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1. Introduction

In this paper, assuming a natural sequentially compact conditionwe establish new fixed point
theorems for Urysohn type maps between Fréchet spaces. In Section 2 we present new Leray-
Schauder alternatives, Krasnoselskii and Lefschetz fixed point theory for admissible type
maps. The proofs rely on fixed point theory in Banach spaces and viewing a Fréchet space
as the projective limit of a sequence of Banach spaces. Our theory is partly motivated by a
variety of authors in the literature (see [1–6] and the references therein).

Existence in Section 2 is based on a Leray-Schauder alternative for Kakutani maps (see
[4, 5, 7] for the history of this result) which we state here for the convenience of the reader.

Theorem 1.1. Let B be a Banach space,U an open subset of B, and 0 ∈ U. Suppose T : U → CK(B)
is an upper semicontinuous compact (or countably condensing) map (here CK(B) denotes the family
of nonempty convex compact subsets of B). Then either

(A1) T has a fixed point inU or

(A2) there exists u ∈ ∂U (the boundary of U in B) and λ ∈ (0, 1) with u ∈ λTu.
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Existence in Section 2 will also be based on the topological transversality theorem (see
[5, 7] for the history of this result)which we now state here for the convenience of the reader.
Let B be a Banach space and U an open subset of B.

Definition 1.2. We let F ∈ K(U,B) denote the set of all upper semicontinuous compact (or
countably condensing) maps F : U → CK(E).

Definition 1.3. We let F ∈ K∂U(U,B) if F ∈ K(U,B) with x /∈F(x) for x ∈ ∂U.

Definition 1.4. Amap F ∈ K∂U(U,B) is essential inK∂U(U,B) if for everyG ∈ K∂U(U,B)with
G|∂U = F|∂U there exists x ∈ U with x ∈ G (x). Otherwise F is inessential in K∂U(U,B) (i.e.,
there exists a fixed point free G ∈ K∂U(U,B) with G|∂U = F|∂U).

Definition 1.5. F,G ∈ K∂U(U,B) are homotopic in K∂U(U,B), written F ∼= G in K∂U(U,B),
if there exists an upper semicontinuous compact (or countably condensing) map N : U ×
[0, 1] → CK(B) such that Nt(u) = N(u, t) : U → CK(B) belongs to K∂U(U,B) for each
t ∈ [0, 1] and N0 = F with N1 = G.

Theorem 1.6. Let B and U be as above and let F ∈ K∂U(U,B). Then the following conditions are
equivalent:

(i) F is inessential in K∂U(U,B);

(ii) there exists a map G ∈ K∂U(U,B) with x /∈G(x) for x ∈ U and F ∼= G in K∂U(U,B).

Theorem 1.6 immediately yields the topological transversality theorem for Kakutani
maps.

Theorem 1.7. Let B and U be as above. Suppose that F and G are two maps in K∂U(U,B) with
F ∼= G in K∂U(U,B). Then F is essential in K∂U(U,B) if and only if G is essential in K∂U(U,B).

Also existence in Section 2 will be based on the following result of Petryshyn [8,
Theorem 3].

Theorem 1.8. Let E be a Banach space and let C ⊆ E be a closed cone. LetU and V be bounded open
subsets in E such that 0 ∈ U ⊆ U ⊆ V and let F : W → CK(C) be an upper semicontinuous,
k-set contractive (countably) map; here 0 ≤ k < 1, W = V ∩ C and W denotes the closure of W in C.
Assume that

(1) ‖y‖ ≥ ‖x‖ ∀y ∈ Fx and x ∈ ∂Ω and ‖y‖ ≤ ‖x‖ ∀y ∈ Fx and x ∈ ∂W (here Ω = U ∩ C
and ∂W denotes the boundary ofW in C) or

(2) ‖y‖ ≤ ‖x‖ ∀y ∈ F x and x ∈ ∂Ω and ‖y‖ ≥ ‖x‖ ∀y ∈ Fx and x ∈ ∂W .

Then F has a fixed point in W \Ω.

Also in Section 2 we consider a class of maps which contain the Kakutani maps.
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Suppose that X and Y are Hausdorff topological spaces. Given a class X of maps,
X(X,Y ) denotes the set of maps F : X → 2Y (nonempty subsets of Y ) belonging to X, and
Xc the set of finite compositions of maps in X. A class U of maps is defined by the following
properties:

(i) U contains the class C of single-valued continuous functions;

(ii) each F ∈ Uc is upper semicontinuous and compact valued;

(iii) for any polytope P , F ∈ Uc(P, P) has a fixed point, where the intermediate spaces
of composites are suitably chosen for each U.

Definition 1.9. F ∈ Uκ
c (X,Y ) if for any compact subset K of X, there is a G ∈ Uc(K,Y ) with

G(x) ⊆ F(x) for each x ∈ K.

The class Uκ
c is due to Park [9] and his papers include many examples in this class.

Examples of Uκ
c maps are the Kakutani maps, the acyclic maps, the approximable maps, and

the maps admissible in the sense of Gorniewicz.
Existence in Section 2 is based on a Leray-Schauder alternative [10] which we state

here for the convenience of the reader.

Theorem 1.10. Let E be a Banach space, U an open convex subset of E, and 0 ∈ U. Suppose
F ∈ Uκ

c (U,E) is an upper semicontinuous countably condensing map with x /∈ λFx for x ∈ ∂U and
λ ∈ (0, 1). Then F has a fixed point inU.

Also existence in Section 2 will be based on some Lefschetz type fixed point theory. Let
X,Y, and Γ be Hausdorff topological spaces. A continuous single-valued map p : Γ → X is
called a Vietoris map (written p : Γ ⇒ X) if the following two conditions are satisfied:

(i) for each x ∈ X, the set p−1(x) is acyclic,

(ii) p is a proper map, that is, for every compact A ⊆ X one has that p−1(A) is compact.

Let D(X,Y ) be the set of all pairs X
p⇐ Γ

q→ Y where p is a Vietoris map and q is
continuous. We will denote every such diagram by (p, q). Given two diagrams (p, q) and

(p′, q′), where X
p′⇐ Γ′

q′→ Y , we write (p, q) ∼ (p′, q′) if there are maps f : Γ → Γ′ and
g : Γ′ → Γ such that q′ ◦ f = q, p′ ◦ f = p, q ◦ g = q′, and p ◦ g = p′. The equivalence class of a
diagram (p, q) ∈ D(X,Y )with respect to ∼ is denoted by

φ =
{
X

p⇐= Γ
q−→ Y

}
: X −→ Y (1.1)

or φ = [(p, q)] and is called a morphism from X to Y . We let M(X,Y ) be the set of all such
morphisms. For any φ ∈ M(X,Y ) a set φ(x) = qp−1(x) where φ = [(p, q)] is called an image
of x under a morphism φ.

