) If the pair (A
∗
0, B

∗
) is controllable, then there exists a controller matrix K

∗
0 such that the

σ(A0) = SA0 for any given prescribed set of complex numbers SA0. As a result, μ2(A0) =
(1/2)λmax(A0 +AT

0 ) is also predefined according to σ(A0).

If the pair (
∑r

i=0A
∗
i , B

∗
) is controllable then there exists a controller matrix K

∗
=
∑r

i=0K
∗
i such that

the σ(
∑r

i=0A
∗
i ) = SA for any given prescribed set of complex numbers SA. As a result, μ2(

∑r
i=0A

∗
i ) =

(1/2)λmax(
∑r

i=0A
∗
i +

∑r
i=0A

∗T
i ) becomes also predefined accordingly.

Corollary 2.2, through Lemma 3.1(i), leads directly to the subsequent result.

Theorem 3.2. Assume that

(1) limt→∞Âi(t) = Ai, ∀i ∈ r ∪ {0} and that (
∑r

i=0Ai) is nonsingular,

(2) (A
∗
i , B

∗
); ∀i ∈ r ∪ {0} are controllable pairs, and

(3) supt∈R0+
max(‖Ãi(t)‖2, ‖B̃i(t)‖2) ≤ ζ for some ζ ∈ R+.

Then, there exist (in general, nonunique) constant controller gains Ki(t) = K
∗
i , i ∈ r ∪ {0}, ∀t ∈ R0+

such that the closed-loop system (3.1)–(3.3) is globally asymptotically stable independent of the sizes
of the delays.

Proof. Theorem 2.1 holds if μ2(A0) < 0 ∧ Z0 < |μ2(A0)| ∀t ∈ R0+,where

Z0 := sup
t∈R+

0

(
∥∥Ã0(t) + B̃(t)K

∗
0 + B(t)K̃0(t)

∥∥
2

+
r∑

i=1

(∥∥A
∗
i + B

∗
K

∗
i

∥∥
2 +

∥∥Ãi(t) + B̃(t)K
∗
i + B(t)K̃i(t)

∥∥
2

)
)
.

(3.6)

Note the following.
(1) Since (A

∗
0, B

∗
) is controllable, there existsK

∗
0 such thatA0 = A

∗
0 +B

∗
K

∗
0 is a stability

matrix andwith prescribed spectrum σ(A0), then with prescribedmatrix measure μ2(A0) < 0.
(2) Since (A

∗
i , B

∗
) is controllable for i ∈ r, there exists K

∗
i such that Ai = A

∗
i + B

∗
Ki

has any prescribed spectrum σ(Ai). Then, fix σ(Ai) = {λji ∈ C : λji /=λki if j /= k, |λji| ≤
ζ0; ∀j ∈ n}; ∀i ∈ r. Since the eigenvalues of Ai are distinct, it always exists a nonsingular
real n-matrix Ti (i ∈ r) such that ‖Ai‖2 = ‖A∗

i + B
∗
K

∗
i ‖2 = ‖T−1

i ΛiζTi‖2 ≤ ζ0K2(Ti); ∀i ∈ r,
where Λiε := Diag (λ1i.λ2i, . . . , λni); ∀i ∈ r. As a result, one gets from (3.6) that for some
real n-matrices Ti (i ∈ r), Z0 ≤ Z0 := (r + 1 +

∑r
i=1‖K

∗
i ‖2)ζ + ζ0

∑r
i=1(K2(Ti)), provided that

supt∈R0+
max(‖Ãi(t)‖2, ‖B̃i(t)‖2) ≤ ε under the incremental controller gains choice K̃i(t) =

0; ∀i ∈ r. The proof follows from Theorem 2.1(i), since Z0 is independent of K
∗
0 and thus
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on T0, so that μ2(A0) is independent of Z0 so that it can be fixed fulfilling |μ2(A0)| > Z0 by
appropriately selecting K

∗
0 for any given ζ ∈ R+.

