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1. Introduction and preliminaries

Throughout this paper, we assume that E is a real Banach space with the normalized duality
mapping J from E into 2E

∗
give by

J(x) =
{
f∗ ∈ E∗ :

〈
x, f∗〉 = ‖x‖2, ‖f‖ = ‖x‖

}
, ∀x ∈ E, (1.1)

where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized duality pairing. We
assume that C is a nonempty closed convex subset of E and T : C → C a mapping. A point
x ∈ C is a fixed point of T provided Tx = x. Denote by F(T) the set of fixed points of T , that is,
F(T) = {x ∈ C : Tx = x}. Recall that T is nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ C.

One classical way to study nonexpansivemappings is to use contractions to approximate
a nonexpansive mapping (see [1, 2]). More precisely, take t ∈ (0, 1) and define a contraction
Tt : C → C by

Ttx = tu + (1 − t)Tx, ∀x ∈ C, (1.2)
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where u ∈ C is a fixed point. Banach’s contraction mapping principle guarantees that Tt has a
unique fixed point xt in C. It is unclear, in general, what is the behavior of xt as t → 0, even if T
has a fixed point. However, in the case of T having a fixed point, Browder [1] proved that if E
is a Hilbert space, then xt converges strongly to a fixed point of T that is nearest to u. Reich [2]
extended Broweder’s result to the setting of Banach spaces and proved that if X is a uniformly
smooth Banach space, then xt converges strongly to a fixed point of T and the limit defines the
(unique) sunny nonexpansive retraction from C onto F(T).

Recall that the normal Mann iterative process was introduced by Mann [3] in 1953. The
normal Mann iterative process generates a sequence {xn} in the following manner:

x1 ∈ C,

xn+1 =
(
1 − αn

)
xn + αnTxn, ∀n ≥ 1,

(1.3)

where the sequence {αn}∞n=0 is in the interval (0,1). If T is a nonexpansive mapping with a fixed
point and the control sequence {αn} is chosen so that

∑∞
n=0αn(1 − αn) = ∞, then the sequence

{xn} generated by normal Mann’s iterative process (1.3) converges weakly to a fixed point
of T (this is also valid in a uniformly convex Banach space with the Fréchet differentiable
norm [4]). In an infinite-dimensional Hilbert space, the normal Mann iteration algorithm has
only weak convergence, in general, even for nonexpansive mappings. Therefore, many authors
try to modify normal Mann’s iteration process to have strong convergence for nonexpansive
mappings (see, e.g., [5–8] and the references therein).

Recently, Kim and Xu [5] introduced the following iteration process:

x0 = x ∈ C,

yn = βnxn +
(
1 − βn

)
Txn,

xn+1 = αnu +
(
1 − αn

)
yn, ∀n ≥ 0,

(1.4)

where T is a nonexpansive mapping of C into itself and u ∈ C is a given point. They proved
that the sequence {xn} defined by (1.4) converges strongly to a fixed point of T provided the
control sequences {αn} and {βn} satisfy appropriate conditions.

Concerning a family of nonexpansivemappings it has been considered bymany authors.
The well-known convex feasibility problem reduces to finding a point in the intersection of the
fixed point sets of a family of nonexpansive mappings; see, for example, [9]. The problem
of finding an optimal point that minimizes a given cost function over common set of fixed
points of a family of nonexpansive mappings is of wide interdisciplinary interest and practical
importance (see, e.g., [10]).

In this paper, we consider the mapping Wn defined by

Un0 = I,

Un1 = γn1T1Un0 +
(
1 − γn1

)
I,

Un2 = γn2T2Un1 +
(
1 − γn2

)
I,

· · ·
Un,N−1 = γn,N−1TN−1Un,N−2 +

(
1 − γn,N−1

)
I,

Wn = UnN = γnNTNUn,N−1 +
(
1 − γnN

)
I,

(1.5)
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where {γn1}, {γn2}, . . . , {γnN} are sequences in (0, 1]. Such a mapping Wn is called the W-
mapping generated by T1, T2, . . . , TN and {γn1}, {γn2}, . . . , {γnN}. Nonexpansivity of each Ti en-
sures the nonexpansivity of Wn. Moreover, in [11], it is shown that F(Wn) =

⋂N
i=1F(Ti).

