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1. Introduction

Throughout this paper, unless otherwise specified, X is a metric space with metric d. Let
2X, Cl(X), and CB(X) denote the collection of nonempty subsets of X, nonempty closed
subsets of X, and nonempty closed bounded subsets of X, respectively. Let H be the
Hausdorff metric on CB(X), that is,

H(A,B) = max
{
sup
x∈A

d(x, B), sup
y∈B

d(y,A)
}
, A, B ∈ CB(X). (1.1)

A multivalued map T : X → CB(X) is called

(i) contraction [1] if for a fixed constant h ∈ (0, 1) and for each x, y ∈ X,

H(T(x), T(y)) ≤ hd(x, y); (1.2)

(ii) generalized contraction [2] if for any x, y ∈ X,

H(T(x), T(y)) ≤ k(d(x, y))d(x, y), (1.3)
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where k is a function from [0,∞) to [0, 1) with lim supr→ t+k(r) < 1, for every t ∈
[0,∞);

(iii) contractive [3] if there exist constants b, h ∈ (0, 1), h < b such that for any x ∈ X
there is y ∈ Ix

b
satisfying

d(y, T(y)) ≤ hd(x, y), (1.4)

where Ix
b
= {y ∈ T(x) : bd(x, y) ≤ d(x, T(x))};

(iv) generalized contractive [4] if there exist b ∈ (0, 1) such that for any x ∈ X there is
y ∈ Ix

b
satisfying

d(y, T(y)) ≤ k(d(x, y))d(x, y), (1.5)

where k is a function from [0,∞) to [0, b) with lim supr→ t+k(r) < b, for every t ∈
[0,∞).

An element x ∈ X is called a fixed point of a multivalued map T : X → 2X if x ∈ T(x).
We denote Fix(T) = {x ∈ X : x ∈ T(x)}.

A sequence {xn} in X is called an orbit of T at x0 ∈ X if xn ∈ T(xn−1) for all n ≥ 1. A
map f : X → R is called lower semicontinuous if for any sequence {xn} ⊂ X with xn → x ∈ X
imply that f(x) ≤ lim infn→∞ f(xn).

Using the concept of Hausdorff metric, Nadler Jr. [1] established the following fixed
point result for multivalued contraction maps which in turn is a generalization of the well-
known Banach contraction principle.

Theorem 1.1 (see [1]). Let X be a complete space and let T : X → CB(X) be a contraction map.
Then Fix(T)/=∅.

This result has been generalized in many directions. For instance, Mizoguchi and
Takahashi [2] have obtained the following general form of the Nadler’s theorem.

Theorem 1.2 (see [2]). Let X be a complete space and let T : X → CB(X) be a generalized
contraction map. Then Fix(T)/=∅.

Another extension of Nadler’s result obtained recently by Feng and Liu [3]. Without
using the concept of the Hausdorff metric, they proved the following result.

Theorem 1.3 (see [3]). Let X be a complete space and let T : X → Cl(X) be a multivalued
contractive map. Suppose that a real-valued function g on X, g(x) = d(x, T(x)), is lower
semicontinuous. Then Fix(T)/=∅.

Most recently, Klim and Wardowski [4] generalized Theorem 1.3 as follows:

Theorem 1.4 (see [4]). Let X be a complete metric space and let T : X → Cl(X) be a multivalued
generalized contractive map such that a real-valued function g on X, g(x) = d(x, T(x)) is lower
semicontinuous. Then Fix(T)/=∅.
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Recently, Kada et al. [5] introduced the concept of w-distance on a metric space as
follows.

A function ω : X × X → [0,∞) is called w-distance on X if it satisfies the following
for any x, y, z ∈ X:

(w1) ω(x, z) ≤ ω(x, y) +ω(y, z);

(w2) a map ω(x, ·) : X → 0,∞) is lower semicontinuous;

(w3) for any ε > 0, there exists δ > 0 such that ω(z, x) ≤ δ and ω(z, y) ≤ δ imply
d(x, y) ≤ ε.

Using the concept ofw-distance, they improved Caristi’s fixed point theorem, Ekland’s
variational principle, and Takahashi’s existence theorem. In [6], Susuki and Takahashi proved
a fixed point theorem for contractive type multivalued maps with respect to w-distance. See
also [7–12].