Theorem 3.2 is useful to guarantee closed-loop stabilization of the system (2.1) under
controllability conditions of the time-invariant dynamics by first stabilizing the delay-free
dynamics of the limiting equation via linear feedback with sufficiently large stability abscissa.
The result is achievable irrespective of the norms of the incremental matrices of dynamics of
(2.1)with respect to its limiting equation. Theorem 3.2 is now extended by replacing the time-
invariant controllers by time-varying ones.

Corollary 3.3. Suppose that the assumptions (1)–(3) of Theorem 3.2 hold. Then, there exist nonzero

(nonunique) controller gain matrix functions Ki(t) = K
∗
i + K̃i(t), i ∈ r ∪ {0}, ∀t ∈ R0+ such that the

closed-loop system (3.1)–(3.3) is globally asymptotically stable independent of the sizes of the delays.

Furthermore, if rankB(t) = m, ∀t ∈ R0+, then the controller gains Ki(t) = K
∗
i + K̃i(t) i ∈

r ∪ {0} defined with any members of sets of constant controller gainsK
∗
i , i ∈ r ∪ {0} chosen according

to Theorem 3.2 and incremental controller gains K̃i(t) = −(BT
(t)B(t))

−1
B
T
(t)(Ãi(t) + B̃(t)K

∗
i ); ∀i ∈

r∪{0} guarantee the global asymptotic stability independent of the sizes of the delays of the closed-loop
system (3.1)-(3.2).

Proof. It follows from Theorem 3.2, provided that the incremental controller gains K̃i : R0+ →
R

n×m satisfy |μ2(A0)| > Z := Z0 + supt∈R0+
(‖B(t)‖∑r

i=0‖K̃i(t)‖)2 after replacing Z0 → Z and
Z0 → Z. Such nonzero controller gains always exist since |μ2(A0)| > Z0 from Theorem 3.2.
To simplify the subsequent notation define the matrix function G : R0+ → R

n×2(r+1)n ×R
n×2m ×

R
n×(r+1)m by G(t) := [A

∗
0, . . . , Ar, Ã0, . . . , Ãr , B

∗
, B̃, K

T

0 , . . . , K
T

r ].Now, taking into account (3.6),
define the nonnegative real functional z0 : R0+ × R

n×2(r+1)n × R
n×2m × R

n×2(r+1)m → R0+ by

z0
(
t, G, K̃

T

0 , . . . , K̃
T

r

)
:=

(
∥∥Ã0(t) + B̃(t)K

∗
0 + B(t)K̃0(t)

∥∥
2

+
r∑

i=1

(∥∥A
∗
i + B

∗
K

∗
i

∥∥
2 +

∥∥Ãi(t) + B̃(t)K
∗
i + B(t)K̃i(t)

∥∥
2

))
.

(3.7)

Note by construction, (3.6) and Theorem 3.2, that z0(t, 0, K̃
T

0 , . . . , K̃
T

r ) ≤ Z0 ≤ Z0 <
|μ2(A0)|; ∀t ∈ R0+. Thus, it follows from Theorem 3.2 that there is an open ball B of R

n×2(r+1)m

centered at cero fulfilling z0(t, G,X) < |μ2(A0)|, ∀X ∈ B so that the closed-loop system
(3.1)–(3.3) is globally asymptotically stable independent of the delays for sets of nonzero
incremental controller gains since the same property is fulfilled for sets of constant controller
gains.

If rankB(t) = m, ∀t ∈ R0+, then the incremental controller gains K̃
0

i (t) =

−(BT
(t)B(t))

−1
B
T
(t)(Ãi(t) + B̃(t)K

∗
i ); ∀i ∈ r ∪ {0} fulfill

∥∥Ãi(t) + B̃(t)K
∗
i + B(t)K̃

0

i (t)
∥∥
2

= Inf
K̃i∈Rm×n

∥∥Ãi(t) + B̃(t)K
∗
i + B(t)K̃i(t)

∥∥
2

∥∥(In − B(t)
(
B
T
(t)B(t)

)−1
B
T
(t)

