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We present a new and interesting extension theorem for concave operators as follows. Let X be a
real linear space, and let (Y,K) be a real order complete PL space. Let the setA ⊂ X × Y be convex.
Let X0 be a real linear proper subspace of X, with θ ∈ (AX −X0)

ri, where AX = {x | (x, y) ∈ A for
some y ∈ Y}. Let g0 : X0 → Y be a concave operator such that g0(x) ≤ z whenever (x, z) ∈ A and
x ∈ X0. Then there exists a concave operator g : X → Y such that (i) g is an extension of g0, that
is, g(x) = g0(x) for all x ∈ X0, and (ii) g(x) ≤ z whenever (x, z) ∈ A.
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1. Introduction

A very important result in functional analysis about the extension of a linear functional
dominated by a sublinear function defined on a real vector space was first presented by Hahn
[1] and Banach [2], which is known as the Hahn-Banach extension theorem. The complex
version of Hahn-Banach extension theorem was proved by Bohnenblust and Sobczyk in
[3]. Generalizations and variants of the Hahn-Banach extension theorem were developed
in different directions in the past. Weston [4] proved a Hahn-Banach extension theorem in
which a real-valued linear functional is dominated by a real-valued convex function. Hirano
et al. [5] proved a Hahn-Banach theorem in which a concave functional is dominated by a
sublinear functional in a nonempty convex set. Chen and Craven [6], Day [7], Peressini [8],
Zowe [9–12], Elster and Nehse [13], Wang [14], Shi [15], and Brumelle [16] generalized the
Hahn-Banach theorem to the partially ordered linear space. Yang [17] proved a Hahn-Banach
theorem in which a linear map is weakly dominated by a set-valued map which is convex.
Meng [18] obtained Hahn-Banach theorems by using concept of efficient for K-convex set-
valued maps. Chen andWang [19] proved a Hahn-Banach theorems in which a linear map is
dominated by a K-set-valued map. Peng et al. [20] proved some Hahn-Banach theorems in
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which a linear map or an affinemap is dominated by aK-set-valuedmap. Peng et al. [21] also
proved a Hahn-Banach theorem in which an affine-like set-valued map is dominated by aK-
set-valued map. The various geometric forms of Hahn-Banach theorems (i.e., Hahn-Banach
separation theorems)were presented by Eidelheit [22], Rockafellar [23], Deumlich et al. [24],
Taylor and Lay [25], Wang [14], Shi [15], and Elster and Nehse [26] in different spaces.

Hahn-Banach theorems play a central role in functional analysis, convex analysis, and
optimization theory. For more details on Hahn-Banach theorems as well as their applications,
please also refer to Jahn [27–29], Kantorovitch and Akilov [30], Lassonde [31], Rudin [32],
Schechter [33], Aubin and Ekeland [34], Yosida [35], Takahashi [36], and the references
therein.

The purpose of this paper is to present some new and interesting extension results for
concave operators.

2. Preliminaries

Throughout this paper, unless other specified, we always suppose thatX and Y are real linear
spaces, θ is the zero element in both X and Y with no confusion, K ⊂ Y is a pointed convex
cone, and the partial order ≤ on a partially ordered linear space (in short, PL space) (Y,K) is
defined by y1, y2 ∈ Y, y1 ≤ y2 if and only if y2 − y1 ∈ K. If each subset of Y which is bounded
above has a least upper bound in (Y,K), then Y is order complete. If A and B are subsets of a
PL space (Y,K), then A ≤ B means that a ≤ b for each a ∈ A and b ∈ B. Let C be a subset of
X, then the algebraic interior of C is defined by

coreC = {x ∈ C | ∀x1 ∈ X, ∃δ > 0, s.t. ∀λ ∈ (0, δ), x + λx1 ∈ C}. (2.1)

If θ ∈ coreC, then C is called to be absorbed (see [14]).
The relative algebraic interior of C is denoted by Cri, that is, Cri is the algebraic interior

of C with respect to the affine hull affC of C.
Let F : X → 2Y be a set-valued map, then the domain of F is

D(F) = {x ∈ X | F(x)/=∅}, (2.2)

the graph of F is a set in X × Y :

Gr(F) =
{(

x, y
) | x ∈ D(F), y ∈ Y, y ∈ F(x)

}
, (2.3)

and the epigraph of F is a set in X × Y :

