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1. Introduction

Let C be a nonempty closed convex subset of a real Banach space E. A mapping T : C → C is
said to be nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖ for all x, y ∈ C.We denote by F(T) the set of fixed
points of T , that is F(T) = {x ∈ C : x = Tx}. A mapping T is said to be quasi-nonexpansive
if F(T)/= ∅ and ‖Tx − y‖ ≤ ‖x − y‖ for all x ∈ C and y ∈ F(T). It is easy to see that if T
is nonexpansive with F(T)/= ∅, then it is quasi-nonexpansive. Some iterative processes are
often used to approximate a fixed point of a nonexpansive mapping. The Mann’s iterative
algorithm was introduced by Mann [1] in 1953. This iterative process is now known as
Mann’s iterative process, which is defined as

xn+1 = αnxn + (1 − αn)Txn, n ≥ 0, (1.1)
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where the initial guess x0 is taken in C arbitrarily and the sequence {αn}∞n=0 is in the interval
[0, 1].

In 1976, Halpern [2] first introduced the following iterative scheme:

x0 = u ∈ C, chosen arbitrarily,

xn+1 = αnu + (1 − αn)Txn,
(1.2)

see also Browder [3]. He pointed out that the conditions limn→∞αn = 0 and
∑∞

n=1 αn = ∞ are
necessary in the sence that, if the iteration (1.2) converges to a fixed point of T , then these
conditions must be satisfied.

In 1974, Ishikawa [4] introduced a new iterative scheme, which is defined recursively
by

yn = βnxn +
(
1 − βn

)
Txn,

xn+1 = αnxn + (1 − αn)Tyn,
(1.3)

where the initial guess x0 is taken in C arbitrarily and the sequences {αn} and {βn} are in the
interval [0, 1].

Concerning a family of nonexpansive mappings it has been considered by many
authors. The well-known convex feasibility problem reduces to finding a point in the
intersection of the fixed point sets of a family of nonexpansive mappings; see, for example,
[5]. The problem of finding an optimal point that minimizes a given cost function over
common set of fixed points of a family of nonexpansive mappings is of wide interdisciplinary
interest and practical importance (see [6]).

Zhang and Su [7] introduced the following implicit hybrid method for a finite family
of nonexpansive mappings {Ti}Ni=1 in a real Hilbert space:

x0 ∈ C is arbitrary,

yn = αnxn + (1 − αn)Tnzn,

zn = βnyn +
(
1 − βn

)
Tnyn,

Cn =
{
z ∈ C :

∥
∥yn − z

∥
∥ ≤ ‖xn − z‖

}
,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn(x0), n = 0, 1, 2, . . . ,

(1.4)

where Tn ≡ Tn mod N , {αn} and {βn} are sequences in [0, 1] and {αn} ⊂ [0, a] for some a ∈ [0, 1)
and {βn} ⊂ [b, 1] for some b ∈ (0, 1].

In 2008, Nakprasit et al. [8] established weak and strong convergence theorems for
finding common fixed points of a countable family of nonexpansive mappings in a real
Hilbert space. In the same year, Cho et al. [9] introduced the normal Mann’s iterative process
and proved some strong convergence theorems for a finite family nonexpansive mapping in
the framework Banach spaces.
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To find a common fixed point of a family of nonexpansive mappings, Aoyama et al.
[10] introduced the following iterative sequence. Let x1 = x ∈ C and

xn+1 = αnx + (1 − αn)Tnxn, (1.5)

for all n ∈ N, where C is a nonempty closed convex subset of a Banach space, {αn} is a
sequence of [0, 1], and {Tn} is a sequence of nonexpansive mappings. Then they proved that,
under some suitable conditions, the sequence {xn} defined by (1.5) converges strongly to a
common fixed point of {Tn}.

In 2008, by using a (new) hybrid method, Takahashi et al. [11] proved the following
theorem.

Theorem 1.1 (Takahashi et al. [11]). Let H be a Hilbert space and let C be a nonempty closed
convex subset of H. Let {Tn} and T be families of nonexpansive mappings of C into itself such that
∩∞
n=1F(Tn) := F(T)/= ∅ and let x0 ∈ H. Suppose that {Tn} satisfies the NST-condition (I) with T.

For C1 = C and x1 = PC1x0, define a sequence {xn} of C as follows:

yn = αnxn + (1 − αn)Tnxn,

Cn+1 =
{
z ∈ Cn :

∥
∥yn − z

∥
∥ ≤ ‖xn − z‖

}
,

xn+1 = PCn+1x0, n ∈ N,

(1.6)

where 0 ≤ αn < 1 for all n ∈ N and {Tn} is said to satisfy the NST-condition (I) with T if for each
bounded sequence {zn} ⊂ C, limn→∞ ‖zn − Tnzn‖ = 0 implies that limn→∞ ‖zn − Tzn‖ = 0 for all
T ∈ T. Then, {xn} converges strongly to PF(T)x0.

Note that, recently, many authors try to extend the above result from Hilbert spaces to
a Banach space setting.

Let E be a real Banach space with dual E∗. Denote by 〈·, ·〉 the duality product. The
normalized duality mapping J from E to 2E

∗
is defined by Jx = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2},

for all x ∈ E. The function φ : E × E → R is defined by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥
∥y

∥
∥2

, ∀x, y ∈ E. (1.7)

A mapping T is said to be hemi-relatively nonexpansive (see [12]) if F(T)/= ∅ and

φ
(
p, Tx

)
≤ φ

(
p, x

)
, ∀x ∈ C, p ∈ F(T). (1.8)

A point p in C is said to be an asymptotic fixed point of T [13] if C contains a sequence
{xn} which converges weakly to p such that the strong limn→∞(xn − Txn) = 0. The set
of asymptotic fixed points of T will be denoted by F̂(T). A hemi-relatively nonexpansive
mapping T from C into itself is called relatively nonexpansive if F̂(T) = F(T); see [14–16]) for
more details.
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On the other hand, Matsushita and Takahashi [17] introduced the following iteration.
A sequence {xn}, defined by

xn+1 = ΠCJ
−1(αnJxn + (1 − αn)JTxn), n = 0, 1, 2, . . . , (1.9)

where the initial guess element x0 ∈ C is arbitrary, {αn} is a real sequence in [0, 1], T is a
relatively nonexpansive mapping, and ΠC denotes the generalized projection from E onto a
closed convex subset C of E. Under some suitable conditions, they proved that the sequence
{xn} converges weakly to a fixed point of T .

