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Department of Business, Faculty of Business, Babeş-Bolyai University Cluj-Napoca, Horea 7,
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1. Introduction

Let (X, d) be a metric space. We will use the following symbols (see also [1]):

P(X) = {Y ⊂ X | Y /=∅};
Pb(X) = {Y ∈ P(X) | Y is bounded};
Pcl(X) = {Y ∈ P(X) | Y is closed};
Pcp(X) = {Y ∈ P(X) | Y is compact}.

If T : X→P(X) is a multivalued operator, then for Y ∈ P(X), T(Y ) =
⋃

x∈YT(x) we
will denote the image of the set Y through T .

Throughout the paper FT := {x ∈ X | x ∈ T(x)} (resp., (SF)T := {x ∈ X | {x} = T(x)})
denotes the fixed point set (resp., the strict fixed point set) of the multivalued operator T .

We introduce the following generalized functionals.
The δ generalized functional

δd : P(X) × P(X) −→ R+ ∪ {+∞},

δd(A,B) = sup
{
d(a, b) | a ∈ A, b ∈ B

}
.

(1.1)
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The gap functional

Dd : P(X) × P(X) −→ R+ ∪ {+∞},
Dd(A,B) = inf

{
d(a, b) | a ∈ A, b ∈ B

}
.

(1.2)

The excess generalized functional

ρd : P(X) × P(X) −→ R+ ∪ {+∞},
ρd(A,B) = sup

{
Dd(a, B) | a ∈ A

}
.

(1.3)

The Pompeiu-Hausdorff generalized functional

Hd : P(X) × P(X) −→ R+ ∪ {+∞},
Hd(A,B) = max

{
ρd(A,B), ρd(B,A)

}
.

(1.4)

The first purpose of this paper is to present existence, uniqueness, and data
dependence results for the strict fixed point of a multivalued operator of Reich type. Since, in
our approach, the strict fixed point is constructed by iterations, this generates the possibility
to give some sufficient conditions for the well-posedness of a fixed point problem for the
multivalued operator mentioned below.

Definition 1.1. Let (X, d) be a metric space and T : X→Pcl(X). Then T is called a multivalued
δ-contraction of Reich type, if there exist a, b, c ∈ R+ with a + b + c < 1 such that

δ
(
T(x), T(y)

) ≤ ad(x, y) + bδ
(
x, T(x)

)
+ cδ

(
y, T(y)

)
, (1.5)

for all x, y ∈ X.
The notion of well-posed fixed point problem for single valued and multivalued

operator was defined and studied by F.S. De Blasi and J. Myjak, S. Reich and A.J. Zaslavski,
Rus and Petruşel [2], Petruşel et al. [3].

Definition 1.2 (see Petruşel and Rus [2] and [3]). (A) Let (X, d) be a metric space, Y ∈ P(X)
and T : Y →Pcl(X) be a multivalued operator.

Then the fixed point problem is well posed for T with respect to Dd if

(a1) FT = {x∗} (i.e., x∗ ∈ T(x∗));

(b1) If xn ∈ Y , n ∈ N and Dd(xn, T(xn))→ 0 as n→∞ then xn →x∗ as n→∞.

(B) Let (X, d) be a metric space, Y ∈ P(X) and T : Y →Pcl(X) be a multivalued
operator.

Then the fixed problem is well posed for T with respect toHd if

(a2) (SF)T = {x∗} (i.e., {x∗} = T(x∗));

(b2) If xn ∈ Y , n ∈ N and Hd(T(xn))→ 0 as n→∞ then xn →x∗ as n→∞.
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The second aim is to study the existence of an attractor (i.e., the fixed point of the
multifractal operator, see [4–7]) for an iterated multifunction system consisting of nonself
multivalued operators.

2. Main results

We will give first another proof (a constructive one) of a result given by Reich [8] in 1972.
For some similar results, see [9, 10]. In our proof, the strict fixed point will be obtained by
iterations.