)(
Ãi(t) + B̃(t)K

∗
i

)∥∥
2,

(3.8)
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from least squares minimization. As a result, the (r + 1) matrix function on incremental

controllers (K̃
0T

0 , K̃
0T

1 , . . . , K̃
0T

r ) ∈ B and, furthermore, μ2(A0) < 0 and

∣∣μ2
(
A0

)∣∣ > z0
(
t, G, K̃

0T

0 , K̃
0T

1 , . . . , K̃
0T

r

)

=
r∑

i=0

(
∥∥(In − B(t)

(
B
T
(t)B(t)

)−1
B
T
(t)

)(
Ãi(t) + B̃(t)K

∗
i

)∥∥
2

)
+

r∑

i=1

∥∥A
∗
i + B

∗
K

∗
i

∥∥
2

(3.9)

guarantee the global asymptotic stability independent of the sizes of the delays of the closed-
loop system (3.1)–(3.3).

Note that if m ≥ n and rankB(t) = m; ∀t ∈ R0+, then |μ2(A0)| ≥
∑r

i=1‖A
∗
i + B

∗
K

∗
i ‖2

and μ2(A0) < 0 guarantee the closed-loop stability from Corollary 3.3. If m < n and

rank (B(t), Ãi(t) + B̃(t)K
∗
0) = rankB(t) = m; ∀i ∈ r ∪ {0}; ∀t ∈ R0+, then from Kronecker-

Capelli’s theorem, see, for instance, [11, 15], there exist infinitely many solutions of the

incremental controller gains which make (In − B(t)(B
T
(t)B(t))−1B(t))(Ãi(t) + B̃(t)K

∗
i ) = 0 so

that the closed-loop stability is guaranteed under |μ2(A0)| ≥
∑r

i=1‖A
∗
i +B

∗
K

∗
i ‖2 with μ2(A0) <

0. On the other hand, Corollary 3.3 allows obtaining a subsequent direct result under a
weaker Condition 2 of Theorem 3.2. In particular, only the controllability of (A

∗
0, B

∗
), and not

that of the remaining pairs (A
∗
i , B

∗
); ∀i ∈ r, is requested for selecting an appropriate negative

value of μ2(A0) and the static controller gains are chosen for least-squares minimization of
the associated term in z0.

Corollary 3.4. Assume that

(1) limt→∞Âi(t) = Ai; ∀i ∈ r ∪ {0} and that (
∑r

i=0Ai) is nonsingular,

(2) (A
∗
0, B

∗
) is a controllable pair,

(3) supt∈R0+
max(‖Ãi(t)‖2, ‖B̃i(t)‖2) ≤ ζ for some ζ ∈ R+,

(4) rankB
∗
= rankB(t) = m; ∀t ∈ R0+.

Then, the closed-loop system (3.1)–(3.3) is globally asymptotically stable independent of the sizes of
the delays provided that the controller gains are synthesized as follows:

(5) K
∗
i = −(B∗T

B
∗
)
−1
B
∗T
A

∗
i ; ∀i ∈ r,

(6) K̃
0

i (t) = −(BT
(t)B(t))

−1
B
T
(t)(Ãi(t) + B̃(t)K

∗
i ); ∀i ∈ r ∪ {0},
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(7) K
∗
0 is synthesized so that such that σ(A0) satisfies the constraints μ2(A0) < 0,

∣∣μ2
(
A0

)∣∣ >
r∑

i=1

(
∥∥(In − B

∗(
B
∗T
B
∗)−1

B
∗T)

A
∗
i

∥∥
2

+
r∑

i=0

(∥∥(In − B(t)
(
B
T
(t)B(t)

)−1
B
T
(t)

)

× (
Ãi(t) + B̃(t)

(
In − B

∗(
B
∗T
B
∗)−1

B
∗T)

A
∗
i

)∥∥
2

)
)
.

(3.10)

In the same way as Theorem 3.2 is obtained from Corollary 2.2 (a refinement of Theorem 2.1),
Theorem 2.3 leads to the subsequent result which is obtained based on a comparison of the delayed
dynamics with the delay-free limiting dynamics.

