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Given a continuous map f : K → M from a 2-dimensional CW complex into a closed surface, the
Nielsen root number N(f) and the minimal number of roots μ(f) of f satisfy N(f) ≤ μ(f). But,
there is a number μC(f) associated to each Nielsen root class of f, and an important problem
is to know when μ(f) = μC(f)N(f). In addition to investigate this problem, we determine a
relationship between μ(f) and μ( ˜f), when ˜f is a lifting of f through a covering space, and we
find a connection between this problems, with which we answer several questions related to them
when the range of the maps is the projective plane.
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1. Introduction

Let f : X → Y be a continuous map between Hausdorff, normal, connected, locally path
connected, and semilocally simply connected spaces, and let a ∈ Y be a given base point. A
root of f at a is a point x ∈ X such that f(x) = a. In root theory we are interested in finding a
lower bound for the number of roots of f at a. We define the minimal number of roots of f at a
to be the number

μ
(

f, a
)

= min
{

#ϕ−1(a) such that ϕ is homotopic to f
}

. (1.1)

When the range Y of f is a manifold, it is easy to prove that this number is independent
of the selected point a ∈ Y , and, from [1, Propositions 2.10 and 2.12], μ(f, a) is a finite
number, providing that X is a finite CW complex. So, in this case, there is no ambiguity in
defining the minimal number of roots of f :

μ
(

f
)

:= μ
(

f, a
)

for some a ∈ Y. (1.2)
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Definition 1.1. If ϕ : X → Y is a map homotopic to f and a ∈ Y is a point such that μ(f) =
#ϕ−1(a), we say that the pair (ϕ, a) provides μ(f) or that (ϕ, a) is a pair providing μ(f).

According to [2], two roots x1, x2 of f at a are said to be Nielsen rootfequivalent if
there is a path γ : [0, 1] → X starting at x1 and ending at x2 such that the loop f ◦ γ in Y
at a is fixed-end-point homotopic to the constant path at a. This relation is easily seen to be
an equivalence relation; the equivalence classes are called Nielsen root classes off at a. Also
a homotopy H between two maps f and f ′ provides a correspondence between the Nielsen
root classes of f at a and the Nielsen root classes of f ′ at a. We say that such two classes under
this correspondence are H-related. Following Brooks [2] we have the following definition.

Definition 1.2. A Nielsen root class R of a map f at a is essential if given any homotopy
H : f � f ′ starting at f , and the class R is H-related to a root class of f ′ at a. The number of
essential root classes of f at a is the Nielsen root number off at a; it is denoted by N(f, a).

The number N(f, a) is a homotopy invariant, and it is independent of the selected
point a ∈ Y , provid that Y is a manifold. In this case, there is no danger of ambiguity in denot
it by N(f).

In a similar way as in the previous definition, Gonçalves and Aniz in [3] define the
minimal cardinality of Nielsen root classes.

Definition 1.3. Let R be a Nielsen root class of f : X → Y . We define μC(f,R) to be the
minimal cardinality among all Nielsen root classes R′, of a map f ′, H-related to R, for H
being a homotopy starting at f and ending at f ′:

Again in [3] was proved that if Y is a manifold, then the number μC(f,R) is
independent of the Nielsen root class of f : X → Y . Then, in this case, there is no danger of
ambiguity in defining the minimal cardinality of Nielsen root classes off

μC

(

f
)

:= μC(R) for some Nielsen rootclass R. (1.3)

An important problem is to know when it is possible to deform a map f to some
map f ′ with the property that all its Nielsen root classes have minimal cardinality. When
the range Y of f is a manifold, this question can be summarized in the following: when
μ(f) = μC(f)N(f)?

Gonçalves and Aniz [3] answered this question for maps from CW complexes into
closed manifolds, both of same dimension greater or equal to 3. Here, we study this problem
for maps from 2-dimensional CW complexes into closed surfaces. In this context, we present
several examples of maps having liftings through some covering space and not having all
Nielsen root classes with minimal cardinality.

Another problem studied in this article is the following. Let pk : Y → Y be a k-fold
covering. Suppose that f : X → Y is a map having a lifting ˜f : X → Y through pk. What is
the relationship between the numbers μ(f) and μ( ˜f)? We answer completely this question for
the cases in which X is a connected, locally path connected and semilocally simply connected
space, and Y and Y are manifolds either compact or triangulable. We show that μ(f) ≥ kμ( ˜f),
and we find necessary and sufficient conditions to have the identity.

Related results for the Nielsen fixed point theory can be found in [4].
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In Section 4, we find an interesting connection between the two problems presented.
This whole section is devoted to the demonstration of this connection and other similar
results.

In the last section of the paper, we answer several questions related to the two
problems presented when the range of the considered maps is the projective plane.

Throughout the text, we simplify write f is a map instead of f is a continuous map.

2. The Minimizing of the Nielsen Root Classes

In this section, we study the following question: given a map f : K → M from a 2-
dimensional CW complex into a closed surface, under what conditions we have μ(f) =
μC(f)N(f)? In fact, we make a survey on the main results demonstrated by Aniz [5], where
he studied this problem for dimensions greater or equal to 3. After this, we present several
examples and a theorem to show that this problem has many pathologies in dimension two.

In [5] Aniz shows the following result.

Theorem 2.1. Let f : K → M be a map from an n-dimensional CW complex into a closed n-
manifold, with n ≥ 3. If there is a map f ′ : K → M homotopic to f such that one of its Nielsen
root classesR′ has exactly μC(f) roots, each one of them belonging to the interior of n-cells ofK, then
μ(f) = μC(f)N(f).

In this theorem, the assumption on the dimension of the complex and of the manifold
is not superfluous; in fact, Xiaosong presents in [6, Section 4] a map f : T2#T2 → T

2 from
the bitorus into the torus with μ(f) = 4 and μC(f)N(f) = 3.

In [3, Theorem 4.2], we have the following result.

Theorem 2.2. For each n ≥ 3, there is an n-dimensional CW complexKn and a map fn : Kn → RPn

withN(fn) = 2, μC(fn) = 1 and μ(fn) ≥ 3.

