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1. Introduction

Let E be a Banach space, let C be a closed convex subset of E, and let f be a bifunction from
C × C to R, where R is the set of real numbers. The equilibrium problem is to find

x∗ ∈ C such that f(x∗, y) ≥ 0 ∀y ∈ C. (1.1)

The set of such solutions x∗ is denoted by EP(f).
In 2006, Martinez-Yanes and Xu [1] obtained strong convergence theorems for finding

a fixed point of a nonexpansive mapping by a new hybrid method in a Hilbert space. In
particular, Takahashi and Zembayashi [2] established a strong convergence theorem for
finding a common element of the set of solutions of an equilibrium problem and the set
of fixed points of a nonexpansive mapping in a uniformly convex and uniformly smooth
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Banach space. Very recently, Su et al. [3] proved the following theorem by a monotone hybrid
method.

Theorem 1.1 (see Su et al. [3]). Let E be a uniformly convex and uniformly smooth real Banach
space, let C be a nonempty closed convex subset of E, and let T : C → C be a closed hemirelatively
nonexpansive mapping such that F(T)/=∅. Assume that αn is a sequence in [0, 1] such that
lim supn→∞αn < 1. Define a sequence xn in C by the following:

x0 ∈ C, chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JTxn),

Cn = {z ∈ Cn−1 ∩Qn−1 : φ(z, yn) ≤ φ(z, xn)},
C0 = {z ∈ C : φ(z, y0) ≤ φ(z, x0)},

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
Q0 = C,

xn+1 = ΠCn∩Qn(x0),

(1.2)

where J is the duality mapping on E. Then, xn converges strongly to ΠF(T)x0, where ΠF(T) is the
generalized projection from C onto F(T).

In this paper, motivated by Su et al. [3], we prove a strong convergence theorem
for finding a common element of the set of solutions of an equilibrium problem and the
set of fixed points of a hemirelatively nonexpansive mapping and for finding a common
element of the set of zero points of maximal monotone operators and the set of solutions
of an equilibrium problem in a Banach space by using the monotone hybrid method. Using
this theorem, we obtain three new strong convergence results for finding a solution of an
equilibrium problem, a fixed point of a hemirelatively nonexpnasive mapping, and a zero
point of maximal monotone operators in a Banach space.

2. Preliminaries

Let E be a real Banach space with dual E∗. We denote by J the normalized duality mapping
from E to 2E

∗
defined by

Jx =
{
f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, (2.1)

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that if E∗ is uniformly
convex, then J is uniformly continuous on bounded subsets of E. In this case, J is single
valued and also one to one.

Let E be a smooth, strictly convex, and reflexive Banach space and letC be a nonempty
closed convex subset of E. Throughout this paper, we denote by φ the function defined by

φ(y, x) = ‖y‖2 − 2〈y, Jx〉 + ‖x‖2. (2.2)
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Following Alber [4], the generalized projection ΠC : E → C from E onto C is defined by

ΠC(x) = arg min
y∈C

φ(y, x) ∀x ∈ E. (2.3)

The generalized projectionΠC from E ontoC is well defined and single valued, and it satisfies

(‖x‖ − ‖y‖)2 ≤ φ(y, x) ≤ (‖x‖ + ‖y‖)2 ∀x, y ∈ E. (2.4)

If E is a Hilbert space, then φ(y, x) = ‖y − x‖2 and ΠC is the metric projection of E onto C.
If E is a reflexive strict convex and smooth Banach space, then for x, y ∈ E, φ(x, y) = 0

if and only if ‖x‖ = ‖y‖. It is sufficient to show that if φ(x, y) = 0, then x = y. From (2.4),
we have ‖x‖ = ‖y‖. This implies 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J , we have
Jx = Jy, that is, x = y.

Let C be a closed convex subset of E and let T be a mapping from C into itself.
We denote by F(T) the set of fixed points of T . T is called hemirelatively nonexpansive if
φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F(T).