Theorem 3.5. Assume that

(1) limt→∞Âi(t) = Ai, ∀i ∈ r ∪ {0} and that (
∑r

i=0Ai) is a stability matrix,

(2) (
∑r

i=0A
∗
i , B

∗
) is a controllable pair,

(3) supt∈R0+
max(‖Ãi(t)‖2, ‖B̃i(t)‖2) ≤ ζ for some ζ ∈ R+.

Then, there exist sets of nonunique controller gain matrix functions Ki : R0+ → R
m×n defined by

Ki(t) = K
∗
i + K̃i(t), i ∈ r ∪ {0}, ∀t ∈ R0+ such that the closed-loop system (3.1)–(3.3) is globally

asymptotically stable independent of the sizes of the delays and [(
∑r

i=1A
∗
i ) + B

∗
(
∑r

i=1K
∗
i )] has an

arbitrary spectrum of distinct eigenvalues of modulus not larger than a prescribed upper bound ζ ∈ R+.

Proof. The substitution of (3.3) into (3.2) yields

ẋ(t) =
r∑

i=0

(
A

∗
i + B

∗
K

∗
i

)
x(t) +

r∑

i=0

(
Ãi(t) + B̃i(t)K

∗
i + B(t)K̃i(t)

)
x(t)

+
r∑

i=1

(
A

∗
i + B

∗
K

∗
i + Ãi(t) + B̃i(t)K

∗
i + B(t)K̃i(t)

)(
x(t − ri) − x(t)

)
,

(3.11)

((
∑r

i=0A
∗
i ), B

∗
) being controllable ⇒ ∃T (a nonsingular real n-matrix) such that ‖(∑r

i=0A
∗
i ) +

B
∗
(
∑r

i=0K
∗
i )‖2 = ‖T−1ΛυT‖2 ≤ υK2(T) ∧ σ(A) = σ(Λυ) = {λi : λi /=λj (i /= j) ∧ |λi| ≤ υ, ∀i ∈ n}

for any given υ ∈ R+. Define

ZA := sup
t∈R+

0

(∥∥∥∥∥

r∑

i=0

(
Ãi(t) + B̃i(t)K

∗
i + B(t)K̃i(t)

)
∥∥∥∥∥
2

+ 2

∥∥∥∥∥

(
r∑

i=1

A
∗
i

)
+ B

∗
(

r∑

i=1

K
∗
i

)∥∥∥∥∥
2

+ 2
r∑

i=1

(∥∥Ãi(t) + B̃(t)K
∗
i + B(t)K̃i(t)

∥∥
2

)
)

≤ ZA := 2K2(T)υ + sup
t∈R0+

(
r +

∥∥∥∥∥

r∑

i=0

K
∗
i

∥∥∥∥∥
2

)
ζ + 3sup

t∈R0+

(
∥∥B(t)

∥∥
2

(
r∑

i=1

∥∥K̃i(t)
∥∥
2

))
.

(3.12)
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Then, stability of the closed-loop system (3.1)–(3.3) holds if (
∑r

i=0A
∗
i ) is a stability matrix and

(a) the set of static controller gain matrices K
∗
i : R0+ → R

m×n; ∀i ∈ r ∪ {0} satisfies
that sp ((

∑r
i=1A

∗
i ) + B

∗
(
∑r

i=1K
∗
i )) = {λ1, λ2, . . . , λn} consists of n distinct complex

numbers of modulus not larger than any prescribed υ ∈ R+ and the nonsingular
matrix T defines the similarity transformation T[(

∑r
i=1A

∗
i )+B

∗
(
∑r

i=1K
∗
i )]T

−1 = Λυ =
Diag (λ1, λ2, . . . , λn).

(b) The set of incremental controller gain matrix functions K̃i : R0+ → R
m×n; ∀i ∈

r ∪ {0}is chosen so that |μ2(
∑r

i=0A
∗
i )| > ZA with ZA being defined in (3.12).