This theorem shows that, for each n ≥ 3, there are maps f : Kn → Mn from n-
dimensional CW complexes into closed n-manifolds with μ(f)/=μC(f)N(f). Here, we will
show that maps with this property can be constructed also in dimension two. More precisely,
we will construct three examples in this context for the cases in which the range-of the maps
are, respectively, the closed surfaces RP2 (the projective plane), T2 (the torus), and RP2#RP2

(the Klein bottle). When the range is the sphere S2, it is obvious that every map f : K → S2

satisfies μ(f) = μC(f)N(f), since in this case there is a unique Nielsen root class.
Before constructing such examples, we present the main results that will be used.
Let f : X → Y be a map between connected, locally path connected, and semilocally

simply connected spaces. Then f induces a homomorphism f# : π1(X) → π1(Y ) between
fundamental groups. Since the image f#π1(X) of π1(X) by f# is a subgroup of π1(Y ), there is a
covering space p+ : Y+ → Y such that p+#π1(Y+) = f#π1(X). Thus, f has a lifting f+ : X → Y+

through p+. The map f+ is called a Hopf lift of f , and p+ : Y+ → Y is called a Hopf covering
for f .

The next result corresponds to [2, Theorem 3.4].

Proposition 2.3. The sets (f+)−1(ai), for ai ∈ (p+)−1(a), that are nonempty, are exactly the Nielsen
root class of f at a and a class (f+)−1(ai) is essential if and only if (f+

1 )
−1(ai) is nonempty for every

map f+
1 : X → Y+ homotopic to f+.
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In [3], Gonçalves and Aniz exhibit an example which we adapt for dimension two and
summarize now. Take the bouquet of m copies of the sphere S2, and let f : ∨m

i=1S
2 → RP2 be

the map which restricted to each S2 is the natural double covering map. If m is at least 2, then
N(f) = 2, μC(f) = 1, and μ(f) = m + 1.

Now, we present a little more complicated example of a map f : K → RP2, for which
we also have μ(f)/=μC(f)N(f). Its construction is based in [3, Theorem 4.2].

Example 2.4. Let p2 : S2 → RP2 be the canonical double covering. We will construct a 2-
dimensional CW complex K and a map f : K → RP2 having a lifting ˜f : K → S2 through p2

and satisfying:

(i) N(f) = 2,

(ii) μC(f) = 1,

(iii) μ(f) ≥ 3,

(iv) μ( ˜f) = 1.

We start by constructing the 2-complex K. Let S1, S2, and S3 be three copies of the
2-sphere regarded as the boundary of the standard 3-simplex Δ3:

S1 = ∂〈x0, x1, x2, x3〉, S2 = ∂〈y0, y1, y2, y3〉, S3 = ∂〈z0, z1, z2, z3〉. (2.1)

Let K be the 2-dimensional (simplicial) complex obtained from the disjoint union S1 �
S2 � S3 by identifying [x0, x1] = [y0, y1] and [y0, y2] = [z0, z1]. Thus, each Si, i = 1, 2, 3, is
imbedded into K so that

S1 ∩ S2 = [x0, x1] =
[

y0, y1
]

, S2 ∩ S3 =
[

y0, y2
]

= [z0, z1]. (2.2)

Then, S1∩S2∩S3 is a single point x0 = y0 = z0. The (simplicial) 2-dimensional complex
K is illustrated in Figure 1.

Two simplicial complexes A and B are homeomorphic if there is a bijection φ between
the set of the vertices of A and of B such that {v1, . . . , vs} is a simplex of A if and only if
{φ(v1), . . . , φ(vs)} is a simplex of B (see [7, page 128]). Using this fact, we can construct
homeomorphisms h21 : S2 → S1 and h32 : S3 → S2 such that h21|S1∩S2 = identity map
and h32|S2∩S3 = identity map.

Let ˜f1 : S1 → S2 be any homeomorphism from S1 onto S2. Define ˜f2 = ˜f1 ◦ h21 : S2 →
S2 and note that ˜f2(x) = ˜f1(x) for x ∈ S1 ∩ S2. Now, define ˜f3 = ˜f2 ◦ h32 : S3 → S2 and note
that ˜f3(x) = ˜f2(x) for x ∈ S2 ∩ S3. In particular, ˜f1(x0) = ˜f2(x0) = ˜f3(x0). Thus, ˜f1, ˜f2, and ˜f3

can be used to define a map ˜f : K → S2 such that ˜f |Si = ˜fi for i = 1, 2, 3.
Let f : K → RP2 be the composition f = p2 ◦ ˜f , where p2 : S2 → RP2 is the canonical

double covering. Note that f#π1(K) = (p2)#π1(S2). Thus, we can use Proposition 2.3 to study
the Nielsen root classes of f through the lifting ˜f .

Let a = f(x0) ∈ RP2, and let p−1
2 (a) = {ã,−ã} be the fiber of p2 over a.

Clearly, the homomorphism ˜f∗ : H2(K) → H2(S2) is surjective, with H2(K) ≈ Z
3

and H2(S2) ≈ Z. Hence, every map from K into S2 homotopic to f is surjective. It follows
that, for every map g̃ : K → S2 homotopic to ˜f , we have g̃−1(ã)/= ∅ and g̃−1(−ã)/= ∅. By
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x0 = y0 = z0

x3z3

x2z2

x1 = y1z1 = y2

y3

S2

S1S3

Figure 1: A simplicial 2-complex.

Proposition 2.3, ˜f−1(ã) and ˜f−1(−ã) are the Nielsen root classes of f , and both are essential
classes. Therefore, N(f) = 2.

Now, since a = f(x0), either x0 ∈ ˜f−1(ã) or x0 ∈ ˜f−1(−ã). Without loss of generality,
suppose that x0 ∈ ˜f−1(ã). Then, by the definition of ˜f , we have ˜f−1(ã) = {x0}. Hence, one of
the Nielsen root classes is unitary. Furthermore, since such class is essential, it follows that its
minimal cardinality is equal to one. This proves that μC(f) = 1.

