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1. Introduction

Let (X, d) be a metric space. Let 2X denote a collection of nonempty subsets of X, Cl(X)
a collection of nonempty closed subsets of X, and CB(X) a collection of nonempty closed
bounded subsets of X. Let H be the Hausdorff metric with respect to d, that is,

H(A,B) = max

{
sup
x∈A

d(x, B), sup
y∈B

d
(
y,A

)}
, (1.1)

for every A,B ∈ CB(X), where d(x, B) = infy∈Bd(x, y).
An element x ∈ X is called a fixed point of a multivalued map (multimap) T : X → 2X

if x ∈ T(x). We denote Fix(T) = {x ∈ X : x ∈ T(x)}.
A sequence {xn} inX is called an orbit of T at x0 ∈ X if xn ∈ T(xn−1) for all n ≥ 1. Amap

f : X → R is called lower semicontinuous if for any sequence {xn} ⊂ X such that xn → x ∈ X
we have f(x) ≤ lim infn→∞f(xn).
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Using the concept of Hausdorff metric, Nadler [1] established the following multi-
valued version of the Banach contraction principle.

Theorem 1.1. Let (X, d) be a complete metric space and let T : X → CB(X) be a map such that for
a fixed constant h ∈ (0, 1) and for each x, y ∈ X,

H
(
T(x), T

(
y
)) ≤ hd

(
x, y

)
. (1.2)

Then Fix(T)/= ∅.

This result has been generalized in many directions. For instance, Mizoguchi and
Takahashi [2] have obtained the following general form of the Nadler’s theorem.

Theorem 1.2. Let (X, d) be a complete metric space and let T : X → CB(X). Assume that there
exists a function k : [0,∞) → [0, 1) such that for every t ∈ [0,∞),

lim sup
r→ t+

k(r) < 1, (1.3)

and for all x, y ∈ X,

H
(
T(x), T

(
y
)) ≤ k

(
d
(
x, y

))
d
(
x, y

)
. (1.4)

Then Fix(T)/= ∅.

Many authors have been using the Hausdorff metric to obtain fixed point results for
multivalued maps. But, in fact, for most cases the existence part of the results can be proved
without using the concept of Hausdorffmetric. Recently, Feng and Liu [3] extended Nadler’s
fixed point theorem without using the concept of the Hausdorff metric. They proved the
following result.

Theorem 1.3. Let (X, d) be a complete metric space and let T : X → Cl(X) be a map such that for
any fixed constants h, b ∈ (0, 1), h < b, and for each x ∈ X, there is y ∈ T(x) satisfying the following
conditions:

bd
(
x, y

) ≤ d(x, T(x)),

d
(
y, T

(
y
)) ≤ hd

(
x, y

)
.

(1.5)

Then Fix(T)/= ∅ provided that a real-valued function g on X, g(x) = d(x, T(x)), is lower
semicontinuous.

Recently, Klim and Wardowski [4] generalized Theorem 1.3 as follows.

Theorem 1.4. Let (X, d) be a complete metric space and let T : X → Cl(X). Assume that the
following conditions hold:
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(I) if there exist a number b ∈ (0, 1) and a function k : [0,∞) → [0, b) such that for each
t ∈ [0,∞),

lim sup
r→ t+

k(r) < b, (1.6)

(II) for any x ∈ X there is y ∈ T(x) satisfying

bd
(
x, y

) ≤ d(x, T(x)),

d
(
y, T

(
y
)) ≤ k

(
d
(
x, y

))
d
(
x, y

)
.

(1.7)

Then Fix(T)/= ∅ provided that a real-valued function g on X, g(x) = d(x, T(x)), is lower
semicontinuous.

The above results have been generalized in many directions; see for instance [5–9] and
references therein.

In [10], Kada et al. introduced the concept of w-distance on a metric space as follows.
A function ω : X × X → [0,∞) is called w-distance on X if it satisfies the following

for each x, y, z ∈ X:

(w1) ω(x, z) ≤ ω(x, y) +ω(y, z);

(w2) a map ω(x, ·) : X → [0,∞) is lower semicontinuous; that is, if there is a sequence
{yn} in X with yn → y ∈ X, then ω(x, y) ≤ lim infn→∞ω(x, yn);

(w3) for any ε > 0, there exists δ > 0 such that ω(z, x) ≤ δ and ω(z, y) ≤ δ imply
d(x, y) ≤ ε.