A point p inC is said to be an asymptotic fixed point of T [5] ifC contains a sequence xn

which converges weakly to p such that the strong limn→∞(Txn−xn) = 0. The set of asymptotic
fixed points of T will be denoted by F̂(T). A hemirelatively nonexpansive mapping T from C

into itself is called relatively nonexpansive [1, 5, 6] if F̂(T) = F(T).
We need the following lemmas for the proof of our main results.

Lemma 2.1 (see Alber [4]). Let C be a nonempty closed convex subset of a smooth, strictly convex,
and reflexive Banach space E. Then,

φ
(
x,ΠCy

)
+ φ

(
ΠCy, y

) ≤ φ(x, y) ∀x ∈ C, y ∈ E. (2.5)

Lemma 2.2 (see Alber [4]). Let C be a nonempty closed convex subset of a smooth, strictly convex,
and reflexive Banach space, let x ∈ E, and let z ∈ C. Then,

z = ΠCx ⇐⇒ 〈y − z, Jx − Jz〉 ≤ 0 ∀y ∈ C. (2.6)

Lemma 2.3 (see Kamimura and Takahashi [7]). Let E be a smooth and uniformly convex Banach
space and let {xn} and {yn} be sequences in E such that either {xn} or {yn} is bounded. If
limn→∞φ(xn, yn) = 0. Then limn→∞‖xn − yn‖ = 0.

Lemma 2.4 (see Xu [8]). Let E be a uniformly convex Banach space and let r > 0. Then, there exists
a strictly increasing, continuous, and convex function g : [0, 2r] → R such that g(0) = 0 and

‖tx + (1 − t)y‖2 ≤ t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)g(‖x − y‖) ∀x, y ∈ Br, t ∈ [0, 1], (2.7)

where Br = {z ∈ E : ‖z‖ ≤ r}.
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Lemma 2.5 (see Kamimura and Takahashi [7]). Let E be a smooth and uniformly convex Banach
space and let r > 0. Then, there exists a strictly increasing, continuous, and convex function g :
[0, 2r] → R such that g(0) = 0 and

g(‖x − y‖) ≤ φ(x, y) ∀x, y ∈ Br. (2.8)

For solving the equilibrium problem, let us assume that a bifunction f satisfies the
following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for all x, y, z ∈ C, lim supt→ 0f(tz + (1 − t)x, y) ≤ f(x, y);

(A4) for all x ∈ C, f(x, ·) is convex.

Lemma 2.6 (see Blum and Oettli [9]). Let C be a closed convex subset of a smooth, strictly convex,
and reflexive Banach space E, let f be a bifunction from C × C to R satisfying (A1)–(A4), let r > 0,
and let x ∈ E. Then, there exists z ∈ C such that

f(z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ 0 ∀y ∈ C. (2.9)

Lemma 2.7 (see Takahashi and Zembayashi [10]). Let C be a closed convex subset of a uniformly
smooth, strictly convex, and reflexive Banach space E, let f be a bifunction from C ×C to R satisfying
(A1)–(A4), and let x ∈ E, for r > 0 . Define a mapping Tr : E → 2C as follows:

Tr(x) =
{
z ∈ C : f(z, y) +

1
r
〈y − z, Jz − Jx〉 ≥ 0 ∀y ∈ C

}
∀x ∈ E. (2.10)

Then, the following holds:

(1) Tr is single valued;

(2) Tr is a firmly nonexpansive-type mapping [11], that is, for all x, y ∈ E,

〈Trx − Try, JTrx − JTry〉 ≤ 〈Trx − Try, Jx − Jy〉; (2.11)

(3) F(Tr) = F̂(Tr) = Ep(f);

(4) Ep(f) is closed and convex.

Lemma 2.8 (see Takahashi and Zembayashi [10]). Let C be a closed convex subset of a smooth,
strictly convex, and reflexive Banach space E and let f be a bifunction from C × C to R satisfying
(A1)–(A4). Then, for r > 0 and x ∈ E, and q ∈ F(Tr),

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x). (2.12)
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Lemma 2.9 (see Su et al. [3]). Let E be a strictly convex and smooth real Banach space, let C be
a closed convex subset of E, and let T be a hemirelatively nonexpansive mapping from C into itself.
Then, F(T) is closed and convex.