In order to show that μ(f) ≥ 3, note that since each restriction ˜f |Si is a homeomorphism
and p2 : S2 → RP2 is a double covering, for each map g homotopic to f , the equation g(x) = a
must have at least two roots in each Si, i = 1, 2, 3. By the decomposition of K this implies that
μ(f) ≥ 3.

Moreover, it is very easy to see that μ( ˜f) = 1, with the pair ( ˜f, ˜f(a0)) providing μ( ˜f).
Now, we present a similar example where the range of the map f is the torus T2. Here,

the complex K of the domain of f is a little bit more complicated.

Example 2.5. Let p2 : T2 → T
2 be a double covering. We will construct a 2-dimensional CW

complex K and a map f : K → T
2 having a lifting ˜f : K → T

2 through p2 and satisfying the
following:

(i) N(f) = 2,

(ii) μC(f) = 1,

(iii) μ(f) = 3,

(iv) μ( ˜f) = 1.

We start constructing the 2-complex K. Consider three copies T1, T2, and T3 of
the torus with minimal celular decomposition. Let αi (resp., βi) be the longitudinal (resp.,
meridional) closed 1-cell of the torus Ti, i = 1, 2, 3. Let K be the 2-dimensional CW complex
obtained from the disjoint union T1 � T2 � T3 by identifying

α1 = α2, α3 = β2. (2.3)
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e0

β1 β3

β2 = α3

T1

T2

T3

α1 = α2

Figure 2: A 2-complex obtained by attaching three tori.

That is, K is obtained by attaching the tori T1 and T2 through the longitudinal closed
1-cell and, next, by attaching the longitudinal closed 1-cell of the torus T3 into the meridional
closed 1-cell of the torus T2.

Each torus Ti is imbedded into K so that

T1 ∩ T2 = α1 = α2, T2 ∩ T3 = α3 = β2, T1 ∩ T3 = T1 ∩ T2 ∩ T3 =
{

e0
}

, (2.4)

where e0 is the (unique) 0-cell of K, corresponding to 0-cells of T1, T2, and T3 through
the identifications. The 2-dimensional CW complex K is illustrate, in Figure 2.

Henceforth, we write Ti to denote the image of the original torus Ti into the 2-
complexo K through the identifications above.

Certainly, there are homeomorphisms h21 : T2 → T1 and h32 : T3 → T2 with
h21|T1∩T2 = identity map and h32|T2∩T3 = identity map such that h21 carries β2 onto β1, and
h32 carries β3 onto α2. Thus, given a point x3 ∈ β3 we have h32(x3) ∈ α1 = T1 ∩ T2. We should
use this fact later.

Let ˜f1 : T1 → T
2 be an arbitrary homeomorphism carrying longitude into longitude

and meridian into meridian. Define ˜f2 = ˜f1 ◦ h21 : T2 → T
2 and note that ˜f2(x) = ˜f1(x) for

x ∈ T1 ∩ T2. Now, define ˜f3 = ˜f2 ◦ h32 : T3 → T
2 and note that ˜f3(x) = ˜f2(x) for x ∈ T2 ∩ T3.

In particular, ˜f1(e0) = ˜f2(e0) = ˜f3(e0). Thus, ˜f1, ˜f2, and ˜f3 can be used to define a map
˜f : K → T

2 such that ˜f |Ti = ˜fi for i = 1, 2, 3.
Let p2 : T

2 → T
2 be an arbitrary double covering. (We can consider, e.g., the

longitudinal double covering p2(z) = (z2
1, z2) for each z = (z1, z2) ∈ S1 × S1 ∼= T

2.)
We define the map f : K → T

2 to be the composition f = p2 ◦ ˜f .
In order to use Proposition 2.3 to study the Nielsen root classes of f using the

information about ˜f , we need to prove that f#π1(K) = (p2)#π1(T2). Now, since f# = (p2)# ◦ ˜f#,
it is sufficient to prove that ˜f# is an epimorphism. This is what we will do. Consider the
composition ˜f ◦ l : T1 → T

2, where l : T1 ↪→ K is the obvious inclusion. This composition is
exactly the homeomorphism ˜f1, and therefore the induced homomorphism ˜f# ◦ l# = ( ˜f1)# is
an isomorphism. It follows that ˜f# is an epimorphism. Therefore, we can use Proposition 2.3.

Let a = f(e0) ∈ T
2, and let p−1

2 (a) = {ã, ã′} be the fiber of p2 over a. (If p2 is the
longitudinal double covering, as above, then if ã = (ã1, ã2), we have ã′ = (−ã1, ã2) .)

Clearly, the homomorphism ˜f∗ : H2(K) → H2(T2) is surjective, with H2(K) ≈ Z
3 and

H2(T2) ≈ Z. Hence, every map from K into T
2 homotopic to f is surjective. It follows that, for

every map g̃ : K → T
2 homotopic to ˜f , we have g̃−1(ã)/= ∅ and g̃−1(ã′)/= ∅. By Proposition 2.3,
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˜f−1(ã) and ˜f−1(ã′) are Nielsen root classes of f , and both are essential classes. Therefore,
N(f) = 2.

Now, since a = f(e0), either e0 ∈ ˜f−1(ã) or e0 ∈ ˜f−1(ã′). Without loss of generality,
suppose that e0 ∈ ˜f−1(ã). Then, by the definition of ˜f , we have ˜f−1(ã) = {e0}. Thus, one of
the Nielsen root classes is unitary. Furthermore, since such class is essential, it follows that its
minimal cardinality is equal to one. Therefore, μC(f) = 1.

In order to prove that μ(f) = 3, note that since each restriction ˜f |Ti is a
homeomorphism and p2 : T

2 → T
2 is a double covering, for each map g homotopic

to f , the equation g(x) = a must have at least two roots in each Ti, i = 1, 2, 3. By the
decomposition of K, this implies that μ(f) ≥ 3. Now, let x3 be a point in β3, x3 /= e0. As
we have seen, h32(x3) ∈ α1 ⊂ T1 ∩ T2. Write x12 = h32(x3). By the definition of ˜f , we have
˜f(x12) = ˜f(x3)/= ˜f(e0). Denote y0 = ˜f(e0) and y1 = ˜f(x12).