Corollaries to Theorem 3.5might be obtained directly based on the ideals of Corollaries
3.3-3.4 for Theorem 3.2.

4. Further extensions

The following definitions and associate properties are well known in control theory of linear
and time-invariant dynamic systems.

(1) A pair of complex matrices (Φ,H),Φ ∈ C
n×n, H ∈ R

n×m is said to be stabilizable
(or asymptotically controllable) if ∃K ∈ R

m×n such that σ(Φ +HK) ⊂ C−.

(2) Stabilizability of (Φ,H) is a weaker property than the controllability of such a pair
what means that ∃K ∈ R

m×n such that σ(Φ + HK) = ΛK for each prescribed set
of n numbers (possibly repeated) ΛK ⊂ C. An equivalent characterization of the
controllability of (Φ,H) is rank (H,ΦH, . . . ,Φn−1H) = n.

(3) If an open-loop system is stabilizable but not controllable, all its uncontrollable
open-loop modes are invariant and stable under any state-feedback law.

This section gives extensions of some results of Section 3 for the case when some
controllability conditions are lost but stabilizability still holds and some further extensions
for the case of output feedback controllers. The following result is weaker but more general
than Theorem 3.2.

Corollary 4.1. Assume that

(1) limt→∞Âi(t) = Ai, ∀i ∈ r ∪ {0} and that (
∑r

i=0Ai) is nonsingular,

(2) (A
∗
0, B

∗
) is a stabilizable, but not controllable, pair and (A

∗
i , B

∗
); ∀i ∈ r are all controllable

pairs,

(3) supt∈R0+
max(‖Ãi(t)‖2, ‖B̃i(t)‖2) ≤ ζ for some ζ ∈ R+.

Then, there exist (in general, nonunique) constant controller gains Ki(t) = K
∗
i , i ∈ r ∪ {0}, ∀t ∈ R0+

such that the closed-loop system (3.1)–(3.3) is globally asymptotically stable independent of the sizes
of the delays provided that Z0 < |ρ0uc|, ∀t ∈ R0+, where Z0 is defined in (3.6) and −ρ0uc < 0 is the
stability abscissa of the uncontrollable dominant eigenvalue of A

∗
0. The stability property also holds if

Z0 < |ρ0uc| with Z0 being defined in the proof of Theorem 3.2.

Proof. It is similar to that of Theorem 3.2 by noting that supK
∗
0∈S⊂Rm×nμ2(A0) ≤ −ρ0uc < 0,

where S ⊂ R
m×n is the in general open and not simply connected domain of stabilizable static

controller gains K
∗
0 of the pair (A

∗
0, B

∗
).
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Theorem 3.2may also be extended straightforwardly by replacing (A
∗
0, B

∗
) controllable

by (A
∗
0, B

∗
) stabilizable, Z0 → Z, and μ2(A0) → −ρ0uc. Corollaries 3.3-3.4 are also directly

extendable based on Corollary 4.1. On the other hand, Theorem 3.5 extends directly to the
subsequent result which is weaker in the sense that the matrix measure cannot be prefixed
since controllability of (

∑r
i=0A

∗
i , B

∗
) is replaced by its stabilizability.

Corollary 4.2. Assume that

(1) limt→∞Âi(t) = Ai, ∀i ∈ r ∪ {0} and that (
∑r

i=0Ai) is a stability matrix,

(2) (
∑r

i=0A
∗
i , B

∗
) is a stabilizable pair,

(3) supt∈R0+
max(‖Ãi(t)‖2, ‖B̃i(t)‖2) ≤ ζ for some ζ ∈ R+.

Then, there exist sets of nonunique controller gain matrix functions Ki : R0+ → R
m×n defined by

Ki(t) = K
∗
i + K̃i(t), i ∈ r ∪ {0}, ∀t ∈ R0+ such that the closed-loop system (3.1)–(3.3) is globally

asymptotically stable independent of the sizes of the delays provided that ZA < |ρuc|, with ZA defined
in (3.12) and −ρuc < 0 is the stability abscissa of the uncontrollable (stable and invariant under state
feedback) dominant eigenvalue of

∑r
i=0A

∗
i .