Motivated by Atsushiba and Takahashi [11], Kim and Xu [5], and Shang et al. [7], we
study the following iterative algorithm:

x0 = x ∈ C,

yn = βnxn +
(
1 − βn

)
Wnxn,

xn+1 = αnu +
(
1 − αn

)
yn, ∀n ≥ 0,

(1.6)

where Wn is defined by (1.5) and u ∈ C is given point. We prove, under certain appropri-
ate assumptions on the sequences {αn} and {βn}, that {xn} defined by (1.6) converges to a
common fixed point of the finite family nonexpansive mappings without any commutative
assumptions.

In order to prove our main results, we need the following definitions and lemmas.
Recall that ifC andD are nonempty subsets of a Banach space E such thatC is nonempty

closed convex and D ⊂ C, then a map Q : C → D is sunny (see [12, 13]) provided Q(x + t(x −
Q(x))) = Q(x) for all x ∈ C and t ≥ 0 whenever x + t(x − Q(x)) ∈ C. A sunny nonexpansive
retraction is a sunny retraction, which is also nonexpansive. Sunny nonexpansive retractions
play an important role in our argument. They are characterized as follows [12, 13]: if E is a
smooth Banach space, then Q : C → D is a sunny nonexpansive retraction if and only if there
holds the inequality 〈x −Qx, J(y −Qx)〉 ≤ 0 for all x ∈ C and y ∈ D.

Reich [2] showed that if E is uniformly smooth and D is the fixed point set of a nonex-
pansive mapping from C into itself, then there is a sunny nonexpansive retraction from C onto
D and it can be constructed as follows.

Lemma 1.1. Let E be a uniformly smooth Banach space and let T : C → C be a nonexpansive mapping
with a fixed point. For each fixed u ∈ C and t ∈ (0, 1), the unique fixed point xt ∈ C of the contraction
C  x �→ tu + (1 − t)Tx converges strongly as t → 0 to a fixed point of T . Define Q : C → F(T)
by Qu = s − limt→0xt. Then Q is the unique sunny nonexpansive retract from C onto F(T), that is, Q
satisfies the property 〈u −Qu, J(z −Qu)〉 ≤ 0, for allu ∈ C and z ∈ F(T).

Lemma 1.2 (see [14]). Let {xn} and {yn} be bounded sequences in a Banach space X and let βn be a
sequence in [0,1] with 0 < lim infn→∞βn ≤ lim supn→∞βn < 1. Suppose xn+1 = (1 − βn)yn + βnxn for
all integers n ≥ 0 and lim supn→∞(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0. Then limn→∞‖yn − xn‖ = 0.

Lemma 1.3. In a Banach space E, there holds the inequality ‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉 for all
x, y ∈ E, where j(x + y) ∈ J(x + y).

Lemma 1.4 (see [15]). Assume that {αn} is a sequence of nonnegative real numbers such that αn+1 ≤
(1 − γn)αn + δn, where γn is a sequence in (0,1) and {δn} is a sequence such that

∑∞
n=1γn = ∞ and

lim supn→∞δn/γn ≤ 0 or
∑∞

n=1|δn| < ∞. Then limn→∞αn = 0.

2. Main results

Theorem 2.1. Let C be a closed convex subset of a uniformly smooth and strictly convex Banach
space E. Let Ti be a nonexpansive mapping from C into itself for i = 1, 2, . . . ,N. Assume that
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F =
⋂N

i=1F(Ti)/=∅. Given a point u ∈ C and given sequences {αn}∞n=0 and {βn}∞n=0 in (0,1), the
following conditions are satisfied:

(i)
∑∞

n=0αn = ∞, limn→∞αn = 0,

(ii) limn→∞|γn,i − γn−1,i| = 0 for all i = 1, 2, . . . ,N,

(iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Let {xn}∞n=1 be the composite process defined by (1.6). Then {xn}∞n=1 converges strongly to x∗ ∈ F, where
x∗ = Q(u) and Q : C → F is the unique sunny nonexpansive retraction from C onto F.