Consider vector spaces over a field K. Let E be a vector space and f : E → E an
endomorphism. Now letN(f) = {x ∈ E : f (n)(x) = 0 for some n}where f (n) is the nth iterate
of f , and let Ẽ = E \ N(f). Since f(N(f)) ⊆ N(f) one has the induced endomorphism
f̃ : Ẽ → Ẽ. We call f admissible if dim Ẽ < ∞; for such f we define the generalized trace
Tr(f) of f by putting Tr(f) = tr(f̃)where tr stands for the ordinary trace.
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Let f = {fq} : E → E be an endomorphism of degree zero of a graded vector space
E = {Eq}. We call f a Leray endomorphism if (i) all fq are admissible and (ii) almost all Ẽq

are trivial. For such f we define the generalized Lefschetz number Λ(f) by

Λ
(
f
)
=
∑
q

(−1)qTr(fq
)
. (1.2)

LetH be the C̆ech homology functor with compact carriers and coefficients in the field
of rational numbers K from the category of Hausdorff topological spaces and continuous
maps to the category of graded vector spaces and linear maps of degree zero. Thus H(X) =
{Hq(X)} is a graded vector space, with Hq(X) being the q-dimensional C̆ech homology
group with compact carriers of X. For a continuous map f : X → X, H(f) is the induced
linear map f� = {f�q} where f�q : Hq(X) → Hq(X).

The C̆ech homology functor can be extended to a category of morphisms (see [11, page
364]) and also note that the homology functor H extends over this category, that is, for a
morphism

φ =
{
X

p⇐= Γ
q−→ Y

}
: X −→ Y (1.3)

we define the induced map

H
(
φ
)
= φ� : H(X) −→ H(Y ) (1.4)

by putting φ� = q� ◦ p−1� .
Let φ : X → Y be a multivalued map (note for each x ∈ X we assume φ(x) is a

nonempty subset of Y ). A pair (p, q) of single valued continuous maps of the form X
p←

Γ
q→ Y is called a selected pair of φ (written (p, q) ⊂ φ) if the following two conditions hold:

(i) p is a Vietoris map,

(ii) q(p−1(x)) ⊂ φ(x) for any x ∈ X.

Definition 1.11. An upper semicontinuous compact map φ : X → Y is said to be admissible
(and we write φ ∈ Ad(X,Y )) provided that there exists a selected pair (p, q) of φ.

Definition 1.12. An upper semicontinuous map φ : X → Y is said to be admissible in the
sense of Gorniewicz (and we write φ ∈ AD(X,Y )) provided that there exists a selected pair
(p, q) of φ.

Definition 1.13. A map φ ∈ Ad(X,X) is said to be a Lefschetz map if for each selected pair
(p, q) ⊂ φ the linear map q� p

−1
� : H(X) → H(X) (the existence of p−1� follows from the

Vietoris theorem) is a Leray endomorphism.

If φ : X → X is a Lefschetz map, we define the Lefschetz set Λ(φ) (or ΛX(φ)) by

Λ
(
φ
)
=
{
Λ
(
q�p

−1
�

)
:
(
p, q

) ⊂ φ
}
. (1.5)
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Definition 1.14. AHausdorff topological space X is said to be a Lefschetz space provided that
every φ ∈ Ad(X,X) is a Lefschetz map and Λ(φ)/= {0} that implies φ has a fixed point.

Also we present Krasnoselskii compression and expansion theorems in Section 2 in the
Fréchet space setting. Let E = (E, | · |) be a normed linear space and C ⊆ E a closed cone.
For r > 0 let BC(0, r) = {x ∈ C : |x| ≤ r} and it is well known that BC(0, r) = B(0, R) ∩ C
where B(0, r) = {x ∈ E : |x| ≤ r}. Our next result, Theorem 1.8, was established in [12] and
Theorem 1.10 can be found in [13].

Theorem 1.15. Let E = (E, | · |) be a normed linear space, C ⊆ E a closed cone, r, R constants, and
0 < r < R. Suppose that F ∈ Uκ

c (B(0, R) ∩ C,C) is compact with

⎧
⎨
⎩

∣∣y∣∣ ≥ |x| ∀y ∈ Fx, x ∈ ∂BC(0, r),
∣∣y∣∣ ≤ |x| ∀y ∈ Fx, x ∈ ∂BC(0, R).

(1.6)

Then F has a fixed point in BCr,R = {x ∈ C : r ≤ ‖x‖ ≤ R}.

Theorem 1.16. Let E = (E, | · |) be a normed linear space, C ⊆ E a closed cone, r, R constants, and
0 < r < R. Suppose that F ∈ AD(C,C) is completely continuous with

⎧
⎨
⎩

∣∣y∣∣ ≤ |x| ∀y ∈ Fx, x ∈ ∂BC(0, r),
∣∣y∣∣ ≥ |x| ∀y ∈ Fx, x ∈ ∂BC(0, R).

(1.7)

Then F has a fixed point in BCr,R.

Now let I be a directed set with order ≤ and let {Eα}α∈I be a family of locally convex
spaces. For each α ∈ I, β ∈ I for which α ≤ β let πα,β : Eβ → Eα be a continuous map. Then
the set

{
x = (xα) ∈

∏
α∈I

Eα : xα = πα,β

(
xβ

) ∀α, β ∈ I, α ≤ β

}
(1.8)

is a closed subset of
∏

α∈IEα and is called the projective limit of {Eα}α∈I and is denoted by
lim←Eα (or lim←{Eα, πα,β} or the generalized intersection [14, page 439]

⋂
α∈IEα).