Let us give some examples of w-distance [5].

(a) The metric d is a w-distance on X.

(b) Let X be normed space with norm ‖·‖. Then the functions ω1, ω2 : X ×X → [0,∞)
defined by ω1(x, y) = ‖x‖ + ‖y‖ and ω2(x, y) = ‖y‖ for every x, y ∈ X, are w-
distance.

The following lemmas concerning w-distance are crucial for the proofs of our results.

Lemma 1.5 (see [5]). Let {xn} and {yn} be sequences in X and let {αn} and {βn} be sequences in
[0,∞) converging to 0. Then, for the w-distance ω on X the following hold for every x, y, z ∈ X:

(a) ifω(xn, y) ≤ αn andω(xn, z) ≤ βn for any n ∈ N, then y = z; in particular, ifω(x, y) = 0
and ω(x, z) = 0, then y = z;

(b) if ω(xn, yn) ≤ αn and ω(xn, z) ≤ βn for any n ∈ N, then {yn} converges to z;
(c) if ω(xn, xm) ≤ αn for any n,m ∈ N withm > n, then {xn} is a Cauchy sequence;

(d) if ω(y, xn) ≤ αn for any n ∈ N, then {xn} is a Cauchy sequence.

Lemma 1.6 (see [9]). LetK be a closed subset ofX and letω be a w-distance onX. Suppose that there
exists u ∈ X such that ω(u, u) = 0. Then ω(u,K) = 0 ⇔ u ∈ K. (where ω(u,K) = infy∈Kω(u, y).)

We say a multivalued map T : X → 2X is generalized w-contractive if there exist a
w-distance ω on X and a constant b ∈ (0, 1) such that for any x ∈ X there is y ∈ Jx

b
satisfying

ω(y, T(y)) ≤ k(ω(x, y))ω(x, y), (1.6)

where Jxb = {y ∈ T(x) : bω(x, y) ≤ ω(x, T(x))} and k is a function from [0,∞) to [0, b) with
lim supr→ t+k(r) < b, for every t ∈ [0,∞).
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Note that if we take ω = d, then the definition of generalized w-contractive map
reduces to the definition of generalized contractive map due to Klim and Wardowski [4].
In particular, if we take a constant map k = h < b, h ∈ (0, 1) then the map T is weakly
contractive (in short, w-contractive) [8], and further if we take ω = d, then we obtain Jxb = Ixb
and T is contractive [3].

In this paper, using the concept of w-distance, we first establish key lemma and then
obtain fixed point results for multivalued generalized w-contractive maps not involving the
extended Hausdorffmetric. Our results either generalize or improve a number of fixed point
results including the corresponding results of Feng and Liu [3], Latif and Albar [8], and Klim
and Wardowski [4].

2. Results

First, we prove key lemma in the setting of metric spaces.

Lemma 2.1. Let T : X → Cl(X) be a generalized w-contractive map. Then, there exists an orbit
{xn} of T in X such that the sequence of nonnegative real numbers {ω(xn, T(xn))} is decreasing to
zero and the sequence {xn} is Cauchy.

Proof. Since for each x ∈ X, T(x) is closed, the set Jxb is nonempty for any b ∈ (0, 1). Let xo be
an arbitrary but fixed element of X. Since T is generalized w-contractive, there is x1 ∈ Jxo

b
⊆

T(xo) such that

ω
(
x1, T

(
x1
)) ≤ k

(
ω
(
x0, x1

))
ω
(
x0, x1

)
, k

(
ω
(
x0, x1

))
< b, (2.1)

bω
(
x0, x1

) ≤ ω
(
x0, T

(
x0
))
. (2.2)

Using (2.1) and (2.2), we have

ω
(
x0, T

(
x0
)) −ω

(
x1, T

(
x1
)) ≥ bω

(
x0, x1

) − k
(
ω
(
x0, x1

))
ω
(
x0, x1

)
=
[
b − k

(
ω
(
x0, x1

))]
ω
(
x0, x1

)
> 0.