Proof. We divide the proof into four parts.
Step 1. First we observe that sequences {xn}∞n=0 and {yn}∞n=0 are bounded.

Indeed, take a point p ∈ F and notice that

‖yn − p‖ ≤ βn‖xn − p‖ + (1 − βn)‖Wnxn − p‖ ≤ ‖xn − p‖. (2.1)

It follows that
∥∥xn+1 − p

∥∥ =
∥∥αn(u − p) +

(
1 − αn

) (
yn − p

)∥∥ ≤ αn‖u − p‖ + (
1 − αn

)∥∥xn − p
∥∥. (2.2)

By simple inductions, we have ‖xn−p‖ ≤ max{‖x0−p‖, ‖u−p‖},which gives that the sequence
{xn} is bounded, so is {yn}.
Step 2. In this part, we will claim that ‖xn+1 − xn‖ → 0 as n → ∞.

Put ln = (xn+1 − βnxn)/(1 − βn). Now, we compute ln+1 − ln, that is,

xn+1 = (1 − βn)ln + βnxn, ∀n ≥ 0. (2.3)

Observing that

ln+1 − ln =
αn+1u +

(
1 − αn+1

)
yn+1 − βn+1xn+1

1 − βn+1
− αnu +

(
1 − αn

)
yn − βnxn

1 − βn

=
αn+1

(
u − yn+1

)

1 − βn+1
− αn

(
u − yn

)

1 − βn
+Wn+1xn+1 −Wnxn,

(2.4)

we have
∥∥ln+1 − ln

∥∥ ≤ αn+1

1 − βn+1

∥∥u − yn+1
∥∥ +

αn

1 − βn

∥∥yn − u
∥∥ +

∥∥xn+1 − xn

∥∥ +
∥∥Wn+1xn −Wnxn

∥∥. (2.5)

From the proof of Yao [8], we have

∥∥Wn+1xn −Wnxn

∥∥ ≤ M1

N∑
i=1

∣∣γn+1,i − γn,i
∣∣, (2.6)

whereM1 is an appropriate constant. Substituting (2.6) into (2.5), we have

∥∥ln+1 − ln
∥∥ − ∥∥xn+1 − xn

∥∥ ≤ αn+1

1 − βn+1

∥∥u − yn+1
∥∥ +

αn

1 − βn

∥∥yn − u
∥∥ +M

N∑
i=1

∣∣γn+1,i − γn,i
∣∣. (2.7)

Observing the conditions (i)–(iii), we get lim supn→∞(‖ln+1−ln‖−‖xn+1−xn‖) ≤ 0.We can obtain
limn→∞‖ln − xn‖ = 0 easily by Lemma 1.2. Observe that (2.3) yields xn+1 − xn = (1− βn)(ln − xn).
Therefore, we have

lim
n→∞

∥∥xn+1 − xn

∥∥ = 0. (2.8)



Yeol Je Cho et al. 5

Step 3. We will prove limn→∞‖Wnxn − xn‖ = 0.
Observing that xn+1 − yn = αn(u − yn) and the condition (i), we can easily get

lim
n→∞

∥∥yn − xn+1
∥∥ = 0. (2.9)

On the other hand, we have ‖yn − xn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖. Combining (2.8)with (2.9),
we have

lim
n→∞

∥∥yn − xn

∥∥ = 0. (2.10)

Notice that ‖Wnxn−xn‖ ≤ ‖xn−yn‖+βn‖xn−Wnxn‖. This implies (1−βn)‖Wnxn−xn‖ ≤ ‖xn−yn‖.
From the condition (iii) and (2.10), we obtain

lim
n→∞

∥∥Wnxn − xn

∥∥ = 0. (2.11)