Recently, Kohsaka and Takahashi [18] extended iteration (1.9) to obtain a weak
convergence theorem for common fixed points of a finite family of relatively nonexpansive
mappings {Ti}mi=1 by the following iteration:

xn+1 = ΠCJ
−1
(

m∑

i=1

wn,i(αn,iJxn + (1 − αn,i)JTixn)

)

, n = 0, 1, 2, . . . , (1.10)

where αn,i ⊂ [0, 1] andwn,i ⊂ [0, 1]with
∑m

i=1 wn,i = 1, for all n ∈ N. Moreover, Matsushita and
Takahashi [14] proposed the following modification of iteration (1.9) in a Banach space E:

x0 = x ∈ C, chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JTxn),

Cn =
{
z ∈ C : φ

(
z, yn

)
≤ φ(z, xn)

}
,

Qn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qnx, n = 0, 1, 2, . . . ,

(1.11)

and proved that the sequence {xn} converges strongly to ΠF(T)x.
Qin and Su [15] showed that the sequence {xn}, which is generated by relatively

nonexpansive mappings T in a Banach space E, as follows:

x0 ∈ C, chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JTzn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTxn

)
,

Cn =
{
v ∈ C : φ

(
v, yn

)
≤ αnφ(v, xn) + (1 − αn)φ(v, zn)

}
,

Qn = {v ∈ C : 〈Jx0 − Jxn, xn − v〉 ≥ 0},

xn+1 = ΠCn∩Qnx0

(1.12)

converges strongly to ΠF(T)x0.
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Moreover, they also showed that the sequence {xn}, which is generated by

x0 ∈ C, chosen arbitrarily,

yn = J−1(αnJx0 + (1 − αn)JTxn),

Cn =
{
v ∈ C : φ

(
v, yn

)
≤ αnφ(v, x0) + (1 − αn)φ(v, xn)

}
,

Qn = {v ∈ C : 〈Jx0 − Jxn, xn − v〉 ≥ 0},

xn+1 = ΠCn∩Qnx0,

(1.13)

converges strongly to ΠF(T)x0.

In 2008, Nilsrakoo and Saejung [19] used the following Mann’s iterative process:

x0 ∈ C is arbitrary,

C−1 = Q−1 = C,

yn = J−1(αnJxn + (1 − αn)JTnxn),

Cn =
{
v ∈ Cn : φ

(
v, yn

)
≤ φ(v, xn)

}
,

Qn = {v ∈ C : 〈Jx0 − Jxn, xn − v〉 ≥ 0},

xn+1 = ΠCn∩Qnx0, n = 0, 1, 2, . . .

(1.14)

and showed that the sequence {xn} converges strongly to a common fixed point of a
countable family of relatively nonexpansive mappings.

Recently, Su et al. [12] extended the results of Qin and Su [15], Matsushita and
Takahashi [14] to a class of closed hemi-relatively nonexpansive mapping. Note that,
since the hybrid iterative methods presented by Qin and Su [15] and Matsushita and
Takahashi [14] cannot be used for hemi-relatively nonexpansive mappings. Thus, as we
know, Su et al. [12] showed their results by using the method as a monotone (CQ) hybrid
method.

In this paper, motivated by Qin and Su [15], Nilsrakoo and Saejung [19], we consider
the modified Ishikawa iterative (1.12) and Halpern iterative processes (1.13), which is
different from those of (1.12)–(1.14), for countable hemi-relatively nonexpansive mappings.
By using the shrinking projection method, some strong convergence theorems in a uniformly
convex and uniformly smooth Banach space are provided. Our results extend and improve
the recent results by Nilsrakoo and Saejung’s result [19], Qin and Su [15], Su et al. [12],
Takahashi et al.’s theorem [11], and many others.
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2. Preliminaries

In this section, we will recall some basic concepts and useful well-known results.
A Banach space E is said to be strictly convex if

∥
∥
∥
∥
x + y

2

∥
∥
∥
∥ < 1, (2.1)

for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x /=y. It is said to be uniformly convex if for any two
sequences {xn} and {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and

lim
n→∞

∥
∥xn + yn

∥
∥ = 2, (2.2)

limn→∞‖xn − yn‖ = 0 holds.
Let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the Banach space E is said to

be smooth if

lim
t→ 0

∥
∥x + ty

∥
∥ − ‖x‖
t

(2.3)

exists for each x, y ∈ U. It is said to be uniformly smooth if the limit is attained uniformly for
x, y ∈ E. In this case, the norm of E is said to be Gâteaux differentiable. The space E is said to
have uniformly Gâteaux differentiable if for each y ∈ U, the limit (2.3) is attained uniformly for
y ∈ U. The norm of E is said to be uniformly Fréchet differentiable (and E is said to be uniformly
smooth) if the limit (2.3) is attained uniformly for x, y ∈ U.

In our work, the concept duality mapping is very important. Here, we list some known
facts, related to the duality mapping J , as follows.

(a) E (E∗, resp.) is uniformly convex if and only if E∗ (E, resp.) is uniformly smooth.

(b) J(x)/= ∅ for each x ∈ E.

(c) If E is reflexive, then J is a mapping of E onto E∗.

(d) If E is strictly convex, then J(x) ∩ J(y)/= ∅ for all x /=y.

(e) If E is smooth, then J is single valued.

(f) If E has a Fréchet differentiable norm, then J is norm to norm continuous.

(g) If E is uniformly smooth, then J is uniformly norm to norm continuous on each
bounded subset of E.

(h) If E is a Hilbert space, then J is the identity operator.

For more information, the readers may consult [20, 21].
If C is a nonempty closed convex subset of a real Hilbert space H and PC : H → C is

the metric projection, then PC is nonexpansive. Alber [22] has recently introduced a generalized
projection operator ΠC in a Banach space E which is an analogue representation of the metric
projection in Hilbert spaces.
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The generalized projection ΠC : E → C is a map that assigns to an arbitrary point
x ∈ E the minimum point of the functional φ(y, x), that is,ΠCx = x∗, where x∗ is the solution
to the minimization problem

φ(x∗, x) = min
y∈C

φ
(
y, x

)
. (2.4)

Notice that the existence and uniqueness of the operatorΠC is followed from the properties of
the functional φ(y, x) and strict monotonicity of the mapping J , and moreover, in the Hilbert
spaces setting we have ΠC = PC. It is obvious from the definition of the function φ that

(∥
∥y

∥
∥ − ‖x‖

)2 ≤ φ
(
y, x

)
≤
(∥
∥y

∥
∥ + ‖x‖

)2
, ∀x, y ∈ E. (2.5)

Remark 2.1. If E is a strictly convex and a smooth Banach space, then for all x, y ∈ E, φ(y, x) =
0 if and only if x = y, see Matsushita and Takahashi [14].

To obtain our results, following lemmas are important.

Lemma 2.2 (Kamimura and Takahashi [23]). Let E be a uniformly convex and smooth Banach
space and let r > 0. Then there exists a continuous strictly increasing and convex function g :
[0, 2r] → [0,∞) such that g(0) = 0 and

g
(∥
∥x − y

∥
∥
)
≤ φ

(
x, y

)
, (2.6)

for all x, y ∈ Br = {z ∈ E : ‖z‖ ≤ r}.