Epi(F) =
{(

x, y
) | x ∈ D(F), y ∈ Y, y ∈ F(x) +K

}
. (2.4)

A set-valued map F : X → 2Y is K-convex if its epigraph Epi(F) is a convex set.
An operator f : D(f) ⊂ X → Y is called a convex operator, if the domain D(f) of f is

a nonempty convex subset of X and if for all x, y ∈ D(f) and all real number λ ∈ [0, 1]

f
(
λx + (1 − λ)y

) ≤ λf(x) + (1 − λ)f
(
y
)
. (2.5)
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The epigraph of f is a set in X × Y :

Epi
(
f
)
=
{(

x, y
) | x ∈ D

(
f
)
, y ∈ Y, y ∈ f(x) +K

}
. (2.6)

It is easy to see that an operator f is convex if and only if Epi(f) is a convex set.
An operator f : D(f) ⊂ X → Y is called a concave operator if D(f) is a nonempty

convex subset of X and if for all x, y ∈ D(f) and all real number λ ∈ [0, 1]

f
(
λx + (1 − λ)y

) ≥ λf(x) + (1 − λ)f
(
y
)
. (2.7)

An operator f : X → Y is called a sublinear operator, if for all x, y ∈ X and all real
number λ ≥ 0,

f(λx) = λf(x),

f
(
x + y

) ≤ f(x) + f
(
y
)
.

(2.8)

It is clear that if f : X → Y is a sublinear operator, then f must be a convex operator,
but the converse is not true in general.

For more detail about above definitions, please see [6–8, 16, 18, 20, 21, 27–30, 34] and
the references therein.

3. An Extension Theorem with Applications

The following lemma is similar to the generalized Hahn-Banach theorem [7, page 105] and
[4, Lemma 1].

Lemma 3.1. Let X be a real linear space, and let (Y,K) be a real order complete PL space. Let the set
A ⊂ X × Y be convex. Let X0 be a real linear proper subspace of X, with θ ∈ core (AX − X0), where
AX = {x | (x, y) ∈ A for some y ∈ Y}. Let g0 : X0 → Y be a concave operator such that g0(x) ≤ z
whenever (x, z) ∈ A and x ∈ X0. Then there exists a concave operator g : X → Y such that (i) g is
an extension of g0, that is, g(x) = g0(x) for all x ∈ X0, and (ii) g(x) ≤ z whenever (x, z) ∈ A.

Proof. The theorem holds trivially if AX = X0. Assume that AX /=X0. Since X0 is a proper
subspace of X, there exists x0 ∈ X \X0. Let

X1 = {x + rx0 : x ∈ X0, r ∈ R}. (3.1)

It is clear thatX1 is a subspace ofX, X0 ⊂ X1, θ ∈ core (AX−X1), and the above representation
of x1 ∈ X1 in the form x1 = x + rx0 is unique. Since θ ∈ core (AX − X0), there exists λ > 0
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such that ±λx0 ∈ AX −X0. And so there exist x1 ∈ X0, y1 ∈ Y such that (x1 + λx0, y1) ∈ A and
x2 ∈ X0, y2 ∈ Y such that (x2 − λx0, y2) ∈ A. We define the sets B1 and B2 as follows:

B1 =
{
y1 − g0(x1)

λ1
| x1 ∈ X0, y1 ∈ Y, λ1 > 0,

(
x1 + λ1x0, y1

) ∈ A

}
,

B2 =
{
g0(x2) − y2

λ2
| x2 ∈ X0, y2 ∈ Y, λ2 > 0,

(
x2 − λ2x0, y2

) ∈ A

}
.

(3.2)

It is clear that both B1 and B2 are nonempty.
Moreover, for all b1 ∈ B1 and for all b2 ∈ B2, we have b1 ≥ b2. In fact, let b1 ∈ B1 and

b2 ∈ B2, then there exist x1, x2 ∈ X0, y1, y2 ∈ Y, λ1, λ2 > 0 such that b1 = (y1 − g0(x1))/λ1, b2 =
(g0(x2)−y2)/λ2 and (x1+λ1x0, y1), (x2−λ2x0, y2) ∈ A. Let α = λ2/(λ1+λ2), then αλ1−(1−α)λ2 =
0. Since A is a convex set, we have

α
(
x1 + λ1x0, y1

)
+ (1 − α)