(2.3)

Similarly, there is x2 ∈ Jx1
b ⊆ T(x1) such that

ω
(
x2, T

(
x2
)) ≤ k

(
ω
(
x1, x2

))
ω
(
x1, x2

)
, k

(
ω
(
x1, x2

))
< b, (2.4)

bω
(
x1, x2

) ≤ ω
(
x1, T

(
x1
))
. (2.5)

Using (2.4) and (2.5), we have

ω
(
x1, T

(
x1
)) −ω

(
x2, T

(
x2
)) ≥ bω

(
x1, x2

) − k
(
ω
(
x1, x2

))
ω
(
x1, x2

)
=
[
b − k

(
ω
(
x1, x2

))]
ω
(
x1, x2

)
> 0.

(2.6)
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From (2.5) and (2.1), it follows that

ω
(
x1, x2

) ≤ 1
b
ω
(
x1, T x1

) ≤ 1
b
k
(
ω
(
x0, x1

))
ω
(
x0, x1

) ≤ ω
(
x0, x1

)
. (2.7)

Continuing this process, we get an orbit {xn} of T in X such that xn+1 ∈ Jxn

b ,

bω
(
xn, xn+1

) ≤ ω
(
xn, T

(
xn

))
,

ω
(
xn+1, T

(
xn+1

)) ≤ k
(
ω
(
xn, xn+1

))
ω
(
xn, xn+1

)
, k

(
ω
(
xn, xn+1

))
< b.

(2.8)

Using (2.8), we get

ω
(
xn, T

(
xn

)) −ω
(
xn+1, T

(
xn+1

)) ≥ bω
(
xn, xn+1

) − k
(
ω
(
xn, xn+1

))
ω
(
xn, xn+1

)

=
[
b − k

(
ω
(
xn, xn+1

)]
ω
(
xn, xn+1

)
> 0,

(2.9)

and thus for all n

ω
(
xn, T

(
xn

))
> ω

(
xn+1, T

(
xn+1

))
, (2.10)

ω
(
xn, xn+1

) ≤ ω
(
xn−1, xn

)
. (2.11)

Note that the sequences {ω(xn, T(xn))} and {ω(xn, xn+1)} are decreasing, and thus
convergent. Now, by the definition of the function k there exists α ∈ [0, b) such that

lim sup
n→∞

k
(
ω
(
xn, xn+1

))
= α. (2.12)

Thus, for any b0 ∈ (α, b), there exists n0 ∈ N such that

k
(
ω
(
xn, xn+1

))
< b0, ∀n > n0, (2.13)

and thus for all n > n0,we have

k
(
ω
(
xn, xn+1

)) × · · · × k
(
ω
(
xn0+1, xn0+2

))
< bn−n0

0 . (2.14)
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Also, it follows from (2.9) that for all n > n0,

ω
(
xn, T

(
xn

)) −ω
(
xn+1, T

(
xn+1

)) ≥ βω
(
xn, xn+1

)
, (2.15)

where β = b − b0. Note that for all n > n0, we have

ω
(
xn+1, T

(
xn+1

)) ≤ k
(
ω
(
xn, xn+1

))
ω
(
xn, xn+1

)

≤ 1
b
k
(
ω
(
xn, xn+1

))
ω
(
xn, T

(
xn

))

≤ 1
b

1
b
k
(
ω
(
xn, xn+1

))
k
(
ω
(
xn−1, xn

))
ω
(
xn−1, T

(
xn−1

))

...

≤ 1
bn

[k
(
ω
(
xn, xn+1

)) × · · · × k
(
ω
(
x1, x2

))
]ω

(
x1, T

(
x1
))

=
k
(
ω
(
xn, xn+1

)) × · · · × k
(
ω
(
xn0+1, xn0+2

))
bn−n0

× k
(
ω
(
xn0 , xn0+1

)) × · · · × k
(
ω
(
x1, x2

))
ω
(
x1, T

(
x1
))

bn0
,

(2.16)

and thus

ω
(
xn+1, T

(
xn+1

))
<

(
b0
b

)n−n0 k
(
ω
(
xn0 , xn0+1

)) × · · · × k
(
ω
(
x1, x2

))
ω
(
x1, T

(
x1
))

bn0
. (2.17)

Now, since b0 < b, we have limn→∞(b0/b)
n−n0 = 0, and hence the decreasing sequence

{ω(xn, T(xn))} converges to 0. Now, we show that {xn} is a Cauchy sequence. Note that for
all n > n0,