Recall that an operator T in a Banach space is called closed, if xn → x, Txn → y, then
Tx = y.

3. Strong convergence theorem

Theorem 3.1. Let E be a uniformly convex and uniformly smooth real Banach space, let C be a
nonempty closed convex subset of E, let f be a bifunction from C × C to R satisfying (A1)–(A4), and
let T : C → C be a closed hemirelatively nonexpansive mapping such that F(T) ∩ EP(f)/=∅. Define
a sequence {xn} in C by the following:

x0 ∈ C, chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JTzn),

zn = J−1(βnJxn + (1 − βn)JTxn),

un ∈ C such that f(un, y) +
1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn = {z ∈ Cn−1 ∩Qn−1 : φ(z, un) ≤ φ(z, xn)},
C0 = {z ∈ C : φ(z, u0) ≤ φ(z, x0)},

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
Q0 = C,

xn+1 = ΠCn∩Qn(x0),

(3.1)

for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn}, {βn} are sequences in [0, 1] such
that lim infn→∞(1 − αn)βn(1 − βn) > 0 and {rn} ⊂ [a,∞) for some a > 0. Then, {xn} converges
strongly to ΠF(T)∩EP(f)x0, whereΠF(T)∩EP(f) is the generalized projection of E onto F(T) ∩ EP(f).

Proof. First, we can easily show that Cn and Qn are closed and convex for each n ≥ 0.
Next, we show that F(T) ∩ EP(f) ⊂ Cn for all n ≥ 0. Let u ∈ F(T) ∩ EP(f). Putting

un = Trnyn for all n ∈ N, from Lemma 2.8, we have Trn relatively nonexpansive. Since Trn are
relatively nonexpansive and T is hemirelatively nonexpansive, we have

φ(u, zn) = φ(u, J−1(βnJxn + (1 − βn)JTxn))

= ‖u‖2 − 2〈u, βnJxn + (1 − βn)JTxn〉 + ‖βnJxn + (1 − βn)JTxn‖2

≤ ‖u‖2 − 2βn〈u, Jxn〉 − 2(1 − βn)〈u, JTxn〉 + βn‖xn‖2 + (1 − βn)‖Txn‖2

= βnφ(u, xn) + (1 − βn)φ(u, Txn)

≤ φ(u, xn),

φ(u, un) = φ(u, Trnyn) ≤ φ(u, yn) ≤ αnφ(u, xn) + (1 − αn)φ(u, zn) ≤ φ(u, xn).

(3.2)
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Hence, we have

F(T) ∩ EP(f) ⊂ Cn ∀n ≥ 0. (3.3)

Next, we show that F(T) ∩ EP(f) ⊂ Qn for all n ≥ 0. We prove this by induction. For n = 0,
we have

F(T) ∩ EP(f) ⊂ Q0 = C. (3.4)

Suppose that F(T) ∩ EP(f) ⊂ Qn, by Lemma 2.2, we have

〈xn+1 − z, Jx0 − Jxn+1〉 ≥ 0 ∀z ∈ Cn ∩Qn. (3.5)

As F(T) ∩ EP(f) ⊂ Cn ∩ Qn, by the induction assumptions, the last inequality holds, in
particular, for all z ∈ F(T) ∩ EP(f). This, together with the definition of Qn+1, implies that
F(T) ∩ EP(f) ⊂ Qn+1. So, {xn} is well defined.