(
x2 − λ2x0, y2

)
=
(
αx1 + (1 − α)x2, αy1 + (1 − α)y2

) ∈ A (3.3)

and αx1 + (1 − α)x2 ∈ X0. It follows from the hypothesis that

g0(αx1 + (1 − α)x2) ≤ αy1 + (1 − α)y2. (3.4)

It follows from the concavity of g0 on X0 that

α
[
y1 − g0(x1)

] ≥ (1 − α)
[
g0(x2) − y2

]
. (3.5)

That is,

y1 − g0(x1)
λ1

≥ g0(x2) − y2

λ2
. (3.6)

That is, b1 ≥ b2.
Since (Y,K) is an order-complete PL space, there exist the supremum of B2 denoted by

yS and the infimum of B1 denoted by yI . Since yS ≤ yI , taking y ∈ [yS, yI], then we have

y − g0(x)
λ

≥ y, if λ > 0,
(
x + λx0, y

) ∈ A, x + λx0 ∈ X1, (3.7)

y ≥ g0(x) − y

μ
, if μ > 0,

(
x − μx0, y

) ∈ A, x − μx0 ∈ X1. (3.8)

By (3.7),

y ≥ g0(x) + λy, if λ > 0,
(
x + λx0, y

) ∈ A, x + λx0 ∈ X1. (3.9)

By (3.8),

y ≥ g0(x) − μy, if μ > 0,
(
x − μx0, y

) ∈ A, x − μx0 ∈ X1. (3.10)
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We may relabel −μ by λ, then

y ≥ g0(x) + λy, if λ < 0,
(
x + λx0, y

) ∈ A, x + λx0 ∈ X1. (3.11)

Define a map g1 from X1 to Y as

g1(x + λx0) = g0(x) + λy, ∀x + λx0 ∈ X1. (3.12)

Then g1(x) = g0(x), ∀x ∈ X0, that is, g1 is an extension of g0 to X1. Since g0 is a concave
operator, it is easy to verify that g1 is also a concave operator.

From (3.9) and (3.11), we know that g1 satisfies

y ≥ g1(x + λx0), whenever
(
x + λx0, y

) ∈ A, x + λx0 ∈ X1. (3.13)

That is,

y ≥ g1(x), whenever
(
x, y

) ∈ A, x ∈ X1. (3.14)

Let Γ be the collection of all ordered pairs (XΔ, gΔ), whereXΔ is a subspace ofX that contains
X0 and gΔ is a concave operator from XΔ to Y that extends g0 and satisfies y ≥ gΔ(x)
whenever (x, y) ∈ A and x ∈ XΔ.

Introduce a partial ordering in Γ as follows: (XΔ1 , gΔ1) ≺ (XΔ2 , gΔ2) if and only if XΔ1 ⊂
XΔ2 , gΔ2(x) = gΔ1(x) for all x ∈ XΔ1 . If we can show that every totally ordered subset of Γ has
an upper bound, it will follow from Zorn’s lemma that Γ has a maximal element (Xmax, gmax).
We can claim that gmax is the desired map. In fact, we must have Xmax = X. For otherwise,
we have shown in the previous proof of this lemma that there would be an (X̃max, g̃max) ∈ Γ
such that (X̃max, g̃max) 
 (Xmax, gmax) and (X̃max, g̃max)/= (Xmax, gmax). This would violate the
maximality of the (Xmax, gmax).

Therefore, it remains to show that every totally ordered subset of Γ has an upper
bound. Let M be a totally ordered subset of Γ. Define an ordered pair (XM, gM) by

XM =
⋃

(XΔ,gΔ)∈M
{XΔ},

gM(x) = gΔ(x), ∀x ∈ XΔ, where
(
XΔ, gΔ

) ∈ M.

(3.15)

This definition is not ambiguous, for if (XΔ1 , gΔ1) and (XΔ2 , gΔ2) are any of the elements
of M, then either (XΔ1 , gΔ1) ≺ (XΔ2 , gΔ2) or (XΔ2 , gΔ2) ≺ (XΔ1 , gΔ1). At any rate, if x ∈ XΔ1 ∩
XΔ1 , then gΔ1(x) = gΔ2(x). Clearly, (XM, gM) ∈ Γ. Hence, it is an upper bound forM, and the
proof is complete.