Step 4. Finally, we will show xn → x∗ as n → ∞.
First, we claim that

lim sup
n→∞

〈
u − x∗, J(xn − x∗)

〉 ≤ 0, (2.12)

where x∗ = limt→0xt with xt being the fixed point of the contraction x �→ tu + (1 − t)Wnx. Then
xt solves the fixed point equation xt = tu + (1 − t)Wnxt. Thus we have

‖xt − xn‖ = ‖(1 − t)(Wnxt − xn) + t(u − xn)‖. (2.13)

It follows from Lemma 1.3 that
∥∥xt − xn

∥∥2 =
∥∥(1 − t)

(
Wnxt − xn

)
+ t

(
u − xn

)∥∥2 ≤ (1 − 2t + t)2
∥∥xt − xn

∥∥2

+ fn(t) + 2t
〈
u − xt, J

(
xt − xn

)〉
+ 2t

〈
xt − xn, J

(
xt − xn

)〉
,

(2.14)

where

fn(t) =
(
2
∥∥xt − xn

∥∥ +
∥∥xn −Wnxn

∥∥)∥∥xn −Wnxn

∥∥ −→ 0, as n −→ 0. (2.15)

It follows from (2.14) that

〈
xt − u, J

(
xt − xn

)〉 ≤ t

2
∥∥xt − xn

∥∥ +
1
2t
fn(t). (2.16)

Letting n → ∞ in (2.16) and noting (2.15) yield

lim sup
n→∞

〈
xt − u, J

(
xt − xn

)〉 ≤ t

2
M2, (2.17)

whereM2 is an appropriate constant. Taking t → 0 in (2.17), we have

lim sup
t→0

lim sup
n→∞

〈
xt − u, J

(
xt − xn

)〉 ≤ 0. (2.18)
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On the other hand, we have

〈
u − x∗, J

(
xn − q

)〉
=
〈
u − x∗, J

(
xn − q

)〉 − 〈
u − x∗, J

(
xn − xt

)〉
+
〈
u − x∗, J

(
xn − xt

)〉

− 〈
u − xt, J

(
xn − xt

)〉
+
〈
u − xt, J

(
xn − xt

)〉
.

(2.19)

It follows that

lim sup
n→∞

〈
u − x∗, J

(
xn − q

)〉

≤ sup
n∈N

〈
u−x∗, J

(
xn−q

)−J(xn−xt

)〉
+
∥∥xt−x∗∥∥lim sup

n→∞

∥∥xn−xt

∥∥+lim sup
n→∞

〈
u−xt, J

(
xn−xt

)〉
.

(2.20)

Noticing that J is norm-to-norm uniformly continuous on bounded subsets of C and from
(2.18), we have limt→0supn∈N〈u − x∗, J(xn − q) − J(xn − xt)〉 = 0. It follows that

lim sup
n→∞

〈
u − x∗, J

(
xn − q

)〉
= lim sup

t→0
lim sup

n→∞

〈
u − x∗, J

(
xn − q

)〉

≤ lim sup
t→0

lim sup
n→∞

〈
u − xt, J

(
xn − xt

)〉 ≤ 0.
(2.21)

Hence, (2.12) holds. Now, from Lemma 1.3, we have

∥∥xn+1 − x∗∥∥2 ≤ (
1 − αn

)∥∥xn − x∗∥∥2 + 2αn

〈
u − x∗, J

(
xn+1 − x∗)〉. (2.22)

Applying Lemma 1.4 to (2.22) we have xn → q as n → ∞.

Remark 2.2. Theorem 2.1 improves the results of Kim and Xu [5] from a single nonexpansive
mapping to a finite family of nonexpansive mappings.

Remark 2.3. If f : C → C is a contraction map and we replace u by f(xn) in the recursion
formula (1.6), we obtain what some authors now call viscosity iteration method. We note that
our theorem in this paper carries over trivially to the so-called viscosity process. Therefore, our
results also include Yao et al. [16] as a special case.