Since xn+1 = ΠCn∩Qnx0 and Cn ∩Qn ⊂ Cn−1 ∩Qn−1 for all n ≥ 1, we have

φ(xn, x0) ≤ φ(xn+1, x0) ∀n ≥ 0. (3.6)

Therefore, {φ(xn, x0)} is nondecreasing. In addition, from the definition ofQn and Lemma 2.2,
xn = ΠQnx0. Therefore, for each u ∈ F(T) ∩ EP(f), we have

φ(xn, x0) = φ
(
ΠQnx0, x0

) ≤ φ(u, x0) − φ(u, xn) ≤ φ(u, x0). (3.7)

Therefore, φ(xn, x0) and {xn} are bounded. This, together with (3.6), implies that the limit of
{φ(xn, x0)} exists. From Lemma 2.1, we have, for any positive integer m,

φ(xn+m, xn)=φ
(
xn+m,ΠQnx0

)≤φ(xn+m, x0)−φ
(
ΠQnx0, x0

)
=φ(xn+m, x0)−φ(xn, x0) ∀n ≥ 0.

(3.8)

Therefore,

lim
n→∞

φ(xn+m, xn) = 0. (3.9)

From (3.9), we can prove that {xn} is a Cauchy sequence. Therefore, there exists a point x̂ ∈ C
such that {xn} converges strongly to x̂.

Since xn+1 ∈ Cn, we have

φ(xn+1, un) ≤ φ(xn+1, xn). (3.10)

Therefore, we have

φ(xn+1, un) −→ 0. (3.11)
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From Lemma 2.3, we have

lim
n→∞

‖xn+1 − un‖ = lim
n→∞

‖xn+1 − xn‖ = 0. (3.12)

So, we have

lim
n→∞

‖xn − un‖ = 0. (3.13)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖Jxn − Jun‖ = 0. (3.14)

Let r = supn∈N{‖xn‖, ‖Txn‖}. Since E is a uniformly smooth Banach space, we know that E∗

is a uniformly convex Banach space. Therefore, from Lemma 2.4, there exists a continuous,
strictly increasing, and convex function g with g(0) = 0, such that

‖αx∗ + (1 − α)y∗‖2 ≤ α‖x∗‖2 + (1 − α)‖y∗‖2 − α(1 − α)g(‖x∗ − y∗‖) (3.15)

for x∗, y∗ ∈ Br , and α ∈ [0, 1]. So, we have that for u ∈ F(T) ∩ EP(f),

φ(u, zn) = φ(u, J−1(βnJxn + (1 − βn)JTxn))

= ‖u‖2 − 2〈u, βnJxn + (1 − βn)JTxn〉 + ‖βnJxn + (1 − βn)JTxn‖2

≤ φ(u, xn) − βn(1 − βn)g(‖Jxn − JTxn‖),
φ(u, un) ≤ αnφ(u, xn) + (1 − αn)φ(u, zn)

≤ φ(u, xn) − (1 − αn)βn(1 − βn)g(‖Jxn − JTxn‖).

(3.16)

Therefore, we have

(1 − αn)βn(1 − βn)g(‖Jxn − JTxn‖) ≤ φ(u, xn) − φ(u, un). (3.17)

Since

φ(u, xn) − φ(u, un)=‖xn‖2−‖un‖2−2〈u, Jxn − Jun〉≤‖xn−un‖(‖xn‖+‖un‖)+2‖u‖‖Jxn−Jun‖,
(3.18)

we have

lim
n→∞

φ(u, xn) − φ(u, un) = 0. (3.19)

From lim infn→∞(1 − αn)βn(1 − βn) > 0, we have

lim
n→∞

g(‖Jxn − JTxn‖) = 0. (3.20)
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Therefore, from the property of g, we have

lim
n→∞

‖Jxn − JTxn‖ = 0. (3.21)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn − Txn‖ = 0. (3.22)

Since T is a closed operator and xn → x̂, then x̂ is a fixed point of T .
On the other hand,

φ(un, yn) = φ(Trnyn, yn) ≤ φ(u, yn) − φ(u, Trnyn) ≤ φ(u, xn) − φ(u, Trnyn) = φ(u, xn) − φ(u, un).
(3.23)

So, we have from (3.19) that

lim
n→∞

φ(un, yn) = 0. (3.24)