Lemma 2.3 (Kamimura and Takahashi [23]). Let E be a uniformly convex and smooth real Banach
space and let {xn}, {yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is bounded,
then ‖xn − yn‖ → 0.

Lemma 2.4 (Alber [22]). Let C be a nonempty closed convex subset of a smooth real Banach space E
and x ∈ E. Then, x0 = ΠCx if and only if

〈
x0 − y, Jx − Jx0

〉
≥ 0, ∀y ∈ C. (2.7)

Lemma 2.5 (Alber [22]). Let E be a reflexive strict convex and smooth real Banach space, let C be a
nonempty closed convex subset of E and let x ∈ E. Then

φ
(
y,ΠCx

)
+ φ(ΠCx, x) ≤ φ

(
y, x

)
, ∀y ∈ C. (2.8)

Lemma 2.6 (Matsushita and Takahashi [14]). Let E be a strictly convex and smooth real Banach
space, let C be a closed convex subset of E, and let T be a hemi-relatively nonexpansive mapping from
C into itself. Then F(T) is closed and convex.
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Let C be a subset of a Banach space E and let {Tn} be a family of mappings from C into E. For
a subset B of C, one says that

(a) ({Tn}, B) satisfies condition AKTT if

∞∑

n=1

sup{‖Tn+1z − Tnz‖ : z ∈ B} < ∞, (2.9)

(b) ({Tn}, B) satisfies condition ∗AKTT if

∞∑

n=1

sup{‖JTn+1z − JTnz‖ : z ∈ B} < ∞. (2.10)

For more information, see Aoyama et al. [10].

Lemma 2.7 (Aoyama et al. [10]). Let C be a nonempty subset of a Banach space E and let {Tn} be a
sequence of mappings from C into E. Let B be a subset of C with ({Tn}, B) satisfying condition AKTT,
then there exists a mapping T̃ : B → E such that

T̃x = lim
n→∞

Tnx, ∀x ∈ B (2.11)

and lim supn→∞{‖T̃z − Tnz‖ : z ∈ B} = 0.

Inspired by Lemma 2.7, Nilsrakoo and Saejung [19] prove the following results.

Lemma 2.8 (Nilsrakoo and Saejung [19]). Let E be a reflexive and strictly convex Banach space
whose norm is Fréchet differentiable, let C be a nonempty subset of a Banach space E, and let {Tn} be a
sequence of mappings from C into E. Let B be a subset of C with ({Tn}, B) satisfies condition ∗AKTT,
then there exists a mapping T̂ : B → E such that

T̂x = lim
n→∞

Tnx, ∀x ∈ B (2.12)

and lim supn→∞{‖JT̂z − JTnz‖ : z ∈ B} = 0.

Lemma 2.9 (Nilsrakoo and Saejung [19]). Let E be a reflexive and strictly convex Banach space
whose norm is Fréchet differentiable, let C be a nonempty subset of a Banach space E, and let {Tn} be
a sequence of mappings from C into E. Suppose that for each bounded subset B of C, the ordered pair
({Tn}, B) satisfies either condition AKTT or condition ∗AKTT. Then there exists a mapping T : B →
E such that

Tx = lim
n→∞

Tnx, ∀ x ∈ C. (2.13)
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3. Modified Ishikawa Iterative Scheme

In this section, we establish the strong convergence theorems for finding common fixed
points of a countable family of hemi-relatively nonexpansive mappings in a uniformly
convex and uniformly smooth Banach space. It is worth mentioning that our main theorem
generalizes recent theorems by Su et al. [12] from relatively nonexpansive mappings to a
more general concept. Moreover, our results also improve and extend the corresponding
results of Nilsrakoo and Saejung [19]. In order to prove the main result, we recall a concept
as follows. An operator T in a Banach space is closed if xn → x and Txn → y, then
Tx = y.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty bounded closed convex subset of E. Let {Tn} be a sequence of hemi-relatively nonexpansive
mappings from C into itself such that

⋂∞
n=0F(Tn) is nonempty. Assume that {an}∞n=0 and {βn}∞n=0 are

sequences in [0, 1] such that lim supn→∞αn < 1 and limn→∞βn = 1 and let a sequence {xn} in C by
the following algorithm be:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTnzn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTnxn

)
,

Cn+1 =
{
v ∈ Cn : φ

(
v, yn

)
≤ φ(v, xn)

}
,

xn+1 = ΠCn+1x0,

(3.1)

for n ∈ N ∪ {0}, where J is the single-valued duality mapping on E. Suppose that for each
bounded subset B of C, the ordered pair ({Tn}, B) satisfies either condition AKTT or condition
∗AKTT. Let T be the mapping from C into itself defined by Tv = limn→∞Tnv for all v ∈ C and
suppose that T is closed and F(T) =

⋂∞
n=0F(Tn). If Tn is uniformly continuous for all n ∈ N,

then {xn} converges strongly to ΠF(T)x0, where ΠF(T) is the generalized projection from C onto
F(T).

Proof. We first show that Cn+1 is closed and convex for each n ≥ 0. Obviously, from the
definition of Cn+1, we see that Cn+1 is closed for each n ≥ 0. Now we show that Cn+1 is convex
for any n ≥ 0. Since

φ
(
v, yn

)
≤ φ(v, xn) ⇐⇒ 2

〈
v, Jxn − Jyn

〉
+
∥
∥yn

∥
∥2 − ‖xn‖2 ≤ 0, (3.2)

this implies that Cn+1 is a convex set. Next, we show that
⋂∞

n=0F(Tn) ⊂ Cn for all n ≥ 0. Indeed,
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let p ∈
⋂∞

n=0F(Tn), we have

φ
(
p, yn

)
= φ

(
p, J−1(αnJxn + (1 − αn)JTnzn)

)

=
∥
∥p

∥
∥2 − 2

〈
p, αnJxn + (1 − αn)JTnzn

〉
+ ‖αnJxn + (1 − αn)JTnzn‖2

≤
∥
∥p

∥
∥2 − 2αn

〈
p, Jxn

〉
− 2(1 − αn)

〈
p, JTnzn

〉
+ αn‖xn‖2 + (1 − αn)‖Tnzn‖2

= αn

(∥
∥p

∥
∥2 − 2

〈
p, Jxn

〉
+ ‖xn‖2

)
+ (1 − αn)

(∥
∥p

∥
∥2 − 2

〈
p, JTnzn

〉
+ ‖Tnzn‖2

)

≤ αnφ
(
p, xn

)
+ (1 − αn)φ

(
p, Tnzn

)

≤ αnφ
(
p, xn

)
+ (1 − αn)φ

(
p, zn

)
,

(3.3)

φ
(
p, zn

)
= φ

(
p, J−1

(
βnJxn +

(
1 − βn

)
JTnxn

))

=
∥
∥p

∥
∥2 − 2

〈
p, βnJxn +

(
1 − βn

)
JTnxn

〉
+
∥
∥βnJxn +

(
1 − βn

)
JTnxn

∥
∥2

=
∥
∥p

∥
∥2 − 2βn

〈
p, Jxn

〉
− 2

(
1 − βn

)〈
p, JTnxn

〉
+ βn‖xn‖2 +

(
1 − βn

)
‖Tnxn‖2

= βn
(∥
∥p

∥
∥2 − 2

〈
p, Jxn

〉
+ ‖xn‖2

)
+
(
1 − βn

)(∥
∥p

∥
∥2 − 2

〈
p, JTnxn

〉
+ ‖Tnxn‖2

)

≤ βnφ
(
p, xn

)
+
(
1 − βn

)
φ
(
p, Tnxn

)

≤ βnφ
(
p, xn

)
+
(
1 − βn

)
φ
(
p, xn

)

≤ φ
(
p, xn

)
.