Theorem 2.1 (Reich’s theorem). Let (X, d) be a complete metric space and let T : X→Pb(X) be a
multivalued operator, for which there exist a, b, c ∈ R+ with a + b + c < 1 such that

δ
(
T(x), T(y)

) ≤ ad(x, y) + bδ
(
x, T(x)

)
+ cδ

(
y, T(y)

)
, ∀x, y ∈ X. (2.1)

Then T has a unique strict fixed point in X, that is, (SF)T = {x∗}.

Proof. Let q > 1 and x0 ∈ X be arbitrarily chosen. Then there exists x1 ∈ T(x0) such that

δ
(
x0, T

(
x0
)) ≤ qd

(
x0, x1

)
. (2.2)

We have

δ
(
x1, T

(
x1
)) ≤ δ

(
T
(
x0
)
, T

(
x1
))

≤ ad
(
x0, x1

)
+ bδ

(
x0, T

(
x0
))

+ cδ
(
x1, T

(
x1
))

≤ (a + bq)d
(
x0, x1

)
+ cδ

(
x1, T

(
x1
))
.

(2.3)

It follows that

δ
(
x1, T

(
x1
)) ≤ a + bq

1 − c
d
(
x0, x1

)
. (2.4)

For x1 ∈ T(x0), there exists x2 ∈ T(x1) such that

δ
(
x1, T

(
x1
)) ≤ qd

(
x1, x2

)
. (2.5)

Then

δ
(
x2, T

(
x2)) ≤ δ

(
T
(
x1
)
, T

(
x2
))

≤ ad
(
x1, x2

)
+ bδ

(
x1, T

(
x1
))

+ cδ
(
x2, T

(
x2
))

≤ (a + bq)d
(
x1, x2

)
+ cδ

(
x2, T

(
x2
))
.

(2.6)



4 Fixed Point Theory and Applications

It follows that

δ
(
x2, T

(
x2
)) ≤ a + bq

1 − c
d
(
x1, x2

)

≤ a + bq

1 − c
δ
(
x1, T

(
x1
))

≤
(
a + bq

1 − c

)2

d
(
x0, x1

)
.

(2.7)

Inductively, we can construct a sequence (xn)n∈N having the properties

(1) (α)xn ∈ T(xn−1), n ∈ N
∗;

(2) (β)d(xn, xn+1) ≤ δ(xn, T(xn)) ≤ ((a + bq)/(1 − c))nd(x0, x1).

We will prove now that the sequence (xn)n∈N is Cauchy.
We successively have

d
(
xn, xn+p

) ≤ d
(
xn, xn+1

)
+ d

(
xn+1, xn+2

)
+ · · · + d

(
xn+p−1, xn+p

)

≤
[(

a + bq

1 − c

)n

+
(
a + bq

1 − c

)n+1

+ · · · +
(
a + bq

1 − c

)n+p−1]
d
(
x0, x1

)
.

(2.8)

Let us denote α := (a + bq)/(1 − c). Then

d
(
xn, xn+p

) ≤ αn(1 + α + · · · + αp−1)d
(
x0, x1

)
= αn α

p − 1
α − 1

d
(
x0, x1

)
. (2.9)

If we chose q < (1 − a − c)/b, then α < 1.
Letting n→∞, since αn → 0, it follows that

d
(
xn, xn+p

) −→ 0 as n −→ ∞. (2.10)

Hence (xn)n∈N is Cauchy.
By the completeness of the space (X, d), we get that there exists x∗ ∈ X such that

xn →x∗ as n→∞.
Next, we will prove that x∗ ∈ (SF)T .
We have

δ
(
x∗, T

(
x∗)) ≤ d

(
x∗, xn

)
+ δ

(
xn, T

(
xn

))
+ δ

(
T
(
xn

)
, T

(
x∗))

≤ d
(
x∗, xn

)
+ δ

(
xn, T

(
xn

))
+ ad

(
xn, x

∗) + bδ
(
xn, T

(
xn

))
+ cδ

(
x∗, T

(
x∗)).