Let a ∈ T
2 be a point, and let p−1

2 (a) = {ã, ã′} be the fiber of p2 over a. Since T
2 is a

surface, there is a homeomorphism h : T2 → T
2 homotopic to the identity map such that

h(y0) = ã and h(y1) = ã′. Let q2 : T2 → T
2 be the composition q2 = p2 ◦ h, and let ϕ : K → T

2

be the composition ϕ = q2 ◦ ˜f . Then, ϕ is homotopic to f and ϕ−1(a) = {e0, x12, x3}. Since
μ(f) ≥ 3, this implies that μ(f) = 3.

Moreover, it is very easy to see that μ( ˜f ) = 1, with the pair ( ˜f, ˜f(e0)) providing μ( ˜f ).
Note that in this example, for every pair (ϕ, a) providing μ(f) (which is equal to 3), we

have necessarily ϕ−1(a) = {e0, x1, x2} with either x1 ∈ α1 and x2 ∈ β3 or x1 ∈ β1 and x2 ∈ β2.
For the same complex K of Example 2.5, we can construct a similar example with the

range of f being the Klein bottle. The arguments here are similar to the previous example,
and so we omit details.

Example 2.6. Let p2 : T2 → RP2#RP2 be the orientable double covering. We will construct a
2-dimensional CW complex K and a map f : K → RP2#RP2 having a lifting ˜f : K → T

2

through p2 and satisfying the following:

(i) N(f) = 2,

(ii) μC(f) = 1,

(iii) μ(f) = 3,

(iv) μ( ˜f) = 1.

We repeat the previous example replacing the double covering p2 : T2 → T
2 by the

orientable double covering p2 : T2 → RP2#RP2. Also here, we have μ( ˜f) = 1, with the pair
( ˜f, ˜f(e0)) providing μ( ˜f).

Small adjustments in the construction of the latter two examples are sufficient to prove
the following theorem.

Theorem 2.7. LetK be the 2-dimensional CW complex of the previous two examples. For each positive
integer n, there are cellular maps fn : K → T

2 and gn : K → RP2
RP2 satisfying the following:

(1) N(fn) = n, μC(fn) = 1 and μ(fn) = 2n − 1.

(2) N(gn) = 2n, μC(gn) = 1 and μ(gn) = 4n − 1.
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Proof. In order to prove item (1), let ˜f : K → T
2 be as in Example 2.5. Let pn : T

2 → T
2

be an n-fold covering (which certainly exists; e.g., for each z ∈ T
2 considered as a pair z =

(z1, z2) ∈ S1 ×S1, we can define pn(z) = (zn1 , z2)). Define fn = pn ◦ ˜f : K → T
2. Then, the same

arguments of Example 2.5 can be repeated to prove the desired result.
In order to prove item (2), let ˜f : K → T

2 be as in Example 2.6. Let pn : T2 → T
2 be

an n-fold covering (e.g., as in the first item), and let p2 : T2 → RP2#RP2 be the orientable
double covering. Define q2n : T2 → RP2#RP2 to be the composition q2n = p2 ◦ pn. Then q2n is
a 2n-fold covering. Define fn = q2n ◦ ˜f : K → RP2#RP2. Now proceed with the arguments of
Example 2.6.

Observation 2.8. It is obvious that if m and n are different positive integers, then the maps
fm, fn and gm, gn satisfying the previous theorem are such that fm is not homotopic to fn and
gm is not homotopic to gn.

3. Roots of Liftings through Coverings

In the previous section, we saw several examples of maps from 2-dimensional CW complexes
into closed surfaces having lifting through some covering space and not having all Nielsen
root classes with minimal cardinality. In this section, we study the relationship between the
minimal number of roots of a map and the minimal number of roots of one of its liftings
through a covering space, when such lifting exists.

Throughout this section, M and N are topological n-manifolds either compact or
triangulable, and X denotes a compact, connected, locally path connected, and semilocally
simply connected spaces All these assumptions are true, for example, if X is a finite and
connected CW complex.

Lemma 3.1. Let pk : Y → Y be a k-fold covering, and let f : X → Y be a map having a lifting
˜f : X → Y through pk. Let a ∈ Y be a point, and let p−1

k (a) = {a1, . . . , ak} be the fiber of pk over a.
Then μ(f, a) ≥ ∑k

i=1 μ( ˜f, ai).

Proof. Let ϕ : X → Y be a map homotopic to f such that #ϕ−1(a) = μ(f, a). Then, since pk
is a covering, we may lift ϕ through pk to a map ϕ̃ : X → Y homotopic to ˜f . It follows that
ϕ−1(a) = ∪k

i=1ϕ̃
−1(ai), with this union being disjoint, and certainly #ϕ̃−1(ai) ≥ μ( ˜f, ai) for all

1 ≤ i ≤ k. Therefore,

μ
(

f, a
)

= #

(

k
⋃

i=1

ϕ̃−1(ai)

)

≥
k
∑

i=1

μ
(

˜f, ai

)

. (3.1)

Theorem 3.2. Let pk : M → N be a k-fold covering, and let f : X → N be a map having a lifting
˜f : X → M through pk. Then μ(f) ≥ kμ( ˜f). Moreover, μ(f) = 0 if and only if μ( ˜f) = 0.

Proof. Let a ∈ N be an arbitrary point, and let p−1
k
(a) = {a1, . . . , ak} be the fiber of pk over a.

Since M and N are manifolds, we have μ(f) = μ(f, a) and μ( ˜f) = μ( ˜f, ai) for all 1 ≤ i ≤ k.
Hence, by the previous lemma, μ(f) ≥ kμ( ˜f). It follows that μ( ˜f) = 0 if μ(f) = 0. On the
other hand, suppose that μ( ˜f) = 0. Then N( ˜f) = 0 and by [8, Theorem 2.3], there is a map
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g̃ : X → M homotopic to ˜f such that dim g̃(X) ≤ n − 1, (where n is the dimension of M
and N). Let ϕ : X → N be the composition ϕ = pk ◦ ϕ̃. Then ϕ is homotopic to f and
dimϕ(X) ≤ n − 1. Therefore μ(f) = 0.