(3.4)

Substituting (3.4) into (3.3), we have

φ
(
p, yn

)
≤ φ

(
p, xn

)
. (3.5)

This means that, p ∈ Cn+1 for all n ≥ 0. Consequently, the sequence {xn} is well defined.
Moreover, since xn = ΠCnx0 and xn+1 ∈ Cn+1 ⊂ Cn, we get

φ(xn, x0) ≤ φ(xn+1, x0), (3.6)

for all n ≥ 0. Therefore, {φ(xn, x0)} is nondecreasing.
By the definition of xn and Lemma 2.5, we have

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ
(
p, x0

)
− φ

(
p,ΠCnx0

)
≤ φ

(
p, x0

)
, (3.7)
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for all p ∈
⋂∞

n=0F(Tn) ⊂ Cn. Thus, {φ(xn, x0)} is a bounded sequence. Moreover, by (2.5), we
know that {xn} is bounded. So, limn→∞φ(xn, x0) exists. Again, by Lemma 2.5, we have

φ(xn+1, xn) = φ(xn+1,ΠCnx0)

≤ φ(xn+1, x0) − φ(ΠCnx0, x0)

= φ(xn+1, x0) − φ(xn, x0),

(3.8)

for all n ≥ 0. Thus, φ(xn+1, xn) → 0 as n → ∞.
Next, we show that {xn} is a Cauchy sequence. Using Lemma 2.2, for m,n such that

m > n, we have

g(‖xm − xn‖) ≤ φ(xm, xn) ≤ φ(xm, x0) − φ(xn, x0), (3.9)

where g : [0,∞) → [0,∞) is a continuous stricly increasing and convex function with g(0) =
0. Then the properties of the function g yield that {xn} is a Cauchy sequence. Thus, we can
say that {xn} converges strongly to p for some point p in C. However, since limn→∞βn = 1
and {xn} is bounded, we obtain

φ(xn+1, zn) = φ
(
xn+1, J

−1(βnJxn +
(
1 − βn

)
JTnxn

))

= ‖xn+1‖2 − 2
〈
xn+1, βnJxn +

(
1 − βn

)
JTnxn

〉
+
∥
∥βnJxn +

(
1 − βn

)
JTnxn

∥
∥2

≤ ‖xn+1‖2 − 2βn〈xn+1, Jxn〉 − 2
(
1 − βn

)
〈xn+1, JTnxn〉 + βn‖xn‖2 +

(
1 − βn

)
‖Tnxn‖2

= βnφ(xn+1, xn) +
(
1 − βn

)
φ(xn+1, Tnxn).

(3.10)

Therefore φ(xn+1, zn) → 0 as n → ∞.
Since xn+1 = ΠCn+1x0 ∈ Cn+1, from the definition of Cn, we have

φ
(
xn+1, yn

)
≤ φ(xn+1, xn), (3.11)

for all n ≥ 0. Thus

φ
(
xn+1, yn

)
−→ 0, as n −→ ∞. (3.12)

By using Lemma 2.3, we also have

lim
n→∞

∥
∥xn+1 − yn

∥
∥ = lim

n→∞
‖xn+1 − xn‖ = lim

n→∞
‖xn+1 − zn‖ = 0. (3.13)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

∥
∥Jxn+1 − Jyn

∥
∥= lim

n→∞
‖Jxn+1 − Jxn‖ = lim

n→∞
‖Jxn+1 − Jzn‖ = 0. (3.14)
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For each n ∈ N ∪ {0}, we observe that

∥
∥Jxn+1 − Jyn

∥
∥ = ‖Jxn+1 − (αnJxn + (1 − αn)JTnzn)‖

= ‖αn(Jxn+1 − Jxn) + (1 − αn)(Jxn+1 − JTnzn)‖

= ‖(1 − αn)(Jxn+1 − JTnzn) − αn(Jxn − Jxn+1)‖

≥ (1 − αn)‖Jxn+1 − JTnzn‖ − αn‖Jxn − Jxn+1‖.

(3.15)

It follows that

‖Jxn+1 − JTnzn‖ ≤ 1
1 − αn

(∥
∥Jxn+1 − Jyn

∥
∥ + αn‖Jxn − Jxn+1‖

)
. (3.16)

By (3.14) and lim supn→∞αn < 1, we obtain

lim
n→∞

‖Jxn+1 − JTnzn‖ = 0. (3.17)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn+1 − Tnzn‖ = 0. (3.18)

By (3.13), we have

‖zn − xn‖ ≤ ‖zn − xn+1‖ + ‖xn+1 − xn‖ −→ 0, as n −→ ∞. (3.19)

Since Tn is uniformly continuous, by (3.13) and (3.18), we obtain

‖xn − Tnxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Tnzn‖ + ‖Tnzn − Tnxn‖ −→ 0, (3.20)

as n → ∞, and so

lim
n→∞

‖Jxn − JTnxn‖ = 0. (3.21)

Based on the hypothesis, we now consider the following two cases.

Case 1. ({Tn}, {xn}) satisfies condition ∗AKTT. Applying Lemma 2.8 to get

‖Jxn − JTxn‖ ≤ ‖Jxn − JTnxn‖ + ‖JTnxn − JTxn‖

≤ ‖Jxn − JTnxn‖ + sup{‖JTnz − JTz‖ : z ∈ {xn}} −→ 0.
(3.22)
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Case 2. ({Tn}, {xn}) satisfies condition AKTT. Apply Lemma 2.7 to get

‖xn − Txn‖ ≤ ‖xn − Tnxn‖ + ‖Tnxn − Txn‖

≤ ‖xn − Tnxn‖ + sup{‖Tnz − Tz‖ : z ∈ {xn}} −→ 0.
(3.23)

Hence

lim
n→∞

‖xn − Txn‖ = lim
n→∞

∥
∥
∥J−1(Jxn) − J−1(JTxn)

∥
∥
∥ = 0. (3.24)

Therefore, from the both two cases, we have

lim
n→∞

‖xn − Txn‖ = 0. (3.25)

Since T is closed and xn → p, we have p ∈ F(T).Moreover, by (3.7), we obtain

φ
(
p, x0

)
= lim

n→∞
φ(xn, x0) ≤ φ

(
p, x0

)
, (3.26)

for all p ∈ F(T). Therefore, p = ΠF(T)x0. This completes the proof.