(2.11)
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Then

δ
(
x∗, T

(
x∗)) ≤ 1 + a

1 − c
d
(
x∗, xn

)
+
1 + b

1 − c
δ
(
xn, T

(
xn

))
(2.12)

because δ(xn, T(xn)) ≤ αnd(x0, x1) ⇒ δ(x∗, T(x∗)) = 0 ⇒ T(x∗) = {x∗} (i.e., x∗ ∈ (SF)T ).
For the last part of our proof, we will show the uniqueness of the strict fixed point.
Suppose that there exist x∗, y∗ ∈ (SF)T . Then

d
(
x∗, y∗) = δ

(
T
(
x∗), T

(
y∗)) ≤ ad

(
x∗, y∗) + bδ

(
x∗, T

(
x∗)) + cδ

(
y∗, T

(
y∗)). (2.13)

If x∗ and y∗ are distinct points, then we get that a ≥ 1, which contradicts our
hypothesis. Thus x∗ = y∗. The proof is complete.

Regarding the well-posedness of a fixed point problem, we have the following result.

Theorem 2.2. Let (X, d) be a complete metric space and let T : X→Pb(X) be a multivalued operator.
Suppose there exist a, b, c ∈ R+ with a + b + c < 1 such that

δ
(
T(x), T(y)

) ≤ ad(x, y) + bδ
(
x, T(x)

)
+ cδ

(
y, T(y)

)
, ∀x, y ∈ X. (2.14)

Then the fixed point problem is well posed for T with respect toHd.

Proof. By Reich’s theorem, we get that (SF)T = {x∗}.
Let xn ∈ X, n ∈ N such that Hd(xn, T(xn))→ 0 as n→∞. Then

Hd

(
xn, T

(
xn

))
= δd

(
xn, T

(
xn

))
. (2.15)

We have to show that xn →x∗ as n→∞. We successively have

d
(
xn, x

∗) ≤ δd
(
xn, T

(
xn

))
+ δd

(
T
(
xn

)
, T

(
x∗))

≤ δd
(
xn, T

(
xn

))
+ ad

(
xn, x

∗) + bδd
(
xn, T

(
xn

))
+ cδd

(
x∗, T

(
x∗))

= (1 + b)δd
(
xn, T

(
xn

))
+ ad

(
xn, x

∗).

(2.16)

It follows that

d
(
xn, x

∗) ≤ 1 + b

1 − a
δd

(
xn, T

(
xn

))
=

1 + b

1 − a
Hd

(
xn, T

(
xn

)) −→ 0, n −→ ∞. (2.17)

Hence

xn −→ x∗, n −→ ∞. (2.18)

With respect to the same multivalued operators, a data dependence result can also be
established as follows.
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Theorem 2.3. Let (X, d) be a complete metric space and let T1, T2 : X→Pb(X) be two multivalued
operators. Suppose that

(i) there exist a, b, c ∈ R+ with a + b + c < 1 such that

δ(T1(x), T1(y)) ≤ ad(x, y) + bδ(x, T1(x)) + cδ(y, T1(y)), ∀x, y ∈ X (2.19)

(denote the unique strict fixed point of T1 by x∗
1);

(ii) (SF)T2 /=∅;

(iii) there exists η > 0 such that δ(T1(x), T2(x)) ≤ η, for all x ∈ X.

Then

δ
(
x∗
1, (SF)T2

) ≤ (1 + c)η
1 − a

. (2.20)

Proof. Let x∗
2 ∈ (SF)T2 . Then δ(x∗

2, T2(x
∗
2)) = 0.