Note that if in the previous theorem we suppose that k = 1, then the covering pk :
M → N is a homeomorphism and μ(f) = μ( ˜f).

In Examples 2.4, 2.5, and 2.6 of the previous section, we presented maps f : K → N
from 2-dimensional CW complexes into closed surfaces (here N is the projective plane, the
torus, and the Klein bottle, resp.) for which we have

μ
(

f
) ≥ 3 > 2 = 2μ

(

˜f
)

. (3.2)

This shows that there are maps f : K → N from 2-dimensional CW complexes into
closed surfaces having liftings ˜f : K → M through a double covering p2 : M → N and
satisfying the strict inequality

μ
(

f
)

> 2μ
(

˜f
)

. (3.3)

Moreover, Theorem 2.7 shows that there is a 2-dimensional CW complex K such that,
for each integer n > 1, there is a map fn : K → T

2 and a map gn : K → RP2#RP2 having
liftings ˜fn : K → T

2 through an n-fold covering pn : T2 → T
2 and g̃n : K → T

2 through a
2n-fold covering q2n : T2 → RP2#RP2, respectively, satisfying the relations μ(fn) = 2n − 1 >

n = nμ( ˜fn) and μ(gn) = 4n − 1 < 2n = 2nμ(g̃n).
The proofs of the latter two theorems can be used to create a necessary and sufficient

condition for the identity μ(f) = kμ( ˜f) to be true. We show this after the following lemma.

Lemma 3.3. Let pk : M → N be a k-fold covering, let a1, . . . , ak be different points of M, and let
a ∈ N be a point. Then, there is a k-fold covering qk : M → N isomorphic and homotopic to pk such
that q−1

k
(a) = {a1, . . . , ak}.

Proof. Let p−1
k (a) = {b1, . . . , bk} be the fiber of pk over a. It can occur that some ai is equal to

some bj . In this case, up to reordering, we can assume that ai = bi for 1 ≤ i ≤ r and ai /= bi for
i > r, for some 1 ≤ r ≤ k. If ai /= bj for any i, j, then we put r = 0. If r = k, then there is nothing
to prove. Then, we suppose that r /= k. For each i = r + 1, . . . , k, let Ui be an open subset of
M homeomorphic to an open n-ball, containing ai and bi and not containing any other point
aj and bj . Let hi : M → M be a homeomorphism homotopic to the identity map, being the
identity map outside Ui and such that hi(ai) = bi. Let h : M → M be the homeomorphism
h = hk ◦ · · · ◦ hr+1. Then h is homotopic to the identity map and h(ai) = bi for each 1 ≤ i ≤ k.
Let qk : M → N be the composition qk = pk ◦ h. Then qk is a k-fold covering isomorphic and
homotopic to pk. Moreover, q−1

k
(a) = {a1, . . . , ak}.

Theorem 3.4. Let pk : M → N be a k-fold covering, and let f : X → N be a map having a lifting
˜f : X → M through pk. Then μ(f) = kμ( ˜f) if and only if, for each pair (ϕ, a) providing μ(f), each
pair (ϕ̃, ai) provides μ( ˜f), where ϕ̃ is a lifting of ϕ homotopic to ˜f and p−1

k
(a) = {a1, . . . , ak}.
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Proof. Let (ϕ, a) be a pair providing μ(f), let p−1
k (a) = {a1, . . . , ak} be the fiber of pk over a, and

let ϕ̃ be a lifting of ϕ homotopic to ˜f . Then ϕ−1(a) = ∪k
i=1ϕ̃

−1(ai), with this union being disjoint.
Hence μ(f) =

∑k
i=1 #ϕ̃−1(ai). Now, #ϕ̃−1(ai) ≥ μ( ˜f) for each 1 ≤ i ≤ k. Therefore, μ(f) = kμ( ˜f)

if and only if #ϕ̃−1(ai) = μ( ˜f) for each 1 ≤ i ≤ k, that is, each pair (ϕ̃, ai) provides μ( ˜f).

Theorem 3.5. Let pk : M → N be a k-fold covering, and let f : X → N be a map having a
lifting ˜f : X → M through pk. Then μ(f) = kμ( ˜f) if and only if, given k different points of M, say
a1, . . . , ak, there is a map ϕ̃ : X → M such that, for each 1 ≤ i ≤ k: the pair (ϕ̃, ai) provides μ( ˜f).

Proof. Let (ϕ, a) be a pair providing μ(f), and let qk : M → N be a covering isomorphic and
homotopic to pk, such that q−1

k (a) = {a1, . . . , ak}, as in Lemma 3.3.
Suppose that μ(f) = kμ( ˜f). Let ϕ̃ : X → M be a lifting of ϕ through qk homotopic to

˜f . Then, by the previous theorem, (ϕ̃, ai) provides μ( ˜f) for each 1 ≤ i ≤ k.
On the other hand, suppose that there is a map ϕ̃ : X → M such that, for each 1 ≤ i ≤ k,

the pair (ϕ̃, ai) provides μ( ˜f). Let ϕ : X → N be the composition ϕ = qk ◦ ϕ̃. Then ϕ̃ is a
lifting of ϕ through qk homotopic to ˜f and μ(f) ≤ #ϕ−1(a) =

∑k
i=1 #ϕ̃−1(ai) = kμ( ˜f). But, by

Theorem 3.2, we have μ(f) ≥ kμ( ˜f). Therefore μ(f) = kμ( ˜f).

Theorem 3.6. Let pk : M → N be a k-fold covering, and let f : X → N be a map having a lifting
˜f : X → M through pk. Then μ(f) > kμ( ˜f) if and only if, for every map ϕ̃ : X → M homotopic to
˜f , there are at most k − 1 points inM whose preimage by ϕ̃ has exactly μ( ˜f) points.

Proof. From Theorem 3.2, μ(f)/= kμ( ˜f) if and only if μ(f) > kμ( ˜f). Thus, a trivial argument
shows that this theorem is equivalent to Theorem 3.5.