Note that, in general for x, y ∈ X, ω(x, y)/=ω(y, x) and neither of the implications
ω(x, y) = 0 ⇔ x = y necessarily hold. Clearly, the metric d is a w-distance on X. Let (Y, ‖ · ‖)
be a normed space. Then the functionsω1, ω2 : Y ×Y → [0,∞) defined byω1(x, y) = ‖y‖ and
ω2(x, y) = ‖x‖+‖y‖ for all x, y ∈ Y arew-distances [10]. Many other examples and properties
of the w-distance can be found in [10, 11].

The following lemmas concerning w-distance are crucial for the proofs of our results.

Lemma 1.5 (see [10]). Let {xn} and {yn} be sequences in X and let {αn} and {βn} be sequences
in [0,∞) converging to 0. Then, for the w-distance ω on X, the following conditions hold for every
x, y, z ∈ X:

(a) ifω(xn, y) ≤ αn andω(xn, z) ≤ βn for any n ∈ N, then y = z; in particular, ifω(x, y) = 0
and ω(x, z) = 0, then y = z;

(b) if ω(xn, yn) ≤ αn and ω(xn, z) ≤ βn for any n ∈ N, then {yn} converges to z;
(c) if ω(xn, xm) ≤ αn for any n,m ∈ N withm > n, then {xn} is a Cauchy sequence;

(d) if ω(y, xn) ≤ αn for any n ∈ N, then {xn} is a Cauchy sequence.

Lemma 1.6 (see [12]). LetK be a closed subset ofX and ω be aw-distance on X. Suppose that there
exists u ∈ X such that ω(u, u) = 0. Then ω(u,K) = 0 ⇔ u ∈ K, where ω(u,K) = infy∈Kω(u, y).
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Using the concept ofw-distance, the authors of this paper most recently extended and
generalized Theorem 1.4 and [8, Theorem 3.3] as follows.

Theorem 1.7 (see [13]). Let (X, d) be a complete metric space with a w-distance ω. Let T : X →
Cl(X) be a multivalued map satisfying that for any constant b ∈ (0, 1) and for each x ∈ X there is
y ∈ Jx

b
such that

ω
(
y, T

(
y
)) ≤ k

(
ω
(
x, y

))
ω
(
x, y

)
, (1.8)

where Jx
b
= {y ∈ T(x) : bω(x, y) ≤ ω(x, T(x))} and k is a function from [0,∞) to [0, b) with

lim supr→ t+k(r) < b, for every t ∈ [0,∞). Suppose that a real-valued function g on X defined by

g(x) = ω(x, T(x)) is lower semicontinuous. Then there exists vo ∈ X such that g(vo) = 0. Further,
if ω(vo, vo) = 0, then v0 ∈ Fix(T).

Let A ∈ (0,+∞]. Let η : [0, A) → R satisfy that

(i) η(0) = 0 and η(t) > 0 for each t ∈ (0, A);

(ii) η is nondecreasing on [0, A);

(iii) η is subadditive; that is,

η(t1 + t2) ≤ η(t1) + η(t2) ∀t1, t2 ∈ (0, A). (1.9)

We define Ω[0, A) = {η : η satisfies (i)–(iii) above}.

Remark 1.8. (a) It follows from (ii) property of η that for each t1, t2 ∈ (0, A);

η(t1) < η(t2) =⇒ t1 < t2. (1.10)

(b) If η ∈ Ω[0, A) and η is continuous at 0, then due to the following two facts η
must be continuous at each point of [0, A). First, every sub-additive and continuous function
η at 0 such that η(0) = 0 is right upper and left lower semicontinuous [14]. Second, each
nondecreasing function is left upper and right lower semicontinuous.