2. Fixed Point Theory in Fréchet Spaces

Let E = (E, {| · |n}n∈N) be a Fréchet space with the topology generated by a family of
seminorms {| · |n : n ∈ N}; here N = {1, 2, . . .}. We assume that the family of seminorms
satisfies

|x|1 ≤ |x|2 ≤ |x|3 ≤ · · · for every x ∈ E. (2.1)

A subset X of E is bounded if for every n ∈ N there exists rn > 0 such that |x|n ≤ rn
for all x ∈ X. For r > 0 and x ∈ E we denote B(x, r) = {y ∈ E : |x − y|n ≤ r ∀n ∈ N}.
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To E we associate a sequence of Banach spaces {(En, | · |n)} described as follows. For every
n ∈ N we consider the equivalence relation ∼n defined by

x∼ny iff
∣∣x − y

∣∣
n = 0. (2.2)

We denote by En = (E/∼n, | · |n) the quotient space, and by (En, | · |n) the completion of En

with respect to | · |n (the norm on En induced by | · |n and its extension to En is still denoted by
| · |n). This construction defines a continuous map μn : E → En. Now since (2.1) is satisfied
the seminorm | · |n induces a seminorm on Em for every m ≥ n (again this seminorm is
denoted by | · |n). Also (2.2) defines an equivalence relation on Em from which we obtain
a continuous map μn,m : Em → En since Em/∼n can be regarded as a subset of En. Now
μn,mμm,k = μn,k if n ≤ m ≤ k and μn = μn,mμm if n ≤ m. We now assume the following
condition holds:

⎧
⎨
⎩
for each n ∈ N, there exists a Banach space (En, |·|n)
and an isomorphism

(
between normed spaces

)
jn : En −→ En.

(2.3)

Remark 2.1. (i) For convenience the norm on En is denoted by | · |n.
(ii) In our applications En = En for each n ∈ N.
(iii) Note if x ∈ En (or En) then x ∈ E. However if x ∈ En then x is not necessaily

in E and in fact En is easier to use in applications (even though En is isomorphic to En).
For example if E = C[0,∞), then En consists of the class of functions in E which coincide
on the interval [0, n] and En = C[0, n].

Finally we assume

⎧
⎨
⎩
E1 ⊇ E2 ⊇ · · · and for each n ∈ N,
∣∣jnμn,n+1j

−1
n+1x

∣∣
n
≤ |x|n+1 ∀x ∈ En+1.

(2.4)

(here we use the notation from [14], i.e., decreasing in the generalized sense) Let lim←En

(or
⋂∞

1 En where
⋂∞

1 is the generalized intersection [14]) denote the projective limit of
{En}n∈N (note πn,m = jnμn,mj

−1
m : Em → En for m ≥ n) and note lim←En

∼= E, so for
convenience we write E = lim←En.

For each X ⊆ E and each n ∈ N we set Xn = jnμn(X), and we let Xn, int Xn and
∂Xn denote, respectively, the closure, the interior, and the boundary of Xn with respect to
| · |n in En. Also the pseudointerior of X is defined by

pseudo − int(X) =
{
x ∈ X : jnμn(x) ∈ Xn \ ∂Xn for every n ∈ N

}
. (2.5)

The set X is pseudoopen if X = pseudo − int(X). For r > 0 and x ∈ En we denote Bn(x, r) =
{y ∈ En : |x − y|n ≤ r}.

We now show how easily one can extend fixed point theory in Banach spaces to
applicable fixed point theory in Fréchet spaces. In this case the map Fn will be related to
F by the closure property (2.11).
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Theorem 2.2. Let E and En be as described above, X a subset of E and F : Y → 2E where
intXn ⊆ Yn for each n ∈ N. Also for each n ∈ N assume that there exists Fn : intXn → 2En

and suppose the following conditions are satisfied:

0 ∈ pseudo − int(X), (2.6)

⎧
⎨
⎩
for each n ∈ {2, 3, . . .} if y ∈ intXn solves y ∈ Fny in En

then jkμk,nj
−1
n

(
y
) ∈ intXk for k ∈ {1, . . . , n − 1},

(2.7)

⎧
⎨
⎩
for each n ∈ N, Fn : intXn −→ CK(En)

is an upper semicontinuous countably condensing map,
(2.8)

{
for each n ∈ N, y /∈ λFny in En ∀λ ∈ (0, 1], y ∈ ∂ intXn, (2.9)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for any sequence
{
yn

}
n∈N with yn ∈ intXn

and yn ∈ Fnyn in En for n ∈ N and

for every k ∈ N there exists a subsequence

Nk ⊆ {k + 1, k + 2, . . .}, Nk ⊆ Nk−1 for

k ∈ {1, 2, . . .}, N0 = N, and a zk ∈ intXk with

jkμk,nj
−1
n

(
yn

) −→ zk in Ek as n −→ ∞ in Nk,

(2.10)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if there exists a w ∈ Y and a sequence
{
yn

}
n∈N

with yn ∈ intXn and yn ∈ Fnyn in En such that

for every k ∈ N there exists a subsequence

S ⊆ {k + 1, k + 2, . . .} of N with jkμk,nj
−1
n

(
yn

) −→ w

in Ek as n −→ ∞ in S, then w ∈ Fw in E.

(2.11)

Then F has a fixed point in E.

Remark 2.3. Notice that to check (2.10) we need to show that for each k ∈ N the sequence
{jkμk,nj

−1
n (yn)}n∈Nk−1

⊆ int Xk is sequentially compact.
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Proof. From Theorem 1.1 for each n ∈ N there exists yn ∈ int Xn with yn ∈ Fnyn (we
apply Theorem 1.1 with U = int Xn and note jnμn(0) ∈ Xn \ ∂Xn = int Xn). Let us look
at {yn}n∈N . Notice y1 ∈ int X1 and j1μ1,kj

−1
k
(yk) ∈ int X1 for k ∈ {2, 3, . . .} from (2.7).

Now (2.10) with k = 1 guarantees that there exists a subsequence N1 ⊆ {2, 3, . . .} and a
z1 ∈ int X1 with j1μ1,nj

−1
n (yn) → z1 in E1 as n → ∞ in N1. Look at {yn}n∈N1

. Now
j2μ2,nj

−1
n (yn) ∈ int X2 for k ∈ N1. Now (2.10) with k = 2 guarantees that there exists a

subsequence N2 ⊆ {3, 4, . . .} of N1 and a z2 ∈ int X2 with j2μ2,nj
−1
n (yn) → z2 in E2

as n → ∞ in N2. Note from (2.4) and the uniqueness of limits that j1μ1,2j
−1
2 z2 = z1 in E1

since N2 ⊆ N1 (note j1μ1,nj
−1
n (yn) = j1μ1,2j

−1
2 j2μ2,nj

−1
n (yn) for n ∈ N2). Proceed inductively

to obtain subsequences of integers

N1 ⊇ N2 ⊇ · · · , Nk ⊆ {k + 1, k + 2, . . .}, (2.12)

and zk ∈ int Xk with jkμk,nj
−1
n (yn) → zk in Ek as n → ∞ in Nk. Note jkμk,k+1j

−1
k+1zk+1 = zk in

Ek for k ∈ {1, 2, . . .}.
Fix k ∈ N. Note

zk = jkμk,k+1j
−1
k+1zk+1 = jkμk,k+1j

−1
k+1jk+1μk+1,k+2j

−1
k+2zk+2

= jkμk,k+2j
−1
k+2zk+2 = · · · = jkμk,mj

−1
m zm = πk,mzm

(2.13)

for every m ≥ k. We can do this for each k ∈ N. As a result y = (zk) ∈ lim←En = E and also
note y ∈ Y since zk ∈ int Xk ⊆ Yk for each k ∈ N. Also since yn ∈ Fn yn in En for n ∈ Nk

and jkμk,nj
−1
n (yn) → zk = y in Ek as n → ∞ in Nk one has from (2.11) that y ∈ Fy in E.