Remark 2.4. Our results partially improve Shang et al. [7] from a Hilbert space to a Banach
space.

Remark 2.5. If Wn is a single nonexpansive mapping, then the strict convexity of E may not be
needed.

Acknowledgment

This paper was supported by the Korea Research Foundation Grant funded by the Korean
Government (MOEHRD) (KRF-2007-313-C00040).



Yeol Je Cho et al. 7

References

[1] F. E. Browder, “Fixed-point theorems for noncompact mappings in Hilbert space,” Proceedings of the
National Academy of Sciences of the United States of America, vol. 53, no. 6, pp. 1272–1276, 1965.

[2] S. Reich, “Strong convergence theorems for resolvents of accretive operators in Banach spaces,” Journal
of Mathematical Analysis and Applications, vol. 75, no. 1, pp. 287–292, 1980.

[3] W. R.Mann, “Mean valuemethods in iteration,” Proceedings of the AmericanMathematical Society, vol. 4,
no. 3, pp. 506–510, 1953.

[4] S. Reich, “Weak convergence theorems for nonexpansivemappings in Banach spaces,” Journal of Math-
ematical Analysis and Applications, vol. 67, no. 2, pp. 274–276, 1979.

[5] T.-H. Kim andH.-K. Xu, “Strong convergence ofmodifiedMann iterations,”Nonlinear Analysis: Theory,
Methods & Applications, vol. 61, no. 1-2, pp. 51–60, 2005.

[6] X. Qin and Y. Su, “Approximation of a zero point of accretive operator in Banach spaces,” Journal of
Mathematical Analysis and Applications, vol. 329, no. 1, pp. 415–424, 2007.

[7] M. Shang, Y. Su, and X. Qin, “Strong convergence theorems for a finite family of nonexpansive map-
pings,” Fixed Point Theory and Applications, vol. 2007, Article ID 76971, 9 pages, 2007.

[8] Y. Yao, “A general iterative method for a finite family of nonexpansive mappings,”Nonlinear Analysis:
Theory, Methods & Applications, vol. 66, no. 12, pp. 2676–2687, 2007.

[9] H.H. Bauschke and J. M. Borwein, “On projection algorithms for solving convex feasibility problems,”
SIAM Review, vol. 38, no. 3, pp. 367–426, 1996.

[10] D. C. Youla, “Mathematical theory of image restoration by the method of convex projections,” in Image
Recovery: Theory and Applications, H. Stark, Ed., pp. 29–77, Academic Press, Orlando, Fla, USA, 1987.

[11] S. Atsushiba and W. Takahashi, “Strong convergence theorems for a finite family of nonexpansive
mappings and applications,” Indian Journal of Mathematics, vol. 41, no. 3, pp. 435–453, 1999.

[12] R. E. Bruck Jr., “Nonexpansive projections on subsets of Banach spaces,” Pacific Journal of Mathematics,
vol. 47, pp. 341–355, 1973.

[13] S. Reich, “Asymptotic behavior of contractions in Banach spaces,” Journal of Mathematical Analysis and
Applications, vol. 44, no. 1, pp. 57–70, 1973.

[14] T. Suzuki, “Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter non-
expansive semigroups without Bochner integrals,” Journal of Mathematical Analysis and Applications,
vol. 305, no. 1, pp. 227–239, 2005.

[15] H.-K. Xu, “An iterative approach to quadratic optimization,” Journal of Optimization Theory and Appli-
cations, vol. 116, no. 3, pp. 659–678, 2003.

[16] Y. Yao, R. Chen, and J.-C. Yao, “Strong convergence and certain control conditions for modified Mann
iteration,” Nonlinear Analysis: Theory, Methods & Applications, vol. 68, no. 6, pp. 1687–1693, 2008.


	1. Introduction and preliminaries
	2. Main results
	Acknowledgment
	References