(c) For any η ∈ Ω[0, A) and for each sequence αn in [0, A) satisfying limn→∞η(αn) = 0,
we have limn→∞αn = 0.

For a metric space (X, d), we denote δ(X) = sup{d(x, y) : x, y ∈ X}. In the sequel, we
consider A = δ(X) if δ(X) = ∞ and A > δ(X) if δ(X) < ∞.

Assuming that the function η is continuous and satisfies the conditions (i) and (ii)
above, Zhang [15] proved some fixed point results for single-valuedmaps which satisfy some
contractive type condition involving such function η. Recently, using η ∈ Ω[0, A), Pathak and
Shahzad [9] generalized Theorem 1.4.

In this paper, we prove some results on the existence of fixed points for contractive
type multimaps involving the function η ◦ ω, where η ∈ Ω[0, A) and the function ω is a w-
distance on a metric space X. Our results either generalize or improve several known fixed
point results in the setting of metric spaces, (see Remarks 2.3 and 2.6).
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2. The Results

Theorem 2.1. Let (X, d) be a complete metric space with a w-distance ω. Let T : X → Cl(X) be a
multimap. Assume that the following conditions hold:

(I) there exist a number b ∈ (0, 1) and a function k : [0,∞) → [0, b) such that for each
t ∈ [0,∞)

lim sup
r→ t+

k(r) < b; (2.1)

(II) there exists a function η ∈ Ω[0, A) such that for any x ∈ X, there exists y ∈ T(x) satisfying

bη
(
ω
(
x, y

)) ≤ η(ω(x, T(x))),

η
(
ω
(
y, T

(
y
))) ≤ k

(
ω
(
x, y

))
η
(
ω
(
x, y

))
;

(2.2)

(III) the map g : X → R defined by g(x) = ω(x, T(x)) is lower semicontinuous.

Then there exists v0 ∈ X such that g(v0) = 0. Further if ω(v0, v0) = 0, then v0 ∈ T(v0).

Proof. Let x0 ∈ X be any initial point. Then from (II)we can choose x1 ∈ T(x0) such that

bη(ω(x0, x1)) ≤ η(ω(x0, T(x0))), (2.3)

η(ω(x1, T(x1))) ≤ k(ω(x0, x1))η(ω(x0, x1)), k(ω(x0, x1)) < b. (2.4)

From (2.3) and (2.4), we have

η(ω(x0, T(x0))) − η(ω(x1, T(x1))) ≥ bη(ω(x0, x1)) − k(ω(x0, x1))η(ω(x0, x1))

= [b − k(ω(x0, x1))]η(ω(x0, x1)) > 0.
(2.5)

Similarly, there exists x2 ∈ T(x1) such that

bη(ω(x1, x2)) ≤ η(ω(x1, T(x1))), (2.6)

η(ω(x2, T(x2))) ≤ k(ω(x1, x2))η(ω(x1, x2)), k(ω(x1, x2)) < b. (2.7)

From (2.6) and (2.7), we obtain

η(ω(x1, T(x1))) − η(ω(x2, T(x2))) ≥ bη(ω(x1, x2)) − k(ω(x1, x2))η(ω(x1, x2))

= [b − k(ω(x1, x2))]η(ω(x1, x2)) > 0.
(2.8)
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From (2.4) and (2.6), it follows that

η(ω(x1, x2)) ≤ 1
b
η(ω(x1, T(x1))) ≤ 1

b
k(ω(x0, x1))η(ω(x0, x1)) ≤ η(ω(x0, x1)). (2.9)

Continuing this process, we get an orbit {xn} of T at x0 satisfying the following:

bη(ω(xn, xn+1)) ≤ η(ω(xn, T(xn))),

η(ω(xn+1, T(xn+1))) ≤ k(ω(xn, xn+1))η(ω(xn, xn+1)), k(ω(xn, xn+1)) < b.
(2.10)

From (2.10), we get

η(ω(xn, T(xn))) − η(ω(xn+1, T(xn+1))) ≥ [b − k(ω(xn, xn+1))]η(ω(xn, xn+1)). (2.11)