Since every relatively nonexpansive mapping is a hemi-relatively nonexpansive
mapping, we obtain the following result for a countable family of relatively nonexpansive
mappings of modified Ishikawa iterative process.

Corollary 3.2. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty bounded closed convex subset of E. Let {Tn} be a sequence of relatively nonexpansive
mappings from C into itself such that

⋂∞
n=0F(Tn) is nonempty. Assume that {αn}∞n=0 and {βn}∞n=0

are sequences in [0, 1] such that lim supn→∞αn < 1 and limn→∞βn = 1 and let a sequence {xn} in
C be defined by the following algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTnzn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTnxn

)
,

Cn+1 =
{
v ∈ Cn : φ

(
v, yn

)
≤ φ(v, xn)

}
,

xn+1 = ΠCn+1x0,

(3.27)

for n ∈ N ∪ {0}, where J is the single-valued duality mapping on E. Suppose that for each bounded
subset B of C, the ordered pair ({Tn}, B) satisfies either condition AKTT or condition ∗AKTT. Let T be
the mapping from C into itself defined by Tv = limn→∞Tnv for all v ∈ C and suppose that T is closed
and F(T) =

⋂∞
n=0F(Tn). If Tn is uniformly continuous for all n ∈ N, then {xn} converges strongly to

ΠF(T)x0, whereΠF(T) is the generalized projection from C onto F(T).
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Theorem 3.3. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty bounded closed convex subset of E. Let {Tn} be a sequence of hemi-relatively nonexpansive
mappings from C into itself such that

⋂∞
n=0F(Tn) is nonempty. Assume that {αn}∞n=0 is a sequence in

[0, 1] such that lim supn→∞αn < 1 and let a sequence {xn} inC be defined by the following algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTnxn),

Cn+1 =
{
v ∈ Cn : φ

(
v, yn

)
≤ φ(v, xn)

}
,

xn+1 = ΠCn+1x0,

(3.28)

for n ∈ N ∪ {0}, where J is the single-valued duality mapping on E. Suppose that for each bounded
subset B of C, the ordered pair ({Tn}, B) satisfies either condition AKTT or condition ∗AKTT. Let T
be the mapping from C into itself defined by Tv = limn→∞Tnv for all v ∈ C and suppose that T is
closed and F(T) =

⋂∞
n=0F(Tn). Then {xn} converges strongly toΠF(T)x0.

Proof. In Theorem 3.1, if βn = 1 for all n ∈ N ∪ {0} then (3.1) reduced to (3.28).

Corollary 3.4. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty bounded closed convex subset of E. Let {Tn} be a sequence of relatively nonexpansive
mappings from C into itself such that

⋂∞
n=0F(Tn) is nonempty. Assume that {αn}∞n=0 is a sequence

in [0, 1] such that lim supn→∞αn < 1 and let a sequence {xn} in C be defined by the following
algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTnxn),

Cn+1 =
{
v ∈ Cn : φ

(
v, yn

)
≤ φ(v, xn)

}
,

xn+1 = ΠCn+1x0,

(3.29)

for n ∈ N ∪ {0}, where J is the single-valued duality mapping on E. Suppose that for each bounded
subset B of C, the ordered pair ({Tn}, B) satisfies either condition AKTT or condition ∗AKTT. Let T
be the mapping from C into itself defined by Tv = limn→∞Tnv for all v ∈ C and suppose that T is
closed and F(T) =

⋂∞
n=0F(Tn). Then {xn} converges strongly toΠF(T)x0.

Notice that every uniformly continuous mapping must be a continuous and closed
mapping. Then setting Tn ≡ T for all n ∈ N, in Theorems 3.1 and 3.3, we immediately obtain
the following results.

Corollary 3.5. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty bounded closed convex subset of E. Let T : C → C be a closed hemi-relatively nonexpansive
mapping such that F(T)/= ∅. Assume that {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1] such that



Fixed Point Theory and Applications 15

lim supn→∞αn < 1 and limn→∞βn = 1 and let a sequence {xn} in C be defined by the following
algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTzn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTxn

)
,

Cn+1 =
{
v ∈ Cn : φ

(
v, yn

)
≤ φ(v, xn)

}
,

xn+1 = ΠCn+1x0,

(3.30)

for n ∈ N∪{0}, where J is the single-valued duality mapping on E. If T is uniformly continuous, then
{xn} converges strongly toΠF(T)x0.

Corollary 3.6. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty bounded closed convex subset of E. Let T : C → C be a closed relatively nonexpansive
mapping such that F(T)/= ∅. Assume that {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1] such that
lim supn→∞αn < 1 and limn→∞βn = 1 and let a sequence {xn} in C be defined by the following
algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTzn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTxn

)
,

Cn+1 =
{
v ∈ Cn : φ

(
v, yn

)
≤ φ(v, xn)

}
,

xn+1 = ΠCn+1x0,

(3.31)

for n ∈ N∪{0}, where J is the single-valued duality mapping on E. If T is uniformly continuous, then
{xn} converges strongly toΠF(T)x0.

Proof. Since a closed relatively nonexpansive mapping is a closed hemi-relatively one,
Corollary 3.6 is implied by Corollary 3.5.

Corollary 3.7. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty bounded closed convex subset of E. Let T : C → C be a closed hemi-relatively nonexpansive
mapping from C into itself such that F(T)/= ∅. Assume that {αn}∞n=0 is a sequence in [0, 1] such that
lim supn→∞αn < 1 and let a sequence {xn} in C be defined by the following algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTxn),

Cn+1 =
{
v ∈ Cn : φ

(
v, yn

)
≤ φ(v, xn)

}
,

xn+1 = ΠCn+1x0,

(3.32)

for n ∈ N ∪ {0}, where J is the single-valued duality mapping on E. Then {xn} converges strongly to
ΠF(T)x0.
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Corollary 3.8. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty bounded closed convex subset of E. Let T : C → C be a closed relatively nonexpansive
mapping from C into itself such that F(T)/= ∅. Assume that {αn}∞n=0 is a sequence in [0, 1] such that
lim supn→∞αn < 1 and let a sequence {xn} in C be defined by the following algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTxn),

Cn+1 =
{
v ∈ Cn : φ

(
v, yn

)
≤ φ(v, xn)

}
,

xn+1 = ΠCn+1x0,

(3.33)

for n ∈ N ∪ {0}, where J is the single-valued duality mapping on E. Then {xn} converges strongly to
ΠF(T)x0.

Similarly, as in the proof of Theorem 3.1, we obtain the following results.