Remark 2.4. From the proof we see that condition (2.7) can be removed from the statement of
Theorem 2.2. We include it only to explain condition (2.10) (see Remark 2.3).

Remark 2.5. Note that we could replace int Xn ⊆ Yn above with int Xn a subset of the
closure of Yn in En if Y is a closed subset of E (so in this case we can take Y = X
if X is a closed subset of E). To see this note zk ∈ int Xk, y = (zk) ∈ lim←En = E and
πk,m(ym) → zk in Ek as m → ∞ and we can conclude that y ∈ Y = Y (note that q ∈ Y
if and only if for every k ∈ N there exists (xk,m) ∈ Y , xk,m = πk,n(xn,m) for n ≥ k with
xk,m → jkμk(q) in Ek as m → ∞).

Remark 2.6. Suppose in Theorem 2.2 we replace (2.10)with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for any sequence
{
yn

}
n∈N with yn ∈ int Xn

and yn ∈ Fnyn in En for n ∈ N and

for every k ∈ N there exists a subsequence

Nk ⊆ {k + 1, k + 2, . . .}, Nk ⊆ Nk−1 for

k ∈ {1, 2, . . .}, N0 = N, and a zk ∈ int Xk with

jkμk,nj
−1
n

(
yn

) −→ zk in Ek as n −→ ∞ in Nk.

(2.14)
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In addition we assume F : Y → 2E with int Xn ⊆ Yn for each n ∈ N is replaced by
F : X → 2E and suppose (2.11) is true with w ∈ Y replaced by w ∈ X. Then the result in
Theorem 2.2 is again true.

The proof follows the reasoning in Theorem 2.2 except in this case zk ∈ int Xk and
y ∈ X.

Remark 2.7. In fact we could replace (in fact we can remove it as mentioned in Remark 2.4)
(2.7) in Theorem 2.2 with

⎧
⎨
⎩
for each n ∈ {2, 3, . . .} if y ∈ int Xn solves y ∈ Fny in En

then jkμk,nj
−1
n

(
y
) ∈ int Xk for k ∈ {1, . . . , n − 1},

(2.15)

and the result above is again true.

Remark 2.8. Usually in our applications one has ∂Xn = ∂ int Xn (so Xn = int Xn). If X is a
pseudoopen subset of E then for each n ∈ N one has (see [15]) that Xn is a open subset
of En so int Xn = Xn.

Essentially the same reasoning as in Theorem 2.2 (now using Theorem 1.7) establishes
the following result. We will need the following definitions.

Let E and En be as described in Section 2. For the definitions below X ⊆ E and F :
Y → 2E with int Xn ⊆ Yn for each n ∈ N (or int Xn a subset of the closure of Yn in En

if Y is a closed subset of E). In addition assume for each n ∈ N that Fn : int Xn → 2En .

Definition 2.9. We say F ∈ K(Y, E) if for each n ∈ N one has Fn ∈ K(int Xn, En) (i.e., for
each n ∈ N, Fn : int Xn → CK(En) is an upper semicontinuous countably condensing
map).

Definition 2.10. F ∈ K∂(Y, E) if F ∈ K(Y, E) and for each n ∈ N one has x /∈Fn(x) for x ∈
∂ int Xn.

Definition 2.11. F ∈ K∂(Y, E) is essential in K∂(Y, E) if for each n ∈ N one has that Fn ∈
K∂ int Xn(int Xn, En) is essential in K∂ int Xn(int Xn, En) (i.e., for each n ∈ N, every map Gn ∈
K∂ int Xn(int Xn, En)with Gn|∂ int Xn = Fn|∂ int Xn has a fixed point in int Xn).

Remark 2.12. Note that if jnμn(0) ∈ Un for each n ∈ N then 0 ∈ K∂(Y, E) is essential in
K∂(Y, E) (see [7]).

Definition 2.13. (We assume jnμn(0) ∈ int Xn for n ∈ N.) F, 0 ∈ K∂(Y, E) are homotopic
in K∂(Y, E), written F ∼= G in K∂(Y, E), if for each n ∈ N one has Fn

∼= jnμn(0) in
K∂ int Xn(int Xn, En).

Theorem 2.14. Let E and En be as described above, X a subset of E and F : Y → 2E where int Xn ⊆
Yn for each n ∈ N or int Xn a subset of the closure of Yn in En (if Y is a closed subset of E). Also for
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each n ∈ N assume that there exists Fn : int Xn → 2En and suppose F ∈ K∂(Y, E), (2.6), (2.7), and
the following condition holds:

F ∼= 0 in K∂(Y, E). (2.16)

Also assume (2.10) and (2.11) hold. Then F has a fixed point in E.

Proof. Fix n ∈ N. Now Remark 2.12 guarantees that the zero map (i.e., G(x) = jnμn(0)) is
essential in K∂Un(Un, En) for each n ∈ N. Now Theorem 1.7 guarantees that Fn is essential
in K∂Un(Un, En) so in particular there exists yn ∈ Un with yn ∈ Fnyn. Essentially the same
reasoning as in Theorem 2.2 (with Remark 2.5) establishes the result.

Remark 2.15. Notice that (2.6) and (2.17) could be replaced by F ∼= G in K∂(Y, E) (of course
we assume G ∈ K∂(Y, E) and we must specify Gn for n ∈ N here).

Remark 2.16. Condition (2.7) can be removed from the statement of Theorem 2.14.

Remark 2.17. Note that Remark 2.6 holds in this situation also.