Note that for each n,

η(ω(xn+1, T(xn+1))) < η(ω(xn, T(xn))),

η(ω(xn, xn+1)) ≤ η(ω(xn−1, xn)).
(2.12)

Thus the sequences of non-negative real numbers {η(ω(xn, T(xn)))} and {η(ω(xn, xn+1))} are
decreasing. Now, since η is nondecreasing, it follows that {ω(xn, T(xn))} and {ω(xn, xn+1)}
are decreasing sequences and are bounded from below, thus convergent. Now, by the
definition of the function k, there exists α ∈ [0, b) such that

lim sup
n→∞

k(ω(xn, xn+1)) = α. (2.13)

Thus, for any b0 ∈ (α, b), there exists n0 ∈ N such that

k(ω(xn, xn+1)) < b0, ∀n > n0, (2.14)

and thus for all n > n0,we have

k(ω(xn, xn+1)) × · · · × k(ω(xn0+1, xn0+2)) < bn−n0
0 . (2.15)

Also, it follows from (2.11) that for all n > n0,

η(ω(xn, T(xn))) − η(ω(xn+1, T(xn+1))) ≥ βη(ω(xn, xn+1)), (2.16)
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where β = b − b0. Note that for all n > n0, we have

η(ω(xn+1, T(xn+1))) ≤ k(ω(xn, xn+1))η(ω(xn, xn+1))

≤ 1
b
k(ω(xn, xn+1))η(ω(xn, T(xn)))

≤ 1
b

1
b
k(ω(xn, xn+1))k(ω(xn−1, xn))η(ω(xn−1, T(xn−1)))

...

≤ 1
bn

[k(ω(xn, xn+1)) × · · · × k(ω(x1, x2))]η(ω(x1, T(x1)))

=
k(ω(xn, xn+1)) × · · · × k(ω(xn0+1, xn0+2))

bn−n0

× k(ω(xn0 , xn0+1)) × · · · × k(ω(x1, x2))η(ω(x1, T(x1)))
bn0

.

(2.17)

Thus

η(ω(xn+1, T(xn+1))) ≤
(
b0
b

)n−n0

q, (2.18)

where q = k(ω(xn0 , xn0+1))× · · · × k(ω(x1, x2))η(ω(x1, T(x1)))/bn0 .Now, since b0 < b,we have
limn→∞(b0/b)

n−n0 = 0, and we get the decreasing sequence {η(ω(xn, T(xn)))} converging to
0. Thus we have

ω(xn, T(xn)) −→ 0. (2.19)

Note that for all n > n0,

η(ω(xn, xn+1)) < γnη(ω(x0, x1)), (2.20)

where γ = b0/b < 1. Now, for any n,m ∈ N, m > n > n0,

η(ω(xn, xm)) ≤
m−1∑
j=n

η
(
ω
(
xj , xj+1

))
<

γn

1 − γ
η(ω(x0, x1)). (2.21)

Clearly, limn,m→∞η(ω(xn, xm)) = 0, and thus we get that

lim
n,m→∞

ω(xn, xm) = 0, (2.22)
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that is, {xn} is Cauchy sequence in X. Due to the completeness of X, there exists some v0 ∈
X such that limn→∞xn = v0. Due to the fact that the function g is lower semicontinuous and
(2.19), we have

0 ≤ g(v0) ≤ lim inf
n→∞

g(xn) = lim inf
n→∞

ω(xn, T(xn)) = 0, (2.23)

thus, g(v0) = ω(v0, T(v0)) = 0. Since ω(v0, v0) = 0, and T(v0) is closed, it follows from
Lemma 1.6 that v0 ∈ T(v0).

If we consider a constant map k(t) = h, t ∈ (0,∞), h ∈ (0, b) in Theorem 2.1, then we
obtain the following result.