Theorem 3.9. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty bounded closed convex subset of E. Let {Tn} be a sequence of hemi-relatively nonexpansive
mappings from C into itself such that

⋂∞
n=0F(Tn) is nonempty. Assume that {αn}∞n=0 and {βn}∞n=0 are

sequences in [0, 1] such that lim supn→∞αn < 1 and limn→∞βn < 1 and let a sequence {xn} in C be
defined by the following algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTnzn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTnxn

)
,

Cn =
{
v ∈ C : φ

(
v, yn

)
≤ φ(v, xn)

}
,

Qn = {v ∈ C : 〈v − xn, Jxn − Jx0〉 ≥ 0},

xn+1 = ΠCn∩Qnx0,

(3.34)

for n ∈ N ∪ {0}, where J is the single-valued duality mapping on E. Suppose that for each bounded
subset B of C, the ordered pair ({Tn}, B) satisfies either condition AKTT or condition ∗AKTT. Let T be
the mapping from C into itself defined by Tv = limn→∞Tnv for all v ∈ C and suppose that T is closed
and F(T) =

⋂∞
n=0F(Tn). If Tn is uniformly continuous for all n ∈ N, then {xn} converges strongly to

ΠF(T)x0, whereΠF(T) is the generalized projection from C onto F(T).

Corollary 3.10. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty bounded closed convex subset of E. Let T : C → C be closed hemi-relatively nonexpansive
mappings from C into itself such that F(T)/= ∅. Assume that {αn}∞n=0 and {βn}∞n=0 are sequences in
[0, 1] such that lim supn→∞αn < 1 and lim supn→∞βn = 1 and let a sequence {xn} in C be defined
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by the following algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTzn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTxn

)
,

Cn =
{
v ∈ C : φ

(
v, yn

)
≤ φ(v, xn)

}
,

Qn = {v ∈ C : 〈v − xn, Jxn − Jx0〉 ≥ 0},

xn+1 = ΠCn∩Qn(x0),

(3.35)

for n ∈ N∪{0}, where J is the single-valued duality mapping on E. If T is uniformly continuous, then
{xn} converges strongly toΠF(T)x0.

Theorem 3.11. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty bounded closed convex subset of E. Let {Tn} be a sequence of relatively nonexpansive
mappings from C into itself such that

⋂∞
n=0F(Tn) is a nonempty. Assume that {αn}∞n=0 is a sequence in

[0, 1] such that lim supn→∞αn < 1 and let a sequence {xn} inC be defined by the following algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTnxn),

Cn =
{
v ∈ C : φ

(
v, yn

)
≤ φ(v, xn)

}
,

Qn = {v ∈ C : 〈v − xn, Jxn − Jx0〉 ≥ 0},

xn+1 = ΠCn∩Qnx0,

(3.36)

for n ∈ N ∪ {0}, where J is the single-valued duality mapping on E. Suppose that for each bounded
subset B of C, the ordered pair ({Tn}, B) satisfies either condition AKTT or condition ∗AKTT. Let T
be the mapping from C into itself defined by Tv = limn→∞Tnv for all v ∈ C and suppose that T is
closed and F(T) =

⋂∞
n=0F(Tn). Then {xn} converges strongly toΠF(T)x0.

Proof. Putting βn = 1, for all n ∈ N∪{0}, in Theorem 3.9 we immediately obtain Theorem 3.11.

Corollary 3.12. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty bounded closed convex subset of E. Let T : C → C be closed hemi-relatively nonexpansive
mappings from C into itself such that F(T)/= ∅. Assume that {αn}∞n=0 is a sequence in [0, 1] such that
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lim supn→∞αn < 1 and let a sequence {xn} in C be defined by the following algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTxn),

Cn =
{
v ∈ C : φ

(
v, yn

)
≤ φ(v, xn)

}
,

Qn = {v ∈ C : 〈v − xn, Jxn − Jx0〉 ≥ 0},

xn+1 = ΠCn∩Qnx0,

(3.37)

for n ∈ N ∪ {0}, where J is the single-valued duality mapping on E. Then {xn} converges strongly to
ΠF(T)x0.

Remark 3.13. Our results extend and improve the corresponding results in the following
senses.

(i) Corollary 3.10 improves Theorem2.1 of Qin and Su [15] from relatively nonexpan-
sive mappings to more general hemi-relatively nonexpansive mappings.

(ii) Theorem 3.11 improves the algorithm in Theorem 3.1 of Nilsakoo and Saejung
[19] from the Mann iteration process to modify Ishikawa iteration process and
from countable relatively nonexpansive mappings to more general countable hemi-
relatively nonexpansive mappings; that is, we relax the strong restriction F̂(T) =
F(T). From (i) and (ii), it means that we relax the strongly restriction as F̂(T) = F(T)
from the assumption.

(iii) Corollary 3.12 improves Theorem 3.1 of Matsushita and Takahashi [14] from
relatively nonexpansive mappings to more general hemi-relatively nonexpansive
mappings in a Banach space.

4. Halpern Iterative Scheme

In this section, we prove the strong convergence theorems for finding common fixed points
of a countable family of hemi-relatively nonexpansive mappings, which can be viewed as a
generalization of the recently result of [15, Theorem2.2].

Theorem 4.1. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty bounded closed convex subset of E. Let {Tn} be a sequence of hemi-relatively nonexpansive
mappings from C into itself such that

⋂∞
n=0F(Tn) is nonempty. Assume that {αn}∞n=0 is a sequence in

(0, 1) such that limn→∞αn = 0 and let a sequence {xn} in C be defined by the following algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = J−1(αnJx0 + (1 − αn)JTnxn),

Cn+1 =
{
v ∈ Cn : φ

(
v, yn

)
≤ αnφ(v, x0) + (1 − αn)φ(v, xn)

}
,

xn+1 = ΠCn+1x0,

(4.1)
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for n ∈ N ∪ {0}, where J is the single-valued duality mapping on E. Suppose that for each bounded
subset B of C, the ordered pair ({Tn}, B) satisfies either condition AKTT or condition ∗AKTT. Let T
be the mapping from C into itself defined by Tv = limn→∞Tnv for all v ∈ C and suppose that T is
closed and F(T) =

⋂∞
n=0F(Tn). Then {xn} converges strongly toΠF(T)x0.