As an application of Theorem 2.2 we discuss the integral equation

y(t) =
∫∞

0
K(t, s)f

(
s, y(s)

)
ds for t ∈ [0,∞). (2.17)

Theorem 2.18. Let 1 ≤ p < ∞ be a constant and 1 < q ≤ ∞ the conjugate to p. Suppose the following
conditions are satisfied:

for each t ∈ [0,∞), the map s �−→ K(t, s) is measurable, (2.18)

sup
t∈[0,∞)

(∫∞

0
|K(t, s)|qds

)1/q

< ∞, (2.19)

∫∞

0

∣∣K(
t′, s

) −K(t, s)
∣∣qds −→ 0 as t −→ t′, for each t′ ∈ [0,∞), (2.20)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f : [0,∞) × R → R is a Lp-Carathéodory function:

by this one means

(a) the map t �−→ f
(
t, y

)
is measurable for all y ∈ R;

(b) the map y �−→ f
(
t, y

)
is continuous for a.e. t ∈ [0,∞);

(c) for each r > 0 there exists μr ∈ Lp[0,∞) such that
∣∣y∣∣ ≤ r implies

∣∣f(t, y)∣∣ ≤ μr(t) for a.e. t ∈ [0,∞),

(2.21)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

there exists a continuous nondecreasing function

ψ : [0,∞) −→ [0,∞) and a φ ∈ Lp[0,∞) with
∣∣f(s, y)∣∣ ≤ φ(s)ψ

(∣∣y∣∣) ∀ y ∈ R

and a.e. s ∈ [0,∞),

(2.22)

∃r > 0 with r > K1ψ(r) where K1 = sup
t∈[0,∞)

∫∞

0
φ(s)|K(t, s)|ds. (2.23)

Then (2.17) has at least one solution in C[0,∞).

Remark 2.19. One could also obtain a multivalued version of Theorem 2.18 by using the ideas
in the proof below with the ideas in [16].

Proof. Here E = C[0,∞), Ek consists of the class of functions in E which coincide on
the interval [0, k], Ek = C[0, k] with of course πn,m = jnμn,mj

−1
m : Em → En defined by

πn,m(x) = x|[0,n]. We will apply Theorem 2.2 with

X = {u ∈ C[0,∞) : |u|n ≤ r for each n ∈ N}, (2.24)

here |u|n = supt∈[0,n]|u(t)|. Fix n ∈ N and note

Xn = Xn = {u ∈ C[0, n] : |u|n ≤ r} (2.25)

with

int Xn = {u ∈ C[0, n] : |u|n < r}. (2.26)

Let Fn : int Xn → En be given by

Fn y(t) =
∫n

0
K(t, s)f

(
s, y(s)

)
ds. (2.27)

Also let Y = X (we will use Remark 2.5) and let F : Y → E be given by

Fy(t) =
∫∞

0
K(t, s)f

(
s, y(s)

)
ds. (2.28)

Clearly (2.6) and (2.7) hold, and a standard argument in the literature guarantees that F :
int Xn → En is continuous and compact so (2.8) holds. To show (2.9) fix n ∈ N and
suppose that there exists x ∈ ∂ int Xn (so |x|n = r) and λ ∈ (0, 1] with x = λFnx. Then for
t ∈ [0, n] one has

|x(t)| ≤ ψ(|x|n)
∫n

0
|K(t, s)|φ(s)ds ≤ ψ(|x|n)K1, (2.29)
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so |x|n ≤ ψ(|x|n)K1, that is, r ≤ ψ(r)K1. This contradicts (2.23), so (2.9) holds. To show (2.10)
consider a sequence {yn}n∈N with yn ∈ C[0, n], yn = Fnyn on [0, n] and |yn|n < r. Now to
show (2.10) we will show for a fixed k ∈ N that {jkμk,nj

−1
n (yn)}n∈S ⊆ int Xk is sequentially

compact for any subsequence S of {k, k+1, . . .}. Note for n ∈ S that jkμk,nj
−1
n (yn) = yn|[0,k]

so {jkμk,nj
−1
n (yn)}n∈S is uniformly bounded since |yn|n ≤ r for n ∈ S implies |yn|k ≤ r for

n ∈ S. Also {jkμk,nj
−1
n (yn)}n∈S is equicontinuous on [0, k] since for n ∈ S and t, x ∈ [0, k]

(note there exists hr ∈ Lp[0,∞) with |f(s, yn(s))| ≤ hr(s) for a.e. s ∈ [0, n]) one has

∣∣∣jkμk,nj
−1
n

(
yn(t)

) − jkμk,nj
−1
n

(
yn(x)

)∣∣∣

≤
∫n

0
|K(t, s) −K(x, s)|∣∣f(s, yn(s)

)∣∣ds

≤
(∫∞

0
[hr(s)]

pds

)1/p(∫∞

0
|K(t, s) −K(x, s)|qds

)1/q

.

(2.30)

The Arzela-Ascoli theorem guarantees that {jkμk,nj
−1
n (yn)}n∈S ⊆ int Xk is sequentially

compact. Finally we show (2.11). Suppose there exists w ∈ C[0,∞) and a sequence
{yn}n∈N with yn ∈ int Xn and yn = Fnyn in C[0, n] such that for every k ∈ N there
exists a subsequence S ⊆ {k + 1, k + 2, . . .} of N with yn → w in C[0, k] as n → ∞ in
S. If we show

w(t) =
∫∞

0
K(t, s)f(s,w(s))ds for t ∈ [0,∞), (2.31)

then (2.11) holds. To see (2.31) fix t ∈ [0,∞). Consider k ≥ t and n ∈ S (as described
above). Then yn = Fnyn for n ∈ S and so

yn(t) −
∫k

0
K(t, s)f

(
s, yn(s)

)
ds =

∫n

k

K(t, s)f
(
s, yn(s)

)
ds, (2.32)

so

∣∣∣∣∣jkμk,nj
−1
n

(
yn(t)

) −
∫k

0
K(t, s)f

(
s, jkμk,nj

−1
n

(
yn(s)

))
ds

∣∣∣∣∣ ≤
∫n

k

|K(t, s)|hr(s)ds. (2.33)

(here (2.21) guarantees that there exists hr ∈ Lp[0,∞) with |f(s, yn(s))| ≤ hr(s) for a.e.
s ∈ [0, n]) Let n → ∞ through S and use the Lebesgue Dominated Convergence theorem
to obtain

∣∣∣∣∣w(t) −
∫k

0
K(t, s)f(s,w(s))ds

∣∣∣∣∣ ≤
∫∞

k

|K(t, s)|hr(s)ds (2.34)
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since jkμk,nj
−1
n (yn) → w in C[0, k]. Finally let k → ∞ (note (2.19)) to obtain

w(t) −
∫∞

0
K(t, s)f(s,w(s))ds = 0. (2.35)

Thus (2.11) holds. Our result now follows from Theorem 2.2 (with Remark 2.5).

Essentially the same reasoning as in Theorem 2.2 (now using Theorem 1.8) establishes
the following result.