From Lemma 2.3, we have that

lim
n→∞

‖un − yn‖ = 0. (3.25)

From xn → x̂ and ‖xn − un‖ → 0, we have yn → x̂.
From (3.25), we have

lim
n→∞

‖Jun − Jyn‖ = 0. (3.26)

From rn ≥ a, we have

lim
n→∞

‖Jun − Jyn‖
rn

= 0. (3.27)

By un = Trnyn, we have

f(un, y) +
1
rn
〈y − un, Jun − Jyn〉 ≥ 0 ∀y ∈ C. (3.28)

From (A2), we have that

1
rn
〈y − un, Jun − Jyn〉 ≥ −f(un, y) ≥ f(y, un) ∀y ∈ C. (3.29)
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From (3.27) and (A4), we have

f(y, x̂) ≤ 0 ∀y ∈ C. (3.30)

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)x̂. We have f(yt, x̂) ≤ 0. So, from (A1), we
have

0 = f(yt, yt) ≤ tf(yt, y) + (1 − t)f(yt, x̂) ≤ tf(yt, y). (3.31)

Dividing by t, we have

f(yt, y) ≥ 0 ∀y ∈ C. (3.32)

Letting t → 0, from (A3), we have

f(x̂, y) ≥ 0 ∀y ∈ C. (3.33)

Therefore, x̂ ∈ EP(f). Finally, we prove that x̂ = ΠF(T)∩EP(f)x0. From Lemma 2.1, we have

φ
(
x̂,ΠF(T)∩EP(f)x0

)
+ φ

(
ΠF(T)∩EP(f)x0, x0

) ≤ φ(x̂, x0). (3.34)

Since xn+1 = ΠCn∩Qnx0 and x̂ ∈ F(T) ∩ EP(f) ⊂ Cn ∩Qn, for all n ≥ 0, we get from Lemma 2.1
that

φ
(
ΠF(T)∩EP(f)x0, xn+1

)
+ φ(xn+1, x0) ≤ φ

(
ΠF(T)∩EP(f)x0, x0

)
. (3.35)

By the definition of φ(x, y), it follows that φ(x̂, x0) ≤ φ(ΠF(T)∩EP(f)x0, x0) and φ(x̂, x0) ≥
φ(ΠF(T)∩EP(f)x0, x0), whence φ(x̂, x0) = φ(ΠF(T)∩EP(f)x0, x0). Therefore, it follows from the
uniqueness of ΠF(T)∩EP(f)x0 that x̂ = ΠF(T)∩EP(f)x0. This completes the proof.

Corollary 3.2. Let E be a uniformly convex and uniformly smooth real Banach space, let C be a
nonempty closed convex subset of E, and let f be a bifunction from C × C to R satisfying (A1)–(A4).
Define a sequence {xn} in C by the following:

x0 ∈ C, chosen arbitrarily,

un ∈ C such that f(un, y) +
1
rn
〈y − un, Jun − Jxn〉 ≥ 0, ∀y ∈ C,

Cn = {z ∈ Cn−1 ∩Qn−1 : φ(z, un) ≤ φ(z, xn)},
C0 = {z ∈ C : φ(z, u0) ≤ φ(z, x0)},

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
Q0 = C,

xn+1 = ΠCn∩Qn(x0),

(3.36)



10 Fixed Point Theory and Applications

for every n ∈ N ∪ {0}, where J is the duality mapping on E and {rn} ⊂ [a,∞) for some a > 0. Then,
{xn} converges strongly toΠEP(f)x0.

Proof. Putting T = I in Theorem 3.1, we obtain Corollary 3.2.