Example 3.7. Let f : K → N, p2 : M → N and ˜f : K → M be the maps of Examples 2.4,
2.5, or 2.6. Then, we have proved that μ(f) ≥ 3 > 2 = 2μ( ˜f). (More precisely, in Examples
2.5 and 2.6 we have μ(f) = 3.) Therefore, by Theorem 3.6, if ϕ̃ : K → M is a map providing
μ( ˜f) (which is equal to 1), then there is a unique point of M whose preimage by ϕ̃ is a single
point.

Now, we present a proposition showing equivalences between the vanishing of the
Nielsen numbers and the minimal number of roots of f and its liftings ˜f through a covering.

Proposition 3.8. Let pk : M → N be a k-fold covering, and let f : X → M be a map having a
lifting ˜f : X → M through pk. Then, the following statements are equivalent:

(i) N(f) = 0,

(ii) N( ˜f) = 0,

(iii) μ(f) = 0,

(iv) μ( ˜f) = 0.

Proof. First, we should remember that, by Theorem 3.2, (iii)⇔(iv). Also, since N(g) ≤ μ(g)
for every map g, it follows that (iii)⇒(i) and (iv)⇒(ii). On the other hand, by [8, Theorem
2.1], we have that (i)⇒(iii) and (ii)⇒(iv). This completes the proof.
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Until now, we have studied only the cases in which a given map f has a lifting through
a finite fold covering. When f has a lifting through an infinite fold covering, the problem is
easily solved using the results of Gonçalves and Wong presented in [8].

Theorem 3.9. Let f : X → N be a map having a lifting ˜f : X → M through an infinite fold
covering p∞ : M → N. Then the numbers N(f),N( ˜f), μ(f) and μ( ˜f) are all zero.

Proof. Certainly, the subgroup f#π1(X) has infinite index in the group π1(N). Thus, by [8,
Corollary 2.2], μ(f) = 0 and so N(f) = 0. Now, it is easy to check that also μ( ˜f) = 0 and so
N( ˜f) = 0.

4. Minimal Classes versus Roots of Liftings

In this section we present some results relating the problems of Sections 2 and 3. We start
remembering and proving general results which will be used in here.

Also in this section, X is always a compact, connected, locally path connected and
semilocally simply connected space and M and N are topological n-manifolds either compact
or triangulable.

Let f : X → Y be a map with Y having the same properties of X. We denote the
Riedemeister number of f by R(f), which is defined to be the index of the subgroup f#π1(X) in
the group π1(M). In symbols, R(f) = |π1(M) : f#π1(X)|. When Y is a topological manifold
(not necessarily compact), it follows from [2] that N(f) > 0 ⇒ N(f) = R(f) < ∞. Thus, if
R(f) = ∞, then N(f) = 0.

Corollary 4.1. Let f : X → N be a map with R(f) = k, let pk : M → N be a k-fold covering and
let ˜f : X → M be a lifting of f through pk. Then the following statements are equivalent:

(i) N(f)/= 0,

(ii) N(f) = k,

(iii) μ(f)/= 0,

(iv) μ( ˜f)/= 0.

Proof. The equivalences (i)⇔(iii)⇔(iv) are proved in Proposition 3.8. The implication (ii)⇒(i)
is trivial. For a proof that (i) implies (ii) see [2].

Theorem 4.2. Let pk : M → N be a k-fold covering, and let f : X → N be a map having a lifting
˜f : X → M. If R(f) = k, then μ( ˜f) = μC(f).

Proof. If N(f) = 0, then all μ(f), μ( ˜f), and μC(f) also are zero. In this case, there is nothing to
prove. Now, suppose that N(f)/= 0. Then, by Corollary 4.1, N(f) = k and μ(f) and μ( ˜f) are
both nonzero. Thus, also μC(f)/= 0. Let R be a Nielsen root class of f , and let H : f � f1 be a
homotopy starting at f and ending at f1. Moreover, let R1 be the Nielsen root class of f1 that
is H-related with R. Let ˜f1 be a lifting of f1 through pk homotopic to ˜f . By Proposition 2.3,
R1 = ˜f−1

1 (ã) for some point ã ∈ M over a specific point a of N. Thus, the cardinality #R1 is
minimal if and only if the cardinality # ˜f−1

1 (ã) is minimal; that is, #R1 = μC(f) if and only if
# ˜f1(ã) = μ( ˜f).
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Theorem 4.3. Let pk : M → N be a k-fold covering, and let f : X → N be a map having a lifting
˜f : X → M through pk. If R(f) = k, then the following statements are equivalent:

(i) μ(f) = μC(f)N(f),

(ii) μ(f) = kμ( ˜f),

(iii) μ(f) = μ( ˜f)N(f).

Proof. By the previous results, we have N(f) = 0 ⇔ μ(f) = 0 ⇔ μ( ˜f) = 0. Thus, if one
of these numbers are zero, then the three statements are automatically equivalent. Now, if
N(f)/= 0, then N(f) = R(f) = k and, by Theorem 4.2, μ( ˜f) = μC(f). This proves the desired
equivalences.

5. Maps into the Projective Plane

In this section, we use the capital letter K to denote finite and connected 2-dimensional CW
complexes, and we use M to denote closed surfaces.

In the next two lemmas, we consider the 2-sphere in the domain of f with cellular
decomposition S2 = e0 ∪ e2 and the 2-sphere in the range of f with cellular decomposition
S2 = e0

∗ ∪ e2
∗ .

Lemma 5.1. Let f : S2 → S2 be a map with degree d /= 0, and let a ∈ S2 be a point, a/= e0
∗ . Then,

there is a cellular map ϕ : S2 → S2 such that f � ϕ rel{e0} and #ϕ−1(a) = 1 = #ϕ−1(−a).

Proof. Without loss of generality, suppose that a is the north pole and so −a is the south pole.
There is a cellular map g : S2 → S2 such that g � f and #g−1(a) = 1 = #g−1(−a). In fact,

consider the domain sphere S2 fragmented in |d| southern tracks by meridians m1, . . . ,m|d|
chosen so that e0 is in m1. Let g : S2 → S2 be a map defined so that each meridian mi, for
1 ≤ i ≤ |d|, is carried homeomorphically onto a same distinguished meridian m of the range 2-
sphere containing e0

∗ , and each of the |d| tracks covers once the sphere S2, always in the same
direction, which is chosen according to the orientation of S2, so that g is a map of degree d.