Now, assume that the control law (3.3) is replaced with

u(t) =
r∑

i=0

Ki(t)Cx(t − ri) =
r∑

i=0

(
K

∗
i + K̃i(t)

)
Cx

(
t − ri

)
(4.1)

for some set of output matrices C ∈ R
p×m with p ≤ m. The interpretation of (4.1) is that the

controller has not access to all the state components of the system but only to some linear
combinations of them, namely, the output vector defined by y(t) = Cx(t). This situation is
very realistic under the constraint max(m, p) < n, that is, the numbers of input and output
components are less than the number of state components. The following further definitions
and related properties features are well known from basic control theory [28].

(4) Observability is a dual property to controllability in the sense that the pair (Ω, P),
P ∈ R

p×n, Ω ∈ R
n×n, is said to be observable if the pair (ΩT , PT ) is controllable and

conversely.

(5) The triple (P,Ω, K) is said to be controllable and observable if (P,Ω) is observable
and (Ω, K) is controllable. If the (P,Ω, K) is controllable and observable, then there
exists L ∈ R

m×p such that σ(Ω +KLP) has α = max(m, p) values arbitrarily close to
any prescribed subset of C of cardinal αwith possibly repeated members provided
that K and P are full rank. The remaining (α − n) members of σ(Ω +KLP) cannot
be allocated arbitrarily close to prefixed values.

Detectability is a dual property to stabilizability in the sense that (P,Ω) is detectable if
(ΩT , PT ) is stabilizable.

The above properties lead to the fact that the control output feedback law (3.1)
is unable to reallocate all the eigenvalues of A0, respectively, those of (

∑r
i=0A

∗
i ) to exact

prescribed positions if the triples (A
∗
0, B

∗
, C

∗
), respectively, (

∑r
i=0A

∗
i , B

∗
, C

∗
), are controllable

and observable even if max(m, p) ≥ n and B
∗
and C

∗
are both full rank. However, under
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this constraint, all the eigenvalues of the matrix A
∗
0 + B

∗
K

∗
0C

∗
, respectively, of the matrix

(
∑r

i=0A
∗
i ) + B

∗
K

∗
0C

∗
can be allocated arbitrarily close to any prefixed set of n complex

numbers, by some choice of the static controller gain K
∗
0 ∈ R

m×p. Also, if max(m, p) < n, B
∗
,

and C
∗
are full rank and (A

∗
0, B

∗
, C

∗
), respectively, (

∑r
i=0A

∗
i , B

∗
, C

∗
) are controllable and

observable triples, then (n − max(m, p)) of the eigenvalues of A
∗
0 + B

∗
K

∗
0C

∗
, respectively, of

(
∑r

i=0A
∗
i ) + B

∗
K

∗
0C

∗
, may be allocated arbitrarily close to prescribed complex sets by some

K
∗
0 ∈ R

m×p.
Corollary 4.1 is reformulated as follows for the case of linear output feedback (4.1) by

taking into account the above properties of linear time-invariant output feedback.

Corollary 4.3. Assume that

(1) limt→∞Âi(t) = Ai, ∀i ∈ r ∪ {0} and that (
∑r

i=0Ai) is nonsingular,

(2) (A
∗
0, B

∗
, C

∗
) is a stabilizable and detectable triple, and (A

∗
i , B

∗
, C

∗
); ∀i ∈ r are all

controllable triples,

(3) supt∈R0+
max(‖Ãi(t)‖2, ‖B̃i(t)‖2) ≤ ζ for some ζ ∈ R+,

(4)

Z0m := sup
t∈R+

0

(
∥∥Ã0(t) + B̃(t)K

∗
0C

∗
+ B(t)K̃0(t)C

∗∥∥
2

+
r∑

i=1

(∥∥A
∗
i + B

∗
K

∗
i C

∗∥∥
2 +

∥∥Ãi(t) + B̃(t)K
∗
i C

∗
+ B(t)K̃i(t)C

∗∥∥
2

))
.