Corollary 2.2. Let (X, d) be a complete metric space with a w-distance ω. Let T : X → Cl(X) be
a multimap satisfying that for any constants b, h ∈ (0, 1), h < b and for each x ∈ X there is y ∈ Jxb
such that

η
(
ω
(
y, T

(
y
))) ≤ hη

(
ω
(
x, y

))
, (2.24)

where Jx
b
= {y ∈ T(x) : bη(ω(x, y)) ≤ η(ω(x, T(x)))}. Suppose that a real-valued function g on X

defined by g(x) = ω(x, T(x)) is lower semicontinuous. Then there exists vo ∈ X such that g(vo) = 0.
Further, if ω(vo, vo) = 0, then v0 ∈ Fix(T).

Remark 2.3. (a) Theorem 2.1 extends and generalizes Theorem 1.7. Indeed, if we consider
η(t) = t for each t ∈ [0, A) in Theorem 2.1, then we can get Theorem 1.7 due to Latif and
Abdou [13, Theorem 2.2].

(b) Theorem 2.1 contains Theorem 2.2 of Pathak and Shahzad [9] as a special case.
(c) Corollary 2.2 extends and generalizes Theorem 3.3 of Latif and Albar [8].

We have also the following fixed point result which generalizes [13, Theorem 2.4].

Theorem 2.4. Suppose that all the hypotheses of Theorem 2.1 except (III) hold. Assume that

inf
{
η(ω(x, v)) + η(ω(x, T(x))) : x ∈ X

}
> 0, (2.25)

for every v ∈ X with v /∈ T(v) and the function η is continuous at 0. Then Fix(T)/= ∅.

Proof. Following the proof of Theorem 2.1, there exists a Cauchy sequence {xn} and v0 ∈ X
such that xn+1 ∈ T(xn) and limn→∞xn = v0. Since ω(xn, ·) is lower semicontinuous, it follows,
from the proof of Theorem 2.1 that for all n > n0,we have

η(ω(xn, v0)) ≤ lim inf
m→∞

η(ω(xn, xm)) <
γn

1 − γ
η(ω(x0, x1)), (2.26)

where γ = b0/b < 1. Since ω(xn, T(xn)) ≤ ω(xn, xn+1), for all n, and the function η is
nondecreasing, we have

η(ω(xn, T(xn))) ≤ η(ω(xn, xn+1)), (2.27)
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and thus by using (2.20), we get

η(ω(xn, T(xn))) ≤ γnη(ω(x0, x1)). (2.28)

Assume that v0 /∈ T(v0). Then, we have

0 < inf
{
η(ω(x, v0)) + η(ω(x, T(x))) : x ∈ X

}
≤ inf

{
η(ω(xn, v0)) + η(ω(xn, T(xn))) : n > n0

}
≤ inf

{
γn

1 − γ
η(ω(x0, x1)) + γnη(ω(x0, x1)) : n > n0

}

=
{
2 − γ

1 − γ
η(ω(x0, x1))

}
inf

{
γn : n > n0

}
= 0,

(2.29)

which is impossible and hence v0 ∈ Fix(T).

Theorem 2.5. Let (X, d) be a complete metric space with a w-distance ω. Let T : X → Cl(X) be a
multimap. Assume that the following conditions hold.

(I) there exists a function k : [0,∞) → [0, 1) such that for each t ∈ [0,∞),

lim sup
r→ t+

k(r) < 1; (2.30)

(II) there exists a function η ∈ Ω[0, A) such that for any x ∈ X, there exists y ∈ T(x) satisfying

η
(
ω
(
x, y

))
= η(ω(x, T(x))),

η
(
ω
(
y, T

(
y
))) ≤ k

(
ω
(
x, y

))
η
(
ω
(
x, y

))
;

(2.31)

(III) the map g : X → R defined by g(x) = ω(x, T(x)) is lower semicontinuous.

Then there exists v0 ∈ X such that g(v0) = 0. Further if ω(v0, v0) = 0, then v0 ∈ T(v0).

