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1. Introduction

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖. Let {T(t) : t ≥ 0}
be a family of mappings from a subset C of H into itself. We call it a nonexpansive semigroup
on C if the following conditions are satisfied:

(1) T(0)x = x for all x ∈ C;

(2) T(s + t) = T(s)T(t) for all s, t ≥ 0;

(3) for each x ∈ C the mapping t �→ T(t)x is continuous;

(4) ‖T(t)x − T(t)y‖ ≤ ‖x − y‖ for all x, y ∈ C and t ≥ 0.

Motivated by Suzuki’s result [1] and Nakajo-Takahashi’s results [2], He and Chen [3] recently
proved a strong convergence theorem for nonexpansive semigroups in Hilbert spaces by hy-
brid method in the mathematical programming. However, their proof of the main result ([3,
Theorem 2.3]) is very questionable. Indeed, the existence of the subsequence {sj} such that
(2.16) of [3] are satisfied, that is,

sj −→ 0,

∥
∥xj − T

(

sj
)

xj

∥
∥

sj
−→ 0, (1.1)

needs to be proved precisely. So, the aim of this short paper is to correct He-Chen’s result and
also to give a new result by using the method recently introduced by Takahashi et al.
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We need the following lemma proved by Suzuki [4, Lemma 1].

Lemma 1.1. Let {tn} be a real sequence and let τ be a real number such that lim infn tn ≤ τ ≤
lim supn tn. Suppose that either of the following holds:

(i) lim supn(tn+1 − tn) ≤ 0, or

(ii) lim infn(tn+1 − tn) ≥ 0.

Then τ is a cluster point of {tn}. Moreover, for ε > 0, k,m ∈ N, there existsm0 ≥ m such that |tj−τ | < ε
for every integer j withm0 ≤ j ≤ m0 + k.

2. Results

2.1. The shrinking projection method

The following method is introduced by Takahashi et al. in [5]. We use this method to approx-
imate a common fixed point of a nonexpansive semigroup without Bochner integrals as was
the case in [5, Theorem 4.4].

Theorem 2.1. Let C be a closed convex subset of a real Hilbert space H. Let {T(t) : t ≥ 0} be a
nonexpansive semigroup on C with a nonempty common fixed point F, that is, F = ∩t≥0 F(T(t))/=∅.
Suppose that {xn} is a sequence iteratively generated by the following scheme:

x0 ∈ H taken arbitrary,

C1 = C,

x1 = PC1

(

x0
)

,

yn = αnxn +
(

1 − αn)T
(

tn
)

xn,

Cn+1 =
{

z ∈ Cn :
∥
∥yn − z

∥
∥ ≤ ∥

∥xn − z
∥
∥
}

,

xn+1 = PCn+1

(

x0
)

.

(2.1)

where {αn} ⊂ [0, a] ⊂ [0, 1), lim infn tn = 0, lim supn tn > 0, and limn (tn+1 − tn) = 0. Then xn →
PF(x0).

Proof. It is well known that F is closed and convex. We first show that the iterative scheme is
well defined. To see that each Cn is nonempty, it suffices to show that F ⊂ Cn. The proof is by
induction. Clearly, F ⊂ C1. Suppose that F ⊂ Ck. Then, for z ∈ F ⊂ Ck,

∥
∥yk − z

∥
∥ ≤ αk

∥
∥xk − z

∥
∥ +

(

1 − αk

)∥
∥T

(

tk
)

xk − z
∥
∥

≤ αk

∥
∥xk − z

∥
∥ +

(

1 − αk

)∥
∥xk − z

∥
∥

= ‖xk − z‖.
(2.2)

That is, z ∈ Ck+1 as required.
Notice that

Ĉn :=
{

z ∈ H :
∥
∥yn − z

∥
∥ ≤ ∥

∥xn − z
∥
∥
}

(2.3)
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is convex since

∥
∥yn − z

∥
∥ ≤ ∥

∥xn − z
∥
∥ ⇐⇒ 2

〈

xn − yn, z
〉 ≤ ∥

∥xn

∥
∥
2 − ∥

∥yn

∥
∥
2
. (2.4)

This implies that each subset Cn = C ∩ Ĉ1 ∩ · · · ∩ Ĉn−1 is convex. It is also clear that Cn is closed.
Hence the first claim is proved.

Next, we prove that {xn} is bounded. As xn = PCn
(x0),

∥
∥xn − x0

∥
∥ ≤ ∥

∥z − x0
∥
∥ ∀z ∈ Cn. (2.5)

In particular, for z ∈ F ⊂ Cn for all n ∈ N, the sequence {xn − x0} is bounded and hence so is
{xn}.