Proof. As in the proof of Theorem 3.1, we have that Cn+1 is closed and convex for each n ≥ 0.
Next, we show that

⋂∞
n=0F(Tn) ⊂ Cn for all n ≥ 0. Indeed, let p ∈

⋂∞
n=0F(Tn), we have

φ
(
p, yn

)
= φ

(
p, J−1(αnJx0 + (1 − αn)JTnxn)

)

=
∥
∥p

∥
∥2 − 2

〈
p, αnJx0 + (1 − αn)JTnxn

〉
+ ‖αnJx0 + (1 − αn)JTnxn‖2

≤
∥
∥p

∥
∥2 − 2αn

〈
p, Jx0

〉
− 2(1 − αn)

〈
p, JTnxn

〉
+ αn‖x0‖2 + (1 − αn)‖Tnxn‖2

= αn

(∥
∥p

∥
∥2 − 2

〈
p, Jx0

〉
+ ‖x0‖2

)
+ (1 − αn)

(∥
∥p

∥
∥2 − 2

〈
p, JTnxn

〉
+ ‖Tnxn‖2

)

≤ αnφ
(
p, x0

)
+ (1 − αn)φ

(
p, Tnxn

)

≤ αnφ
(
p, x0

)
+ (1 − αn)φ

(
p, xn

)
.

(4.2)

This means that, p ∈ Cn+1 for all n ≥ 0. From Theorem 3.1, we obtain limn→∞φ(xn+1, xn) = 0
and limn→∞φ(xn, x0) exists. Since xn+1 = ΠCn+1x0 and hence xn+1 ∈ Cn+1 ⊂ Cn, we also get

φ
(
xn+1, yn

)
≤ αnφ(xn+1, x0) + (1 − αn)φ(xn+1, xn), (4.3)

for all n ≥ 0. Since limn→∞αn = 0, thus, φ(xn+1, yn) → 0 as n → ∞.
By using the same argument as in Theorem 3.1, we obtain that {xn} is a Cauchy

sequence, thus {xn} converges strongly to p for some point p in C. By using Lemma 2.3,
we also have

lim
n→∞

∥
∥xn+1 − yn

∥
∥ = lim

n→∞
‖xn+1 − xn‖ = 0. (4.4)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

∥
∥Jxn+1 − Jyn

∥
∥ = lim

n→∞
‖Jxn+1 − Jxn‖ = 0. (4.5)

Observe that

∥
∥Jxn+1 − Jyn

∥
∥ = ‖Jxn+1 − (αnJx0 + (1 − αn)JTnxn)‖

= ‖αn(Jxn+1 − Jx0) + (1 − αn)(Jxn+1) − JTnxn‖

= ‖(1 − αn)(Jxn+1 − JTnxn) − αn(Jx0 − Jxn+1)‖

≥ (1 − αn)‖Jxn+1 − JTnxn‖ − αn‖Jx0 − Jxn+1‖,

(4.6)
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this gives

‖Jxn+1 − JTnxn‖ ≤ 1
1 − αn

(∥
∥Jxn+1 − Jyn

∥
∥ + αn‖Jx0 − Jxn+1‖

)
. (4.7)

By (4.5) and limn→∞αn = 0, we obtain limn→∞‖Jxn+1 − JTnxn‖ = 0. Since J−1 is uniformly
norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn+1 − Tnxn‖ = 0. (4.8)

It follows from (4.4) that ‖xn − Tnxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Tnxn‖ → 0, as n → ∞, and since
J−1 is uniformly norm-to-norm continuous on bounded sets, we get limn→∞‖Jxn−JTnxn‖ = 0.
From the conditions ∗AKTT, AKTT, Lemmas 2.7 and 2.8, by using the same line as in the proof
of Theorem 3.1, the both two cases, we know that

lim
n→∞

‖xn − Txn‖ = 0. (4.9)

Finally, we prove that xn → p, where p = ΠF(T)x0. Let {xni} be a subsequence of {xn} such
that {xni} ⇀ q ∈ C. Replacing q′ = ΠF(T)x0, from xn+1 = ΠCn+1x0 and q′ ∈ F ⊂ Cn+1, we have
φ(xn+1, x0) ≤ φ(q′, x0). On the other hand, from weakly lower semicontinuity of the norm, we
have

φ
(
q, x0

)
=
∥
∥q

∥
∥2 − 2

〈
q, Jx0

〉
+ ‖x0‖2

≤ lim
i→∞

inf
(
‖xni‖

2 − 〈xni , Jx0〉 + ‖x0‖2
)

≤ lim
i→∞

inf φ(xni , x0) ≤ lim
i→∞

sup φ(xni , x0)

≤ φ
(
q′, x0

)
.

(4.10)

From the definition of ΠF(T)x0, since q = ΠF(T)x0, we have limn→∞φ(xni , x0) = φ(q, x0).
This implies limn→∞‖xni‖ = ‖q‖. Using the Kadec-Klee property ([24]) of the space E, we
obtain that {xni} converges strongly toΠF(T)x0. Since {xni} is an arbitrary weakly convergent
sequence of {xn}, we can conclude that {xn} convergence strongly toΠF(T)x0.

Corollary 4.2. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty bounded closed convex subset of E. Let T be a closed hemi-relatively nonexpansive mapping
from C into itself such that F(T) is nonempty. Assume that {αn}∞n=0 is a sequence in (0, 1) such that
limn→∞αn = 0 and let a sequence {xn} in C be defined by the following algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = J−1(αnJx0 + (1 − αn)JTxn),

Cn+1 =
{
v ∈ Cn : φ

(
v, yn

)
≤ αnφ(v, x0) + (1 − αn)φ(v, xn)

}
,

xn+1 = ΠCn+1x0,

(4.11)
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for n ∈ N ∪ {0}, where J is the single-valued duality mapping on E. Then {xn} converges strongly to
ΠF(T)x0.

Proof. By setting Tn ≡ T for all n ∈ N ∪ {0}, we immediately obtain the result.

Since every relatively nonexpansive mapping is a hemi-relatively nonexpansive
mapping, we immediately obtain the following corollaries.

Corollary 4.3. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty bounded closed convex subset of E. Let {Tn} be a sequence of relatively nonexpansive
mappings from C into itself such that

⋂∞
n=0F(Tn) is nonempty. Assume that {αn}∞n=0 is a sequence

in (0, 1) such that limn→∞αn = 0 and let a sequence {xn} in C be defined by the following algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = J−1(αnJx0 + (1 − αn)JTnxn),

Cn+1 =
{
v ∈ Cn : φ

(
v, yn

)
≤ αnφ(v, x0) + (1 − αn)φ(v, xn)

}
,

xn+1 = ΠCn+1x0,

(4.12)

for n ∈ N ∪ {0}, where J is the single-valued duality mapping on E. Suppose that for each bounded
subset B of C, the ordered pair ({Tn}, B) satisfies either condition AKTT or condition ∗AKTT. Let T
be the mapping from C into itself defined by Tv = limn→∞Tnv for all v ∈ C and suppose that T is
closed and F(T) =

⋂∞
n=0F(Tn). Then {xn} converges strongly toΠF(T)x0.