Theorem 2.20. Let E and En be as described in the beginning of Section 2, C a closed cone in E, U,
and V are bounded pseudoopen subsets of E with 0 ∈ U ⊆ U ⊆ V , and F : Y → 2E. Also assume

either Wn = Vn ∩ Cn ⊆ Yn for each n ∈ N (here Wn = Vn ∩ Cn) or Vn ∩ Cn a subset of the closure of
Yn in En (if Y is a closed subset of E). Also for each n ∈ N assume Fn : Wn → 2En and suppose that
the following conditions hold (here Ωn = Cn ∩Un):

⎧
⎨
⎩
for each n ∈ {2, 3, . . .} if y ∈ Wn \Ωn solves y ∈ Fny

in En then jkμk,nj
−1
n

(
y
) ∈ Wk for k ∈ {1, . . . , n − 1},

(2.36)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

for each n ∈ N, Fn : Wn −→ CK
(
Cn

)
is an upper

semicontinuous k-set (countably) contractive map

(here (0 ≤ k < 1)).

(2.37)

Also for each n ∈ N assume either

⎧
⎨
⎩

∣∣y∣∣n ≥ |x|n ∀y ∈ Fnx, ∀x ∈ ∂Ωn,
∣∣y∣∣n ≤ |x|n ∀y ∈ Fnx, ∀x ∈ ∂Wn,

(2.38)

or

⎧
⎨
⎩

∣∣y∣∣n ≤ |x|n ∀y ∈ Fnx, ∀x ∈ ∂Ωn,
∣∣y∣∣n ≥ |x|n ∀y ∈ Fnx, ∀x ∈ ∂Wn

(2.39)

hold. Finally suppose that the following hold:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

for every k ∈ N and any subsequence A ⊆ {k, k + 1, . . .}
if x ∈ Cn is such that x ∈ Wn \Ωn for some n ∈ A

then there exists a γ > 0 with
∣∣jkμk,nj

−1
n x

∣∣
k ≥ γ,

(2.40)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for any sequence
{
yn

}
n∈N with yn ∈ Wn \Ωn

and yn ∈ Fnyn in En for n ∈ N and

for every k ∈ N there exists a subsequence

Nk ⊆ {k + 1, k + 2, . . .}, Nk ⊆ Nk−1 for

k ∈ {1, 2, . . .}, N0 = N, and a zk ∈ Wk with

jkμk,nj
−1
n

(
yn

) −→ zk in Ek as n −→ ∞ in Nk,

(2.41)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if there exists a w ∈ Y and a sequence
{
yn

}
n∈N

with yn ∈ Wn \Ωn and yn ∈ Fnyn in En such that

for every k ∈ N there exists a subsequence

S ⊆ {k + 1, k + 2, . . .} of N with jkμk,nj
−1
n

(
yn

) −→ w

in Ek as n −→ ∞ in S, then w ∈ Fw in E.

(2.42)

Then F has a fixed point in E.

Proof. Fix n ∈ N. Wewould like to apply Theorem 1.8. Note that we know from [15] that Cn

is a cone and Un and Vn are open and bounded with jnμn(0) ∈ Un ⊆ Un ⊆ Vn. Theorem 1.8
guarantees that there exists yn ∈ Wn \ Ωn with yn ∈ Fnyn in En. As in Theorem 2.2 there
exists a subsequence N1 ⊆ {2, 3, . . .} and a z1 ∈ W1 with j1μ1,nj

−1
n (yn) → z1 in E1 as

n → ∞ in N1. Also yn ∈ Wn \ Ωn together with (2.40) yields |j1μ1,nj
−1
n (yn)|1 ≥ γ for

n ∈ N and so |z1|1 ≥ γ . Proceed inductively to obtain subsequences of integers

N1 ⊇ N2 ⊇ · · · , Nk ⊆ {k + 1, k + 2, . . .} (2.43)

and zk ∈ Wk with jkμk,nj
−1
n (yn) → zk in Ek as n → ∞ in Nk. Note jkμk,k+1j

−1
k+1zk+1 =

zk in Ek for k ∈ {1, 2, . . .} and |zk|k ≥ γ . Now essentially the same reasoning as in
Theorem 2.2 (with Remark 2.5) guarantees the result.

Remark 2.21. Condition (2.36) can be removed from the statement of Theorem 2.20.

Remark 2.22. Note (2.40) is only needed to guarantee that the fixed point y satisfies
|jkμk(y)|k ≥ γ for k ∈ N. If we assume all the conditions in Theorem 2.20 except (2.40)
then again F has a fixed point in E but the above property is not guaranteed.

Essentially the same reasoning as in Theorem 2.2 (just apply Theorem 1.10 in this case)
establishes the following result.

Theorem 2.23. Let E and En be as described above, X a convex subset of E, and F : Y → 2E where
int Xn ⊆ Yn for each n ∈ N or int Xn a subset of the closure of Yn in En (if Y is a closed subset of E).
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Also for each n ∈ N assume that there exists Fn : int Xn → 2En and suppose that (2.6), (2.7), (2.9),
(2.10), (2.11) and the following condition hold:

⎧
⎨
⎩
for each n ∈ N, Fn ∈ Uκ

c

(
int Xn, En

)
is an

upper semicontinuous countably condensing map.
(2.44)

Then F has a fixed point in E.

Proof. Fix n ∈ N. We would like to apply Theorem 1.10. Note that we know from [15]
that int Xn is convex. From Theorem 1.10 for each n ∈ N there exists yn ∈ int Xn with
yn ∈ Fnyn in En. Now essentially the same reasoning as in Theorem 2.2 (with Remark 2.5)
guarantees the result.

Remark 2.24. Note Remarks 2.4, 2.6, and 2.7 hold in this situation also.

Now we present some Lefschetz type theorems in Fréchet spaces. Let E and En be
as described above.

Definition 2.25. A set A ⊆ E is said to be PRLS if for each n ∈ N, An ≡ jnμn(A) is a
Lefschetz space.

Definition 2.26. A set A ⊆ E is said to be CPRLS if for each n ∈ N, An is a Lefschetz space.