We have

d
(
x∗
1, x

∗
2
)
= δ

(
T1
(
x∗
1

)
, T2

(
x∗
2
))

≤ δ
(
T1
(
x∗
1

)
, T1

(
x∗
2
))

+ δ
(
T1
(
x∗
2
)
, T2

(
x∗
2
))

≤ ad
(
x∗
1, x

∗
2
)
+ bδ

(
x∗
1, T1

(
x∗
1

))
+ cδ

(
x∗
2, T1

(
x∗
2
))

+ η

= ad
(
x∗
1, x

∗
2
)
+ cδ

(
T2
(
x∗
2
)
, T1

(
x∗
2
)
+ η ≤ ad

(
x∗
1, x

∗
2
)
+ (1 + c)η.

(2.21)

It follows that

d
(
x∗
1, x

∗
2
) ≤ 1 + c

1 − a
η. (2.22)

By taking supx∗
2∈(SF)T2

, it follows that

δ
(
x∗
1, (SF)T2

) ≤ 1 + c

1 − a
η. (2.23)

Let (X, d) be a complete metric space and let F1, . . . , Fm : X→P(X) be a finite family
of multivalued operators.

The system F = (F1, . . . , Fm) is said to be an iterated multifunction system.
The operator

T̃F : P(X) −→ P(X), T̃F(Y ) =
m⋃

i=1

Fi(Y ), Y ∈ P(X) (2.24)

is called the multifractal operator generated by the iterated multifunction system F = (F1, . . . ,
Fm).
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Remark 2.4. (i) If Fi : X→Pcp(X) are multivalued αi-contractions for each i ∈ {1, 2, . . . , m},
then the multifractal operator T̃F is an α-contraction too, where α := max{αi | i ∈ {1, . . . , m}}
(Nadler Jr. [7]).

(ii) If Fi : X→Pcp(X) are multivalued ϕi-contractions (see [4]) for each i ∈ {1, 2, . . . ,
m}, then the multifractal operator T̃F is an ϕ-contraction too, see Andres and Fišer [4] for the
definitions and the result.

(iii) If F = (F1, . . . , Fm) is an iterated multifunction system, such that Fi : X→Pcp(X) is
upper semicontinuous for each i ∈ {1, . . . , m}, then the multifractal operator

T̃F : Pcp(X) −→ Pcp(X), T̃F(Y ) =
m⋃

i=1

Fi(Y ) (2.25)

is well defined. A fixed point Y ∗ ∈ Pcp(X) of T̃F is called an attractor of the iterated multi-
function system F.

The following result is well known, see, for example, Granas and Dugundji [11].

Lemma 2.5. Let (X, d) be a complete metric space, x0 ∈ X, r > 0 and

B := B̃
(
x0, r

)
=
{
x ∈ X | d(x, x0

) ≤ r
}
. (2.26)

Let f : B→X be an α-contraction.
If d(x0, f(x0)) ≤ (1 − α)r, then f has a unique fixed point in B.

Our next result concerns with the existence of an attractor for an iteratedmultifunction
system.

Theorem 2.6. Let (X, d) be a complete metric space, x0 ∈ X and r > 0. Let Fi : B̃(x0, r)→Pcp(X),
i ∈ {1, . . . , m} a finite family of multivalued operators.

Suppose that

(i) Fi is an αi-contraction, for each i ∈ {1, . . . , m};

(ii) δ(x0, Fi(x0)) ≤ (1 −max{αi | i ∈ {1, . . . , m}})r, for all i ∈ {1, . . . , m}.

Then there exists Y ∗ ∈ B̃({x0}, r) ⊂ Pcp(X) a unique attractor of the iterated multifunction
system F = (F1, . . . , Fm).

Proof. Since Fi : B̃(x0, r)→Pcp(X) is an αi-contraction, for each i ∈ {1, . . . , m} it follows that Fi

is upper semicontinuous, for each i ∈ {1, . . . , m}. By Remark 2.4(iii), we get that the operator
T̃F : B̃({x0}, r) ⊂ Pcp(X)→Pcp(X), T̃F(Y ) =

⋃m
i=1Fi(Y ), Y ∈ B̃({x0}, r) is well defined.

Any fixed point Y ∗ ∈ B̃({x0}, r) ⊂ Pcp(X) of T̃F is an attractor of the iterated
multifunction system F = (F1, . . . , Fm).