(4.2)

Then, there exist (in general, nonunique) constant controller gains Ki(t) = K
∗
i , i ∈ r ∪

{0}, ∀t ∈ R0+ such that the closed-loop system (3.1)–(3.3) is globally asymptotically stable

independent of the sizes of the delays provided that Z0m < |μ2(A
0
i + B

∗
K

0
i C

∗
)|. If the above

Condition (2), replaced with (A
∗
0, B

∗
, C

∗
), is a controllable and observable triple instead of

stabilizable and detectable and, furthermore, rankB
∗
= m, rankC

∗
= p and max(p,m) ≥

n then constant controller gains Ki(t) = K
∗
i ∈ R

p×m, i ∈ r ∪ {0}, ∀t ∈ R0+ can be found

so that the closed-loop stability is guaranteed if Z0m < |μ2(A
0
i + B

∗
K

0
i C

∗
)| for a prefixed

μ2(A
0
i + B

∗
K

0
i C

∗
).

Corollary 4.2 is reformulated as follows for the case of linear output feedback (4.1).

Corollary 4.4. Assume that

(1) limt→∞Âi(t) = Ai, ∀i ∈ r ∪ {0} and that (
∑r

i=0Ai) is a stability matrix,

(2) (
∑r

i=0A
∗
i , B

∗
) is a stabilizable pair,

(3) supt∈R0+
max(‖Ãi(t)‖2, ‖B̃i(t)‖2) ≤ ζ for some ζ ∈ R+,
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(4)

ZAm := sup
t∈R+

0

(∥∥∥∥
r∑

i=0

(
Ãi(t) + B̃i(t)K

∗
i C

∗
+ B(t)K̃i(t)C

∗)
∥∥∥∥
2

+2
∥∥∥∥

(
r∑

i=1

A
∗
i

)
+B

∗
(

r∑

i=1

K
∗
i

)
C

∗
∥∥∥∥
2
+2

r∑

i=1

(∥∥Ãi(t)+B̃(t)K
∗
i C

∗
+B(t)K̃i(t)C

∗∥∥
2

)
)

≤ ZAm := 2
∥∥∥∥

(
r∑

i=0

A
∗
i

)
+ B

∗
(

r∑

i=0

K
∗
i

)
C

∗
∥∥∥∥
2
+ sup

t∈R0+

(
r +

∥∥∥∥
r∑

i=0

K
∗
i

∥∥∥∥
2
C

∗
)
ζ

+ 3sup
t∈R0+

(
∥∥B(t)

∥∥
2

(
r∑

i=1

∥∥K̃i(t)
∥∥
2C

∗
))

.

(4.3)

Then, there exist sets of nonunique controller gain matrix functions Ki : R0+ → R
m×n

defined byKi(t) = K
∗
i + K̃i(t), i ∈ r ∪{0}, ∀t ∈ R0+ such that the closed-loop system (3.1)–

(3.3) is globally asymptotically stable independent of the sizes of the delays provided that
ZAm < |μ2((

∑r
i=0A

∗
i ) + B

∗
(
∑r

i=0K
∗
i )C

∗
)|. The stability property of the closed-loop system

also holds if ZAm < |μ2((
∑r

i=0A
∗
i ) + B

∗
(
∑r

i=0K
∗
i )C

∗
)|. If the above Condition (2), replaced

with ((
∑r

i=0A
∗
i ), B

∗
, C

∗
), is a controllable and observable triple instead of stabilizable and

detectable and, furthermore, rankB
∗
= m, rankC

∗
= p and max(p,m) ≥ n then constant

controller gains Ki(t) = K
∗
i ∈ R

p×m, i ∈ r ∪ {0}, ∀t ∈ R0+ can be found so that the

closed-loop stability is guaranteed if Z0m < |μ2((
∑r

i=0A
∗
i ) +B

∗
K

0
i C

∗
)| for a prefixed matrix

measure.
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