Theorem 2.27. Let E and En be as described above, C ⊆ E is an PRLS, and F : C → 2E. Also for
each n ∈ N assume that there exists Fn : Cn → 2En and suppose that the following conditions are
satisfied:

⎧
⎨
⎩
for each n ∈ {2, 3, . . .} if y ∈ Cn solves y ∈ Fny in En

then jkμk,nj
−1
n

(
y
) ∈ Ck for k ∈ {1, . . . , n − 1},

(2.45)

for each n ∈ N, Fn ∈ Ad(Cn,Cn), (2.46)

for each n ∈ N, ΛCn(Fn)/= {0}, (2.47)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for any sequence
{
yn

}
n∈N with yn ∈ Cn

and yn ∈ Fnyn in En for n ∈ N and

for ever y ∈ N there exists a subsequence

Nk ⊆ {k + 1, k + 2, . . .}, Nk ⊆ Nk−1 for

k ∈ {1, 2, . . .}, N0 = N, and a zk ∈ Ck with

jkμk,nj
−1
n

(
yn

) −→ zk in Ek as n −→ ∞ in Nk,

(2.48)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if there exists a w ∈ C and a sequence
{
yn

}
n∈N

with yn ∈ Cn and yn ∈ Fnyn in En such that

for every k ∈ N there exists a subsequence

S ⊆ {k + 1, k + 2, . . .} of N with jkμk,nj
−1
n

(
yn

) −→ w

in Ek as n −→ ∞ in S, then w ∈ Fw in E.

(2.49)

Then F has a fixed point in E.

Proof. For each n ∈ N there exists yn ∈ Cn. Now the same reasoning as in Theorem 2.2
guarantees the result.

Remark 2.28. Condition (2.45) can be removed from the statement of Theorem 2.27.

Remark 2.29. Suppose in Theorem 2.27, one has

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for any sequence
{
yn

}
n∈N with yn ∈ Cn

and yn ∈ Fnyn in En for n ∈ N and

for every k ∈ N there exists a subsequence

Nk ⊆ {k + 1, k + 2, . . .}, Nk ⊆ Nk−1 for

k ∈ {1, 2, . . .}, N0 = N, and a zk ∈ Ck with

jkμk,nj
−1
n

(
yn

) −→ zk in Ek as n −→ ∞ in Nk

(2.50)

instead of (2.48) and F : C → 2E is replaced by F : Y → 2E with C ⊆ Y and Cn ⊆ Yn for
each n ∈ N and suppose that (2.49) is true with w ∈ C replaced by w ∈ Y . Then the result
in Theorem 2.27 is again true.

In fact we could replace Cn ⊆ Yn above with Cn a subset of the closure of Yn in
En if Y is a closed subset of E (so in this case we can take Y = C if C is a closed subset
of E).

In fact in this remark we could replace (in fact we can remove it as mentioned in
Remark 2.4) (2.45)with

⎧
⎨
⎩
for each n ∈ {2, 3, . . .} if y ∈ Cn solves y ∈ Fny in En

then jkμk,nj
−1
n

(
y
) ∈ Ck for k ∈ {1, . . . , n − 1}

(2.51)

and the result above is again true.
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Also one has the following result.

Theorem 2.30. Let E and En be as described above, C ⊆ E is an CPRLS and F : C → 2E. Also
assume C is a closed subset of E and for each n ∈ N that Fn : Cn → 2En and suppose that the
following conditions are satisfied:

⎧
⎨
⎩
for each n ∈ {2, 3, . . .} if y ∈ Cn solves y ∈ Fny in En

then jkμk,nj
−1
n

(
y
) ∈ Ck for k ∈ {1, . . . , n − 1},

(2.52)

for each n ∈ N, Fn ∈ Ad
(
Cn,Cn

)
, (2.53)

for each n ∈ N, ΛCn
(Fn)/= {0}, (2.54)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for any sequence
{
yn

}
n∈N with yn ∈ Cn

and yn ∈ Fnyn in En for n ∈ N and

for every k ∈ N there exists a subsequence

Nk ⊆ {k + 1, k + 2, . . .}, Nk ⊆ Nk−1 for

k ∈ {1, 2, . . .}, N0 = N, and a zk ∈ Ck with

jkμk,nj
−1
n

(
yn

) −→ zk in Ek as n −→ ∞ in Nk,

(2.55)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if there exists a w ∈ C and a sequence
{
yn

}
n∈N

with yn ∈ Cn and yn ∈ Fnyn in En such that

for every k ∈ N there exists a subsequence

S ⊆ {k + 1, k + 2, . . .} of N with jkμk,nj
−1
n

(
yn

) −→ w

in Ek as n −→ ∞ in S, then w ∈ Fw in E.

(2.56)

Then F has a fixed point in E.

Remark 2.31. Condition (2.52) can be removed from the statement of Theorem 2.30.

Remark 2.32. Note that we can remove the assumption in Theorem 2.30 that C is a closed
subset of E if we assume F : Y → 2E with C ⊆ Y and Cn ⊆ Yn (or Cn a subset of the closure of
Yn in En if Y is a closed subset of E) for each n ∈ N with of course w ∈ C replaced by w ∈ Y
in (2.56).
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Remark 2.33. Of course there are analogue results for compact morphisms (see the ideas here
and in [17]) and for compact permissible maps (see [18]).

Next we present some Krasnoselskii results in the Fréchet space setting (in the first we
use Theorem 1.15 and the second Theorem 1.16).

Theorem 2.34. Let E and En be as described in the beginning of Section 2, C a closed cone in E, r,
and R are constants with 0 < r < R, and F : Y → 2E with Y ⊆ E, andWn = Bn(0, R) ∩ Cn ⊆ Yn (or
Wn is a subset of the closure of Yn in En if Y is a closed subset of E) for each n ∈ N; hereWn = Cn∩Vn

where Vn = {x ∈ En : |x|n < R}. Also for each n ∈ N assume Fn : Wn → 2En and suppose that
(2.36) and the following conditions are satisfied (hereΩn = Un ∩Cn with Un = {x ∈ En : |x|n < r}):

⎧
⎨
⎩
for each n ∈ N, Fn ∈ Uκ

c

(
Bn(0, R) ∩ Cn,Cn

)

is an upper semicontinuous compact map,
(2.57)

⎧
⎨
⎩

∣∣y∣∣n ≥ |x|n ∀y ∈ Fnx, x ∈ ∂Ωn,
∣∣y∣∣n ≤ |x|n ∀y ∈ Fnx, x ∈ ∂Wn.

(2.58)

Also assume (2.40), (2.41), and (2.42) hold. Then F has a fixed point in E.

Remark 2.35. Note Remarks 2.21 and 2.22 hold in this situation also.