As a generalization of Lemma 3.1, we now present the main result asfollows.
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Theorem 3.2. Let X be a real linear space, and let (Y,K) be a real order complete PL space. Let the
set A ⊂ X × Y be convex. Let X0 be a real linear proper subspace of X, with θ ∈ (AX − X0)

ri, where
AX = {x | (x, y) ∈ A for some y ∈ Y}. Let g0 : X0 → Y be a concave operator such that g0(x) ≤ z
whenever (x, z) ∈ A and x ∈ X0. Then there exists a concave operator g : X → Y such that (i) g is
an extension of g0, that is, g(x) = g0(x) for all x ∈ X0, and (ii) g(x) ≤ z whenever (x, z) ∈ A.

Proof. Consider X := aff (AX −X0). Because 0 ∈ (AX −X0)
ri, X is a linear space.

If X = X, then 0 ∈ core (AX −X0). By Lemma 3.1, the result holds.
If X /=X. Of course, AX ⊂ X. Taking x0 ∈ X0 ∩AX , we have that X0 = x0 − X0 ⊂ X. By

Lemma 3.1, we can find g : X → Y a concave operator such that g(x) = g0(x), ∀x ∈ X0, and
g(x) ≤ y for all (x, y) ∈ A ⊂ X × Y . Taking Y a linear subspace of X such that X = X ⊕ Y (i.e.,
X = X +Y and X ∩Y = {0}) and g : X → Y defined by g(x +y) =: g(x) for all x ∈ X, y ∈ Y, g
verifies the conclusion.

By Theorem 3.2, we can obtain the following new and interesting Hahn-Banach
extension theorem in which a concave operator is dominated by a K-convex set-valued
map.

Corollary 3.3. Let X be a real linear space, and let (Y,K) be a real order complete PL space. Let
F : X → 2Y be a K-convex set-valued map. Let X0 be a real linear proper subspace of X, with θ ∈
(D(F) −X0)

ri. Let g0 : X0 → Y be a concave operator such that g0(x) ≤ z whenever (x, z) ∈ Gr(F)
and x ∈ X0. Then there exists a concave operator g : X → Y such that (i) g is an extension of g0,
that is, g(x) = g0(x) for all x ∈ X0, and (ii) g(x) ≤ z whenever (x, z) ∈ Gr(F).

Proof. Let A = Epi(F). Then A is a convex set, AX = D(F), and θ ∈ (AX − X0)
ri. Since g0 :

X0 → Y is a concave operator satisfying g0(x) ≤ z whenever (x, z) ∈ Gr(F) and x ∈ X0, we
have that g0(x) ≤ zwhenever (x, z) ∈ Epi(F) and x ∈ X0. Then by Theorem 3.2, there exists a
concave operator g : X → Y such that (i) g is an extension of g0, that is, g(x) = g0(x) for all
x ∈ X0, and (ii) g(x) ≤ z for all (x, z) ∈ Epi(F). Since Gr(F) ⊂ Epi(F), we have g(x) ≤ z for
all (x, z) ∈ Gr(F).

Let F : X → 2Y be replaced by a single-valued map f : X → Y in Corollary 3.3,
then we have the following Hahn-Banach extension theorem in which a concave operator is
dominated by a convex operator.

Corollary 3.4. Let X be a real linear space, and let (Y,K) be a real order complete PL space. Let
f : D(f) ⊂ X → Y be a convex operator. Let X0 be a real linear proper subspace of X, with θ ∈
(D(f) − X0)

ri. Let g0 : X0 → Y be a concave operator such that g0(x) ≤ f(x) whenever x ∈
X0 ∩D(f). Then there exists a concave operator g : X → Y such that (i) g is an extension of g0, that
is, g(x) = g0(x) for all x ∈ X0, and (ii) g(x) ≤ f(x) for all x ∈ D(f).

Since a sublinear operator is also a convex operator, so from corollary 3.4, we have the
following result.

Corollary 3.5. Let X be a real linear space, and let (Y,K) be a real order complete PL space. Let
p : X → Y be a sublinear operator, and let X0 be a real linear proper subspace of X. Let g0 : X0 → Y
be a concave operator such that g0(x) ≤ p(x) whenever x ∈ X0. Then there exists a concave operator
g : X → Y such that (i) g is an extension of g0, that is, g(x) = g0(x) for all x ∈ X0, and (ii)
g(x) ≤ p(x) for all x ∈ X.
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