Since f and g have the same degree, they are homotopic. Moreover, g−1(a) = {b} and
g−1(−a) = {−b}, where b is the north pole of the domain 2-sphere, and so −b is its south pole.
Therefore, we have #g−1(a) = 1 = #g−1(−a). What we cannot guarantee immediately is that
the homotopy between f and g is a homotopy relative to {e0}.

Now, if H : S2 × I → S2 is a homotopy starting at f and ending at g, then as in [9,
Lemma 3.1], we can slightly modify H in a small closed neighborhood V × I of e0 × I, with
V homeomorphic to a closed 2-disc and not containing a and −a, to obtain a new homotopy
̂H : S2 × I → S2, which is relative to e0. Let ϕ : S2 → S2 be the end of this new homotopy,
that is, ϕ = ̂H(·, 1). Since H and ̂H differ only on V × I and a and −a do not belong to V , we
have ϕ−1(a) = {b} and ϕ−1(−a) = {−b}.

This concludes the proof of this lemma.

Lemma 5.2. Let f : S2 → S2 be a map with zero degree and let κ0 : S2 → S2 be the constant map
at e0

∗ . Then f � κ0 rel{e0}. Moreover, if a ∈ S2, a/= e0
∗ , then (κ0)−1(a) = ∅ = (κ0)−1(−a).

Proof. This is [9, Lemma 3.2]. Also, it is an adaptation of the proof of the previous lemma.



Fixed Point Theory and Applications 13

Now, we insert an important definition about the type of maps which provides the
minimal number of roots of a given map.

Definition 5.3. Let f : K → M be a map. We say that f is of type ∇2 if there is a pair (ϕ, a)
providing μ(f) such that ϕ−1(a) ⊂ K \K1. Moreover, we say that f is of type ∇3 if in addition
we can choose the map ϕ being a cellular map.

Proposition 5.4. Every map f : K → M of type ∇2 is also of the type ∇3.

Proof. Let ϕ : K → M be a map and let a ∈ M be a point such that (ϕ, a) provides μ(f)
and ϕ−1(a) ⊂ K \ K1. We can assume that a is in the interior of the unique 2-cell of M. (We
consider M with a minimal cellular decomposition.) Let V be an open neighborhood of a in
M homeomorphic to an open 2-disc and such that the closure V of V in M is contained in
M \M1, where M1 is the 1-skeleton of M. Let χ : D2 → M be the attaching map of the 2-cell
of M, and let h : V → D2 be a homeomorphism, where D2 is the unitary closed 2-disc.

Certainly, there is a retraction r : M \ V → M1 such that for each x ∈ ∂V we have
r(x) = (χ ◦ h)(x). Then, the maps r and χ ◦ h can be used to define a map g : M → M such
that g|M\V = r and g|V = χ ◦ h. Now, it is easy to see that g is cellular and homotopic to the
identity map id : M → M.

Let ψ : K → M be the composition ψ = g ◦ ϕ and call a′ = g(a). Then, ψ is a cellular
map homotopic to f and ψ−1(a′) = ϕ−1(a) ⊂ K \K1. This concludes the proof.

Proposition 5.5. Every map between closed surfaces is of type ∇2 and so of type ∇3.

Proof. Let f : M → N be a map between closed surfaces. Suppose that n = μ(f), and let
(ϕ, a) be a pair providing μ(f). Let ϕ−1(a) = {x1, . . . , xn}. If each xj is in the interior of the
2-cell of M, then there is nothing to prove. Otherwise, let y1, . . . , yn be n different points of
M belonging to its 2-cell. There is a homeomorphism h : M → M homotopic to the identity
map id : M → M such that h(yj) = xj for each 1 ≤ j ≤ n. Let ψ : M → N be the composition
ψ = ϕ ◦ h. Then ψ is homotopic to f and ψ−1(a) = {y1, . . . , yn} ⊂ M \ M1. Now, we use the
previous proposition to complete the proof.

Theorem 5.6. Let f : K → RP2 be a map having a lifting ˜f : K → S2 through the double covering
p2 : S2 → RP2. If ˜f is of type ∇2, then 2μ( ˜f) = μ(f) = μC(f)N(f).

Proof. Since ˜f is of type ∇2, then ˜f is also of type ∇3, by Proposition 5.4. Let ϕ̃ : K → S2 be a
cellular map, and let a ∈ S2 = e0

∗ ∪e2
∗ be a point different from e0

∗ such that #ϕ̃−1(a) = μ( ˜f) and
ϕ̃−1(a) ⊂ K \K1. Let e2

1, . . . , e
2
m be the 2-cells of K. For each 1 ≤ i ≤ m, we define the quotient

map

ωi : K � K
(

K \ e2
i

) , (5.1)

which collapses the complement of the interior of the 2-cell e2
i to a point c0

i . The image ωi(K) =
K/(K \ e2

i ) is naturally homeomorphic to a 2-sphere S2
i which inherits from K a cellular

decomposition S2
i = c0

i ∪ c2
i , where the interior of the 2-cell c2

i corresponds homeomorphically
to the image by ωi of the interior of the 2-cell e2

i of the 2-complex K.
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Since ϕ̃ : K → S2 is a cellular map, the 1-skeleton K1 of K is carried by ϕ̃ into the
0-cell e0

∗ of S2. Moreover, K1 is carried by ωi (which is also a cellular map) into the 0-cell c0
i of

the sphere S2
i , for all 1 ≤ i ≤ m. Then we can define, for each 1 ≤ i ≤ m, a unique cellular map

ϕ̃i : S2
i → S2 such that ϕ̃|e2

i
= ϕ̃i ◦ωi|e2

i
. In fact, for each x = ωi(x) ∈ S2

i , we define ϕ̃i(x) = ϕ̃(x).
Since ϕ̃ is a cellular map, ϕ̃i is well defined and is also a cellular map. Moreover, for each
x ∈ e2

i , we have ϕ̃(x) = (ϕ̃i ◦ωi)(x).
Since ϕ̃−1(a) ⊂ K \ K1, the set ϕ̃−1(a) is in one-to-one correspondence with the set