Notice first that, if Y ∈ B̃({x0}, r) ⊂ (Pcp(X),H), then H({x0}, Y ) ≤ r, which implies
that d(x0, y) ≤ r, for all y ∈ Y . Thus y ∈ B̃(x0, r), for all y ∈ Y .
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We will show that T̃F satisfies the following two conditions:

(i) T̃F is an α-contraction, with α := max{αi | i ∈ {1, . . . , m}}, that is,

H
(
T̃F

(
Y1

)
, T̃F

(
Y2

)) ≤ αH
(
Y1, Y2

)
, ∀Y1, Y2 ∈ B̃

({
x0
}
, r
) ⊂ Pcp(X); (2.27)

(ii) H({x0}, T̃F({x0})) ≤ (1 − α)r.

Indeed, we have

(i) Let Y1, Y2 ∈ B̃({x0}, r) ⊂ Pcp(X) şi u ∈ T̃F(Y1). By the definition of T̃F , it follows
that there exists j ∈ {1, . . . , m} and there exists y1 ∈ Y1 such that u ∈ Fj(y1). Since
Y1, Y2 ∈ Pcp(X), there exists y2 ∈ Y2 such that d(y1, y2) ≤ H(Y1, Y2).

Since, for arbitrary ε > 0 and eachA,B ∈ Pcp(X)withH(A,B) ≤ ε,we have that for all
a ∈ A there exists b ∈ B such that d(a, b) ≤ ε, by the following relations

H
(
Fj

(
y1
)
, Fj

(
y2
)) ≤ αjd

(
y1, y2

) ≤ αjH
(
Y1, Y2

)
, (2.28)

we obtain that for u ∈ Fj(y1) ⊂ T̃F(Y1), there exists v ∈ Fj(y2) ⊂ T̃F(Y2) such that d(u, v) ≤
αjH(Y1, Y2) ≤ αH(Y1, Y2).

By the above relation and by the similar one (where the roles of T̃F(Y1) and T̃F(Y2) are
reversed), the first conclusion follows.

(ii) We have to show that

δ
({

x0
}
, T̃F

({
x0
})) ≤ (1 − α)r (2.29)

or equivalently for all u ∈ T̃F({x0}), we have d(x0, u) ≤ (1 − α)r. Since u ∈ T̃F({x0})
it follows that there exists j ∈ {1, . . . , m} such that u ∈ Fj(x0). Then

d
(
x0, u

) ≤ δ
(
x0, Fj

(
x0
)) ≤ (1 − α)r. (2.30)

By Lemma 2.5, applied to T̃F , we get that there exists Y ∗ ∈ B̃({x0}, r) ⊂ Pcp(X) a
unique fixed point for T̃F , that is, a unique attractor of the iterated multifunction system
F = (F1, . . . , Fm). The proof is complete.

Remark 2.7. An interesting extension of the above results could be the case of a set endowed
with two metrics, see [12] for other details.
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[4] J. Andres and J. Fišer, “Metric and topological multivalued fractals,” International Journal of Bifurcation
and Chaos, vol. 14, no. 4, pp. 1277–1289, 2004.

[5] M. F. Barnsley, “Lecture notes on iterated function systems,” in Chaos and Fractals (Providence, RI,
1988), vol. 39 of Proceedings of Symposia in Applied Mathematics, pp. 127–144, American Mathematical
Society, Providence, RI, USA, 1989.

[6] J. E. Hutchinson, “Fractals and self-similarity,” Indiana University Mathematics Journal, vol. 30, no. 5,
pp. 713–747, 1981.

[7] S. B. Nadler Jr., “Multi-valued contraction mappings,” Pacific Journal of Mathematics, vol. 30, no. 2, pp.
475–488, 1969.

[8] S. Reich, “Fixed points of contractive functions,” Bollettino dell’Unione Matematica Italiana, vol. 5, pp.
26–42, 1972.
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