ω
(
xn, xn+1

) ≤ γnω
(
xo, x1

)
, n = 0, 1, 2, . . . , (2.18)

where γ = b0/b < 1. Now, for any n,m ∈ N, m > n > n0,

ω
(
xn, xm

) ≤
m−1∑
j=n

ω
(
xj , xj+1

)

≤ (
γn + γn+1 + · · · + γm−1)ω(

xo, x1
)

≤ γn

1 − γ
ω
(
xo, x1

)
,

(2.19)

and thus by Lemma 1.5, {xn} is a Cauchy sequence.
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Using Lemma 2.1, we obtain the following fixed point result which is an improved
version of Theorem 1.4 and contains Theorem 1.3 as a special case.

Theorem 2.2. LetX be a complete space and let T : X → Cl(X) be a generalizedw-contractive map.
Suppose that a real-valued function g on X defined by g(x) = ω(x, T(x)) is lower semicontinous.
Then there exists vo ∈ X such that g(vo) = 0. Further, if ω(vo, vo) = 0, then v0 ∈ Fix(T).

Proof. Since T : X → Cl(X) is a generalized w-contractive map, it follows from Lemma 2.1
that there exists a Cauchy sequence {xn} in X such that the decreasing sequence {g(xn)} =
{ω(xn, T(xn))} converges to 0. Due to the completeness of X, there exists some v0 ∈ X such
that limn→∞xn = vo. Since g is lower semicontinuous, we have

0 ≤ g
(
vo

) ≤ lim inf
n→∞

g
(
xn

)
= 0, (2.20)

and thus, g(vo) = ω(vo, T(vo)) = 0. Since ω(vo, vo) = 0, and T(vo) is closed, it follows from
Lemma 1.6 that v0 ∈ T(v0).

As a consequence, we also obtain the following fixed point result.

Corollary 2.3 (see [8]). Let X be a complete space and let T : X → Cl(X) be a w-contractive map.
If the real-valued function g on X defined by g(x) = ω(x, T(x)) is lower semicontinous, then there
exists vo ∈ X such that ω(vo, T(vo)) = 0. Further, if ω(vo, vo) = 0, then v0 ∈ Fix(T).

Applying Lemma 2.1, we also obtain a fixed point result for multivalued generalized
w-contractive map satisfying another suitable condition.

Theorem 2.4. Let X be a complete space and let T : X → Cl(X) be a generalized w-contractive
map. Assume that

inf{ω(x, v) +ω(x, T(x)) : x ∈ X} > 0, (2.21)

for every v ∈ X with v /∈ T(v). Then Fix(T)/=∅.

Proof. By Lemma 2.1, there exists an orbit {xn} of T , which is a Cauchy sequence in X. Due to
the completeness of X, there exists v0 ∈ X such that limn→∞xn = vo. Since ω(xn, ·) is lower
semicontinuous and xm → v0 ∈ X, it follows from the proof of Lemma 2.1 that for all n > n0

ω
(
xn, vo

) ≤ lim inf
m→∞

ω
(
xn, xm

) ≤ γn

1 − γ
ω
(
xo, x1

)
, (2.22)

where γ = b0/b < 1. Also, we get

ω
(
xn, T

(
xn

)) ≤ ω
(
xn, xn+1

) ≤ γnω
(
xo, x1

)
. (2.23)
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Assume that vo /∈ T(vo). Then, we have

0 < inf
{
ω
(
x, vo

)
+ω

(
x, T(x)

)
: x ∈ X

}
≤ inf

{
ω
(
xn, vo

)
+ω

(
xn, T

(
xn

))
: n > n0

}

≤ inf
{

γn

1 − γ
ω
(
xo, x1

)
+ γnω

(
xo, x1

)
: n > n0

}

=
{
2 − γ

1 − γ
ω
(
xo, x1

)}
inf

{
γn : n > n0

}
= 0,

(2.24)

which is impossible and hence vo ∈ Fix(T).

Corollary 2.5 (see [8]). Let X be a complete space and let T : X → Cl(X) be w-contractive map.
Assume that

inf{ω(x, u) +ω(x, T(x)) : x ∈ X} > 0, (2.25)

for every u ∈ X with u/∈ T(u). Then Fix(T)/=∅.
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