Proof. Let x0 ∈ X be any initial point. Following the same method as in the proof of
Theorem 2.1, we obtain the existence of a Cauchy sequence {xn} such that xn+1 ∈ T(xn),
satisfying

η(ω(xn, xn+1)) = η(ω(xn, T(xn))),

η(ω(xn+1, T(xn+1))) ≤ k(ω(xn, xn+1))η(ω(xn, xn+1)), k(ω(xn, xn+1)) < 1.
(2.32)

Consequently, there exists v0 ∈ X such that limn→∞xn = v0. Since g is lower semicontinuous,
we have

0 ≤ g(v0) ≤ lim
n→∞

inf g(xn) = 0, (2.33)
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thus, g(v0) = ω(v0, T(v0)) = 0. Further by the closedness of T(v0) and since ω(v0, v0) = 0, it
follows from Lemma 1.6 that v0 ∈ T(v0).

Remark 2.6. Theorem 2.5 extends and generalizes fixed point results of Klim and Wardowski
[4, Theorem 2.2], Cirić [5, Theorem 7], and improves fixed point result of Pathak and Shahzad
[9, Theorem 2.4].

Following the samemethod as in the proof of Theorem 2.4, we can obtain the following
fixed point result.

Theorem 2.7. Suppose that all the hypotheses of Theorem 2.5 except (III) hold. Assume that

inf
{
η(ω(x, v)) + η(ω(x, T(x))) : x ∈ X

}
> 0, (2.34)

for every v ∈ X with v /∈ T(v) and the function η is continuous at 0, then Fix(T)/= ∅.

Now we present an example which satisfies all the conditions of the main results,
namely, Theorems 2.1 and 2.5 and thus the set of fixed points of T is nonempty.

Example 2.8. Let X = [0, 1]with the usual metric d.Define aw-distance function ω : X ×X →
[0,∞), by

ω
(
x, y

)
= y ∀x, y ∈ X. (2.35)

Let T : X → Cl(X) be defined as

T(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
1
2
x2
}
; x ∈

[
0,

15
32

)
∪
(
15
32

, 1
]
,

{
0,

1
6
,
7
32

}
; x =

15
32

.

(2.36)

Note that δ(X) = 1. Let A ∈ [1,∞), b = 9/10. Define a function η : [0, A) → R by η(t) = t1/2.
Clearly, η ∈ Ω[0, A). Define k : [0,∞) → [0, b) by

k(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
9
8

)1/4

t1/2; t ∈
[
0,

1
2

)
,

22
25

; t ∈
[
1
2
,∞

)
.

(2.37)

Note that

g(x) = ω(x, T(x)) =

⎧⎪⎪⎨
⎪⎪⎩

{
1
2
x2
}
; x ∈

[
0,

15
32

)
∪
(
15
32

, 1
]
.

0; x =
15
32

.

(2.38)
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Clearly, g is lower semicontinuous. Note that for each x ∈ [0, 15/32) ∪ (15/32, 1], we have

bη
(
ω
(
x, y

))
=

9
10

η

(
ω

(
x,

1
2
x2
))

=
9
10

(
1
2
x2
)1/2

≤
(
1
2
x2
)1/2

= η(ω(x, T(x))),

η
(
ω
(
y, T

(
y
)))

= η

(
ω

(
1
2
x2,

1
2

(
1
2
x2
)2

))
≤
(
9
8

)1/4(1
2
x2
)1/2(1

2
x2
)1/2

= k
(
ω
(
x, y

))
η
(
ω
(
x, y

))
.

(2.39)

Thus, for x ∈ [0, 1], x /= 15/32, T satisfies all the conditions of Theorem 2.1. Now, let
x = 15/32, then we have T(x) = {0, 1/6, 7/32}. Clearly, there exists y = 0 ∈ T(x), such
that η(ω(x, T(x))) = 0. Now

bη
(
ω
(
x, y

))
=

9
10

η

(
ω

(
15
32

, 0
))

= 0 = η(ω(x, T(x))),

η
(
ω
(
y, T

(
y
)))

= η(ω(0, 0)) = k
(
ω
(
x, y

))
η
(
ω
(
x, y

))
.

(2.40)

Thus, all the hypotheses of Theorem 2.1 are satisfied and clearly we have Fix(T) = {0}. Now,
if we consider b = 1, then all the hypotheses of Theorem 2.5 are also satisfied. Note that in the
above example the w-distance ω is not a metric d.
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