Next, we show that {xn} is a Cauchy sequence. As xn+1 ∈ Cn+1 ⊂ Cn and xn = PCn
(x0),

∥
∥xn − x0

∥
∥ ≤ ∥

∥xn+1 − x0
∥
∥ ∀n. (2.6)

Moreover, since the sequence {xn} is bounded,

lim
n→∞

∥
∥xn − x0

∥
∥ exists. (2.7)

Note that

〈

x0 − xn, xn − v
〉 ≥ 0 ∀v ∈ Cn. (2.8)

In particular, since xn+k ∈ Cn+k ⊂ Cn for all k ∈ N,

∥
∥xn+k − xn

∥
∥
2 =

∥
∥xn+k − x0

∥
∥
2 − ∥

∥xn − x0
∥
∥
2 − 2

〈

xn+k − xn, xn − x0
〉

≤ ∥
∥xn+k − x0

∥
∥
2 − ∥

∥xn − x0
∥
∥
2
.

(2.9)

It then follows from the existence of limn‖xn − x0‖2 that {xn} is a Cauchy sequence. In fact, for
ε > 0, there exists a natural number N such that, for all n ≥ N,

∣
∣
∥
∥xn − x0

∥
∥
2 − a

∣
∣ <

ε

2
, (2.10)

where a = limn‖xn − x0‖2. In particular, if n ≥ N and k ∈ N, then

∥
∥xn+k − xn

∥
∥
2 ≤ ∥

∥xn+k − x0
∥
∥
2 − ∥

∥xn − x0
∥
∥
2

≤ a +
ε

2
−
(

a − ε

2

)

= ε.
(2.11)

Moreover,

∥
∥xn+1 − xn

∥
∥ −→ 0. (2.12)
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We now assume that xn → p for some p ∈ C. Now since αn ≤ a < 1 for all n ∈ N and
xn+1 ∈ Cn,

∥
∥xn − T

(

tn
)

xn

∥
∥ =

1
1 − αn

∥
∥yn − xn

∥
∥

≤ 1
1 − a

(∥
∥yn − xn+1

∥
∥ +

∥
∥xn+1 − xn

∥
∥
)

≤ 2
1 − a

∥
∥xn+1 − xn

∥
∥ −→ 0.

(2.13)

The last convergence follows from (2.12). We choose a sequence {tnk
} of positive real number

such that

tnk
−→ 0,

1
tnk

∥
∥xnk

− T
(

tnk

)

xnk

∥
∥ −→ 0. (2.14)

We now show that how such a special subsequence can be constructed. First we fix δ > 0 such
that

lim inf
n

tn = 0 < δ < lim sup
n

tn. (2.15)

From (2.13), there exists m1 ∈ N such that ‖T(tn)xn − xn‖< 1/32 for all n ≥ m1. By Lemma 1.1,
δ/2 is a cluster point of {tn}. In particular, there exists n1 > m1 such that δ/3 < tn1 < δ. Next,
we choose m2 > n1 such that ‖T(tn)xn − xn‖< 1/42 for all n ≥ m2. Again, by Lemma 1.1, δ/3
is a cluster point of {tn} and this implies that there exists n2 > m2 such that δ/4 < tn2 < δ/2.
Continuing in this way, we obtain a subsequence {nk} of {n} satisfying

∥
∥T

(

tnk

)

xnk
− xnk

∥
∥ <

1

(k + 2)2
,

δ

k + 2
< tnk

<
δ

k
∀k ∈ N. (2.16)

Consequently, (2.14) is satisfied.
We next show that p ∈ F. To see this, we fix t > 0,

∥
∥xnk

− T(t)p
∥
∥

≤
[t/tnk ]−1∑

j=0

∥
∥T

(

jtnk

)

xnk
− T

(

(j + 1)tnk

)

xnk

∥
∥

+
∥
∥
∥
∥
T

([
t

tnk

]

tnk

)

xnk
− T

([
t

tnk

]

tnk

)

p

∥
∥
∥
∥
+
∥
∥
∥
∥
T

([
t

tnk

]

tnk

)

p − T(t)p
∥
∥
∥
∥

≤
[

t

tnk

]

‖xnk
− T(tnk

)xnk
‖ + ‖xnk

− p‖ +
∥
∥
∥
∥
T

(

t −
[

t

tnk

]

tnk

)

p − p

∥
∥
∥
∥

≤ t

tnk

∥
∥xnk

− T
(

tnk

)

xnk

∥
∥ +

∥
∥xnk

− p
∥
∥ + sup

{∥
∥T(s)p − p‖ : 0 ≤ s ≤ tnk

}

.

(2.17)

As xnk
→ p and (2.14), we have xnk

→ T(t)p and so T(t)p = p.
Finally, we show that p = PF(x0). Since F ⊂ Cn+1 and xn+1 = PCn+1(x0),

∥
∥xn+1 − x0

∥
∥ ≤ ∥

∥q − x0
∥
∥ ∀n ∈ N, q ∈ F. (2.18)
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But xn → p; we have

∥
∥p − x0

∥
∥ ≤ ∥

∥q − x0
∥
∥ ∀q ∈ F. (2.19)

Hence p = PF(x0) as required. This completes the proof.

2.2. The hybrid method

We consider the iterative scheme computing by the hybrid method (some authors call the CQ-
method). The following result is proved by He and Chen [3]. However, the important part
of the proof seems to be overlooked. Here we present the correction under some additional
restriction on the parameter {tn}.