Corollary 4.4. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty bounded closed convex subset of E. Let T be a closed relatively nonexpansive mapping
from C into itself such that F(T) is nonempty. Assume that {αn}∞n=0 is a sequence in (0, 1) such that
limn→∞αn = 0 and let a sequence {xn} in C be defined by the following algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = J−1(αnJx0 + (1 − αn)JTxn),

Cn+1 =
{
v ∈ Cn : φ

(
v, yn

)
≤ αnφ(v, x0) + (1 − αn)φ(v, xn)

}
,

xn+1 = ΠCn+1x0,

(4.13)

for n ∈ N ∪ {0}, where J is the single-valued duality mapping on E. Then {xn} converges strongly to
ΠF(T)x0.

Similarly, as in the proof of Theorem 4.1, we obtain the following result.

Theorem 4.5. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty bounded closed convex subset of E. Let {Tn} be a sequence of hemi-relatively nonexpansive
mappings from C into itself such that

⋂∞
n=0F(Tn) is nonempty. Assume that {αn}∞n=0 is a sequence
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in (0, 1) such that limn→∞αn = 0 and let a sequence {xn} in C be defined by the following algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = J−1(αnJx0 + (1 − αn)JTnxn),

Cn =
{
v ∈ C : φ

(
v, yn

)
≤ αnφ(v, x0) + (1 − αn)φ(v, xn)

}
,

Qn = {v ∈ C : 〈v − xn, Jxn − Jx0〉 ≥ 0},

xn+1 = ΠCn∩Qnx0,

(4.14)

for n ∈ N ∪ {0}, where J is the single-valued duality mapping on E. Suppose that for each bounded
subset B of C, the ordered pair ({Tn}, B) satisfies either condition AKTT or condition ∗AKTT. Let T
be the mapping from C into itself defined by Tv = limn→∞Tnv for all v ∈ C and suppose that T is
closed and F(T) =

⋂∞
n=0F(Tn). Then {xn} converges strongly toΠF(T)x0.

If Tn = T , then Theorem 4.5 reduces to the following corollary.

Corollary 4.6 (see [15, Theorem2.2]). Let E be a uniformly convex and uniformly smooth Banach
space and letC be a nonempty bounded closed convex subset of E. Let T : C → C be a closed relatively
nonexpansive mapping from C into itself such that F(T)/= ∅. Assume that {αn}nn=0 is a sequence in
(0, 1) such that limn→∞αn = 0 and let a sequence {xn} in C be defined by the following algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = J−1(αnJx0 + (1 − αn)JTxn),

Cn =
{
v ∈ C : φ

(
v, yn

)
≤ αnφ(v, x0) + (1 − αn)φ(v, xn)

}
,

Qn = {v ∈ C : 〈v − xn, Jxn − Jx0〉 ≥ 0},

xn+1 = ΠCn∩Qnx0,

(4.15)

for n ∈ N ∪ {0}, where J is the single-valued duality mapping on E. Then {xn} converges strongly to
ΠF(T)x0.

5. Some Applications to Hilbert Spaces

It is well known that, in the Hilbert space setting, the concepts of hemi-relatively
nonexpansive mappings and quasi-nonexpansive mappings are the equivalent. Thus, the
following results can be obtained.

Theorem 5.1. Let H be a Hilbert space and let C be a nonempty bounded closed convex subset of
H. Let {Tn} be a sequence of quasi-nonexpansive mappings from C into itself such that

⋂∞
n=0F(Tn)

is nonempty. Assume that {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1] such that lim supn→∞αn < 1
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and limn→∞βn = 1 and let a sequence {xn} in C be defined by the following algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = αnxn + (1 − αn)Tnzn,

zn = βnxn +
(
1 − βn

)
Tnxn,

Cn+1 =
{
v ∈ Cn :

∥
∥yn − v

∥
∥ ≤ ‖xn − v‖

}
,

xn+1 = PCn+1x0,

(5.1)

for n ∈ N ∪ {0}. Suppose that for each bounded subset B of C, the ordered pair ({Tn}, B) satisfies
condition AKTT. Let T be the mapping from C into itself defined by Tv = limn→∞Tnv for all v ∈ C
and suppose that T is closed and F(T) =

⋂∞
n=0F(Tn). If Tn is uniformly continuous for all n ∈ N, then

{xn} converges strongly to PF(T)x0.

Proof. Since J is an identity operator, we have

φ
(
x, y

)
=
∥
∥x − y

∥
∥2, (5.2)

for every x, y ∈ H. Therefore

∥
∥Tnx − p

∥
∥ ≤

∥
∥x − p

∥
∥ ⇐⇒ φ

(
p, Tnx

)
≤ φ

(
p, x

)
, (5.3)

for every x ∈ C and p ∈ F(Tn). Hence, Tn is quasi-nonexpansive if and only if Tn is hemi-
relatively nonexpansive. Then, by Theorem 3.1, we obtain the result.

Theorem 5.2. Let H be a Hilbert space and let C be a nonempty bounded closed convex subset of
H. Let {Tn} be a sequence of quasi-nonexpansive mappings from C into itself such that

⋂∞
n=0F(Tn) is

nonempty. Assume that {αn}∞n=0 is sequence in [0, 1] such that lim supn→∞αn < 1 and let a sequence
{xn} in C be defined by the following algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = αnxn + (1 − αn)Tnxn,

Cn+1 =
{
v ∈ Cn :

∥
∥yn − v

∥
∥ ≤ ‖xn − v‖

}
,

xn+1 = PCn+1x0,

(5.4)

for n ∈ N ∪ {0}. Suppose that for each bounded subset B of C, the ordered pair ({Tn}, B) satisfies
condition AKTT. Let T be the mapping from C into itself defined by Tv = limn→∞Tnv for all v ∈ C
and suppose that T is closed and F(T) =

⋂∞
n=0F(Tn). Then {xn} converges strongly to PF(T)x0.

Proof. In Theorem 5.1 setting βn = 1 for all n ∈ N ∪ {0}, then (5.1) reduces to (5.4).
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Theorem 5.3. Let H be a Hilbert space and let C be a nonempty bounded closed convex subset of
H. Let {Tn} be a sequence of quasi-nonexpansive mappings from C into itself such that

⋂∞
n=0F(Tn)

is nonempty. Assume that {αn}∞n=0 is a sequence in [0, 1] such that lim supn→∞αn < 1 and let a
sequence {xn} in C be defined by the following algorithm:

x0 ∈ C, chosen arbitrarity, C0 = C,

yn = αnx0 + (1 − αn)Tnxn,

Cn+1 =
{
v ∈ Cn :

∥
∥yn − v

∥
∥ ≤ αn‖x0 − v‖ + (1 − αn)‖xn − v‖

}
,

xn+1 = PCn+1x0,

(5.5)

for n ∈ N ∪ {0}. Suppose that for each bounded subset B of C, the ordered pair ({Tn}, B) satisfies
condition AKTT. Let T be the mapping from C into itself defined by Tv = limn→∞Tnv for all v ∈ C
and suppose that T is closed and F(T) =

⋂∞
n=0F(Tn). Then {xn} converges strongly to PF(T)x0.
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