Corollary 3.3. Let E be a uniformly convex and uniformly smooth real Banach space, let C be a
nonempty closed convex subset of E, and let T : C → C be a closed hemirelatively nonexpansive
mapping. Define a sequence {xn} in C by the following:

x0 ∈ C, chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JTzn),

zn = J−1(βnJxn + (1 − βn)JTxn),

un = ΠCyn,

Cn = {z ∈ Cn−1 ∩Qn−1 : Φ(z, un) ≤ φ(z, xn)},
C0 = {z ∈ C : φ(z, u0) ≤ φ(z, x0)},

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
Q0 = C,

xn+1 = ΠCn∩Qn(x0),

(3.37)

for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn}, {βn} are sequences in [0, 1] such
that lim infn→∞(1 − αn)βn(1 − βn) > 0. Then, {xn} converges strongly toΠF(T)x0.

Proof. Putting f(x, y) = 0 for all x, y ∈ C and rn = 1 for all n in Theorem 3.1, we obtain
Corollary 3.3.

Corollary 3.4. Let E be a uniformly convex and uniformly smooth real Banach space, let C be a
nonempty closed convex subset of E, let f be a bifunction from C × C to R satisfying (A1)–(A4), and
let T : C → C be a closed relatively nonexpansive mapping such that F(T) ∩ EP(f)/=∅. Define a
sequence {xn} in C by the following:

x0 ∈ C, chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JTzn),

zn = J−1(βnJxn + (1 − βn)JTxn),

un ∈ C such that f(un, y) +
1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn = {z ∈ Cn−1 ∩Qn−1 : φ(z, un) ≤ φ(z, xn)},
C0 = {z ∈ C : φ(z, u0) ≤ φ(z, x0)},

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
Q0 = C,

xn+1 = ΠCn∩Qn(x0),

(3.38)
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for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn}, {βn} are sequences in [0, 1] such
that lim infn→∞(1 − αn)βn(1 − βn) > 0 and {rn} ⊂ [a,∞) for some a > 0. Then, {xn} converges
strongly to ΠF(T)∩EP(f)x0.

Proof. Since every relatively nonexpansive mapping is a hemirelatively one, Corollary 3.4 is
implied by Theorem 3.1.

Remark 3.5 (see Rockafellar [12]). Let E be a reflexive, strictly convex, and smooth Banach
space and let A be a monotone operator from E to E∗. Then, A is maximal if and only if
R(J + rA) = E∗ for all r > 0.

Let E be a reflexive, strictly convex, and smooth Banach space and let A be a maximal
monotone operator from E to E∗. Using Remark 3.5 and strict convexity of E, we obtain that
for every r > 0 and x ∈ E, there exists a unique xr ∈ D(A) such that Jx ∈ Jxr + rAxr. If
Jrx = xr , then we can define a single-valued mapping Jr : E → D(A) by Jr = (J + rA)−1J ,
and such a Jr is called the resolvent of A. We know that A−10 = F(Jr) for all r > 0 and Jr
is relatively nonexpansive mapping (see [2] for more details). Using Theorem 3.1, we can
consider the problem of strong convergence concerning maximal monotone operators in a
Banach space.

Theorem 3.6. Let E be a uniformly convex and uniformly smooth real Banach space, let C be a
nonempty closed convex subset of E, let f be a bifunction from C × C to R satisfying (A1)–(A4), and
let Jr be a resolvent of A and a closed mapping such that A−10 ∩ EP(f)/=∅, where r > 0. Define a
sequence {xn} in C by the following:

x0 ∈ C, chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JJrxn),

zn = J−1(βnJxn + (1 − βn)JJrxn),

un ∈ C such that f(un, y) +
1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn = {z ∈ Cn−1 ∩Qn−1 : φ(z, un) ≤ φ(z, xn)},
C0 = {z ∈ C : φ(z, u0) ≤ φ(z, x0)},

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
Q0 = C,

xn+1 = ΠCn∩Qn(x0),

(3.39)

for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} is a sequences in [0, 1] such that
lim infn→∞(1 − αn)βn(1 − βn) > 0 and {rn} ⊂ [a,∞) for some a > 0, Then, {xn} converges strongly
to ΠA−10∩EP(f)x0.

Proof. Since Jr is a closed relatively nonexpansive mapping and A−10 = F(Jr), from
Corollary 3.4, we obtain Theorem 3.6.
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