∪m
i=1ϕ̃

−1
i (a); in fact, we have ϕ̃−1(a) = ∪m

i=1(ϕ̃i ◦ ωi)
−1(a). Now, by the proof of Theorem 4.1

of [9], for each 1 ≤ i ≤ m, either #ϕ̃−1
i (a) = 1 or ϕ̃ is homotopic to a constant map. Then,

by Lemmas 5.1 and 5.2, for each 1 ≤ i ≤ m, there is a cellular map ψ̃i : S2
i → S2 such that

ϕ̃i � ψ̃i rel{c0
i } and #ψ̃−1

i (a) = #ϕ̃−1
i (a) = #ψ̃−1

i (−a). Let Hi : ϕ̃i � ψ̃irel{c0
i } be such homotopies,

1 ≤ i ≤ m.
For each x ∈ K, choose once and for all an index i(x) ∈ {1, . . . , m} such that x ∈ ei(x).

Then, define ψ̃ : K → S2 by ψ̃(x) = ψ̃i(x)(ωi(x)(x)). This map is clearly well defined and
cellular. Moreover, the homotopies Hi, 1 ≤ i ≤ m, can be used to define a homotopy H
starting at ϕ̃ and ending at ψ̃.

From this construction, we have #ψ̃−1(a) = μ( ˜f) = #ψ̃−1(−a). By Theorem 3.5, we have
that μ(f) = 2μ( ˜f). Now, it is obvious that R(f) = 2. So, by Theorem 4.3, μ(f) = μC(f)N(f).

Theorem 5.6 is not true, in general, when the map f is not of the type ∇2. We present
an example to illustrate this fact.

Example 5.7. Let K = S2
1 ∨ S2

2 be the bouquet of two 2 spheres with minimal cellular
decomposition with one 0-cell e0 and two 2-cells e2

1 and e2
2. Let ˜f : K → S2 be a map which,

restricted to each S2
i , i = 1, 2, is homotopic to the identity map. Consider the sphere S2 with

its minimal cellular decomposition S2 = e0
∗ ∪ e2

∗ . Then, there is a cellular map ϕ̃ : K → S2

homotopic to ˜f such that ϕ̃−1(e0
∗) = {e0}. Thus, the pair (ϕ̃, e0

∗) provides μ( ˜f) (= 1, of course).
Now, it is obvious that ,for every map g homotopic to ˜f , the restrictions g|S2

i
, i = 1, 2, are

surjective. Hence, for every such map g, the equation g(x) = a has at least one root in each
S2
i , i = 1, 2, whatever the point a ∈ S2. Therefore, if x0 is a root of g(x) = a belonging to the

interior of one of the 2 cells of K, then the equation g(x) = a must have a second root, which
must belong to the closure of the other 2 cell of K. But in this case, #g−1(a) ≥ 2, and so the
pair (g, a) do not provide μ( ˜f). This means that the map ˜f is not of type ∇2. Moreover, this
shows that if (ϕ̃, a) is a pair providing μ( ˜f ), then necessarily ϕ̃−1(a) = {e0}. Thus, for every
map ϕ̃ : K → S2 homotopic to ˜f , there is at most one point in S2 whose preimage by ϕ̃ is
a set with μ( ˜f) points. Now, let p2 : S2 → RP2 be a double covering, and let f : K → RP2

be the composition f = p2 ◦ ˜f . Then ˜f is a lifting of f through p2, and, by Theorem 3.6, we
have μ(f) > 2μ( ˜f). More precisely, μ(f) = 3. Moreover, μC(f) = 1, N(f) = 2 and μ(f)/=
μC(f)N(f).

In the next theorem, A(f) denotes the absolute degree of the given map f (see [10] or
[11]).

Theorem 5.8. Let f : M → RP2 be a map inducing the trivial homomorphism on fundamental
groups. Then, μ(f) = 0 if A(f) = 0 and μ(f) = 2 if A(f)/= 0.
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Proof. Since f#π1(M) is trivial, f has a lifting ˜f : M → S2 through the (universal) double
covering p2 : S2 → RP2. By Proposition 5.5, ˜f is of type ∇2. Hence, by Theorem 5.6, we have
μ(f) = 2μ( ˜f). Now, it is well known that μ( ˜f) = 0 if A( ˜f) = 0 and μ( ˜f) = 1 if A( ˜f)/= 0. (see,
e.g., [11] or [9] or [3]). But, by the definition of absolute degree (see [11, page 371]) it is easy
to check that A(f) = 2A( ˜f). This concludes the proof.

Theorem 5.8 is not true, in general, if the homomorphism f# : π1(M) → π1(RP2) is
not the trivial homomorphism. To illustrate this, let id : RP2 → RP2 be the identity map.
It is obvious that this map induces the identity isomorphism on fundamental groups and
μ(id) = 1.

In the next theorem, X is a compact, connected, locally path connected, and semilocally
simply connected space.

Theorem 5.9. Let f : X → RP2 be a map. Then μ(f) = μC(f)N(f) if at least one of the following
alternatives is true: < (i) f#π1(X)/= 0; (ii) X is a 2-dimensional CW complex, and f is of type ∇2.

Proof. Up to isomorphism, there are only two covering spaces for RP2, namely, the identity
covering p1 : RP2 → RP2 and the double covering p2 : S2 → RP2. Suppose that (i) is true.
Then, f#π1(X) = π1(RP2) ≈ Z2, and p1 is a covering corresponding to f#π1(X). Thus, either
N(f) = 0 or N(f) = R(f) = 1. Now, if N(f) = 0, then also μ(f) = 0 by Proposition 3.8. If
N(f) = 1, then the result is obvious. Therefore, we have μ(f) = μC(f)N(f). If, on the other
hand, (ii) is true and (i) is false, then we use Theorem 5.6.

Example 5.7 shows that the assumptions in Theorem 5.9 are not superfluous.
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