Theorem 2.2. Let C be a closed convex subset of a real Hilbert space H. Let {T(t) : t ≥ 0} be a
nonexpansive semigroup on C with a nonempty common fixed point F, that is, F = ∩t≥0 F(T(t))/=∅.
Suppose that {xn} is a sequence iteratively generated by the following scheme:

x0 ∈ C taken arbitrary,

yn = αnxn +
(

1 − αn

)

T
(

tn
)

xn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥ ≤ ∥

∥xn − z
∥
∥
}

,

Qn =
{

z ∈ C :
〈

xn − x0, z − xn

〉 ≥ 0
}

,

xn+1 = PCn∩Qn

(

x0
)

,

(2.20)

where {αn} ⊂ [0, a] ⊂ [0, 1), lim infn tn = 0, lim supn tn > 0, and limn (tn+1 − tn) = 0. Then xn →
PF(x0).

Proof. For the sake of clarity, we give the whole sketch proof even though some parts of the
proof are the same as [3]. To see that the scheme is well defined, it suffices to show that both
Cn and Qn are closed and convex, and Cn ∩ Qn /=∅ for all n ∈ N. It follows easily from the
definition that Cn and Qn are just the intersection of C and the half-spaces, respectively,

Ĉn :=
{

z ∈ H : 2
〈

xn − yn, z
〉 ≤ ∥

∥xn

∥
∥
2 − ∥

∥yn

∥
∥
2
}

,

Q̂n :=
{

z ∈ H :
〈

xn − x0, z − xn

〉 ≥ 0
}

.

(2.21)

As in the proof of the preceding theorem, we have F ⊂ Cn for all n ∈ N. Clearly, F ⊂ C = Q1.
Suppose that F ⊂ Qk for some k ∈ N, we have p ∈ Ck∩Qk. In particular, 〈xk+1−x0, p−xk+1〉 ≥ 0,
that is, p ∈ Qk+1. It follows from the induction that F ⊂ Qn for all n ∈ N. This proves the claim.

We next show that xn − T(tn)xn → 0. To see this, we first prove that

xn+1 − xn −→ 0. (2.22)

As xn+1 ∈ Qn and xn = PQn
(x0),

∥
∥xn − x0

∥
∥ ≤ ∥

∥xn+1 − x0
∥
∥ ∀n ∈ N. (2.23)
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For fixed z ∈ F. It follows from F ⊂ Qn for all n ∈ N that

‖xn − x0‖ ≤ ‖z − x0‖ ∀n ∈ N. (2.24)

This implies that sequence {xn} is bounded and

lim
n→∞

∥
∥xn − x0

∥
∥ exists. (2.25)

Notice that
〈

xn+1 − xn, xn − x0
〉 ≥ 0. (2.26)

This implies that
∥
∥xn+1 − xn

∥
∥
2 =

∥
∥xn+1 − x0

∥
∥
2 − ∥

∥xn − x0
∥
∥
2 − 2

〈

xn+1 − xn, xn − x0
〉

≤ ∥
∥xn+1 − x0

∥
∥
2 − ∥

∥xn − x0
∥
∥
2 −→ 0.

(2.27)

It then follows from xn+1 ∈ Cn that ‖yn − xn+1‖ ≤ ‖xn − xn+1‖ and hence

∥
∥T

(

tn
)

xn − xn

∥
∥ =

1
αn

∥
∥yn − xn

∥
∥

≤ 1
αn

(∥
∥yn − xn+1

∥
∥ +

∥
∥xn+1 − xn

∥
∥
) −→ 0.

(2.28)

As in Theorem 2.1, we can choose a subsequence {nk} of {n} such that

xnk

w−−−→ p ∈ C, tnk
−→ 0,

1
tnk

∥
∥xnk

− T
(

tnk

)

xnk

∥
∥ −→ 0. (2.29)

Consequently, for any t > 0,

∥
∥xnk

− T(t)p
∥
∥ ≤ t

tnk

∥
∥xnk

− T
(

tnk

)

xnk

∥
∥ +

∥
∥xnk

− p
∥
∥ + sup

{∥
∥T(s)p − p

∥
∥ : 0 ≤ s ≤ tnk

}

.

(2.30)

This implies that

lim sup
k→∞

∥
∥xnk

− T(t)p
∥
∥ ≤ lim sup

k→∞

∥
∥xnk

− p
∥
∥. (2.31)

In virtue of Opial’s condition of H, we have p = T(t)p for all t > 0, that is, p ∈ F. Next, we
observe that

∥
∥x0 − PF

(

x0
)∥
∥ ≤ ∥

∥x0 − p
∥
∥ ≤ lim inf

k→∞

∥
∥x0 − xnk

∥
∥ ≤ lim sup

k→∞

∥
∥x0 − xnk

∥
∥ ≤ ∥

∥x0 − PF

(

x0
)∥
∥.

(2.32)

This implies that

lim
k→∞

∥
∥x0 − xnk

∥
∥ =

∥
∥x0 − PF

(

x0
)∥
∥ =

∥
∥x0 − p

∥
∥. (2.33)

Consequently,

xnk
−→ PF

(

x0
)

= p. (2.34)

Hence the whole sequence must converge to PF(x0) = p, as required.
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