Theorem 2.36. Let E and En be as described in the beginning of Section 2,C a closed cone in E, r, and
R are constants with 0 < r < R, and F : Y → 2E with Y ⊆ E, C ⊆ Y and Cn ⊆ Yn (or Cn is a subset
of the closure of Yn in En if Y is a closed subset of E) for each n ∈ N. Also for each n ∈ N assume
Fn : Cn → 2En and suppose that (2.36) and the following conditions are satisfied (hereWn = Cn ∩Vn

where Vn = {x ∈ En : |x|n < R} and Ωn = Un ∩ Cn withUn = {x ∈ En : |x|n < r}):

{
for each n ∈ N, Fn ∈ AD

(
Cn,Cn

)
is a completely continuous map, (2.59)

⎧
⎨
⎩

∣∣y∣∣n ≤ |x|n ∀y ∈ Fnx, x ∈ ∂Ωn,
∣∣y∣∣n ≥ |x|n ∀y ∈ Fnx, x ∈ ∂Wn.

(2.60)

In addition assume (2.40), (2.41), and (2.42) hold. Then F has a fixed point in E.

To conclude the paper we apply Theorem 2.20 (or Theorem 2.36) to (2.17).

Theorem 2.37. Let 1 ≤ p ≤ ∞ be a constant and q the conjugate to p and suppose that (2.18), (2.19),
(2.20), (2.21), (2.22), and (2.23) hold. In addition assume the following conditions are satisfied:
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⎧
⎨
⎩
for each t ∈ [0,∞) one has k(t, s) ≥ 0 for a.e. s ∈ [0,∞),

and f : [0,∞) × R → [0,∞) with f(s, u) > 0 for (s, u) ∈ [0,∞) × (0,∞),
(2.61)

⎧
⎨
⎩
there exists g : [0,∞) −→ (0,∞) with g ∈ Lq[0,∞)

and with k(t, s) ≤ g(s) for t ∈ [0,∞),
(2.62)

⎧
⎨
⎩
there exists a, b ∈ [0, 1], a < b, and M, 0 < M < 1

with k(t, s) ≥ Mg(s) for t ∈ [a, b] and a.e. s ∈ [0,∞),
(2.63)

⎧
⎨
⎩
there exists τ ∈ Lp[a, b] with f(s, u) ≥ τ(s)ψ(u)

for a.e. s ∈ [a, b] and all u ∈ [0,∞),
(2.64)

∃R > r with R < ψ(MR) sup
t∈[0,1]

∫b

a

τ(s)k(t, s)ds. (2.65)

Then (2.17) has at least one solution in y ∈ C[0,∞) withMr ≤ |y|n ≤ R for n ∈ N.

Remark 2.38. One could obtain a multivalued version of Theorem 2.37 by using the ideas in
the proof below with the ideas in [16].

Remark 2.39. In (2.63) we picked b ∈ [0, 1] for convenience (i.e., so we could take n ∈ N;
otherwise we would take n ∈ {[b] + 1, [b] + 2, . . .}). Also if there exists a σ, 0 ≤ σ < ∞with

sup
t∈[0,∞)

∫b

a

τ(s)k(t, s)ds =
∫b

a

τ(s)k(σ, s)ds (2.66)

then one could replace (2.64) with

R < w(MR) sup
t∈[0,∞)

∫b

a

τ(s)k(t, s)ds. (2.67)

Proof. Here let E, Ek, Ek, Fn, and F be as in Theorem 2.18. Let

U =
{
y ∈ E :

∣∣y∣∣n < r ∀n ∈ N
}
, V =

{
y ∈ E :

∣∣y∣∣n < R ∀n ∈ N
}
, (2.68)

and note that for each n ∈ N that

Un =
{
y ∈ En :

∣∣y∣∣n < r
}
, Vn =

{
y ∈ En :

∣∣y∣∣n < R
}
. (2.69)

Also let

C =
{
y ∈ E : y(t) ≥ 0 on [0,∞), y(t) ≥ M

∣∣y∣∣n, ∀t ∈ [a, b], ∀n ∈ N
}
, (2.70)
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and note that for each n ∈ N that

Cn = Cn =
{
y ∈ En : y(t) ≥ 0 on [0, n], y(t) ≥ M

∣∣y∣∣n, ∀t ∈ [a, b]
}
. (2.71)

Finally we could take Y = B(0, R + 1). As in Theorem 2.18 clearly (2.36) and (2.37) hold; we
need only to note that if y ∈ Wn then from (2.62) and (2.63) one has

∣∣Fny(t)
∣∣ ≤

∫n

0
g(s)f

(
s, y(s)

)
ds for t ∈ [0, n],

Fny(t) ≥ M

∫n

0
g(s)f

(
s, y(s)

)
ds for t ∈ [a, b],

(2.72)

so

Fny(t) ≥ M
∣∣Fny

∣∣
n for t ∈ [a, b]. (2.73)

Next we show that (2.39) is satisfied. Let y ∈ ∂Ωn = ∂Un ∩ Cn. Then |y|n = r and this
together with (2.22) yields

∣∣Fny(t)
∣∣ ≤ ψ

(∣∣y∣∣n
)∫n

0
k(t, s)φ(s)ds ≤ ψ(r) sup

t∈[0,∞)

∫∞

0
k(t, s)φ(s)ds (2.74)

for t ∈ [0, n], and so (2.23) yields

∣∣Fny
∣∣
n ≤ ψ(r) sup

t∈[0,∞)

∫∞

0
k(t, s)φ(s)ds < r =

∣∣y∣∣n. (2.75)

Now let y ∈ ∂Wn = ∂Vn ∩ Cn. Then |y|n = R and y(t) ≥ M|y|n = MR for t ∈ [a, b] (in
particular y(t) ∈ [MR,R] for t ∈ [a, b]). Now (2.64) implies

∣∣Fny(t)
∣∣ =

∫n

0
k(t, s)f

(
s, y(s)

)
ds

≥
∫b

a

k(t, s)f
(
s, y(s)

)
ds

≥ ψ(MR)
∫b

a

k(t, s)τ(s)ds,

(2.76)
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so (2.65) yields

∣∣Fny
∣∣
n ≥ ψ(MR) sup

t∈[0,n]

∫b

a

k(t, s)τ(s)ds

≥ ψ(MR) sup
t∈[0,1]

∫b

a

k(t, s)τ(s)ds

> R =
∣∣y∣∣n.

(2.77)

Thus (2.39) holds. Now essentially the same argument as in Theorem 2.18 guarantees that
(2.41) and (2.42) hold.

Notice (2.40) is satisfied with γ = Mr. To see this fix k ∈ N and take a subsequence
A ⊆ {k, k + 1, . . .} and let x ∈ Cn be such that x ∈ Wn \ Ωn (i.e., R ≥ |x|n ≥ r) for some
n ∈ A. Then mint∈[a,b]x(t) ≥ M|x|n ≥ Mr = γ , so as a result |jkμk,nj

−1
n x|k = maxt∈[0,k]|x(t)| ≥

γ . The result now follows from Theorem 2.20.
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