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1. Introduction and Preliminaries

In 2007, Huang and Zhang [1] introduced the notion of cone metric spaces (CMSs) by
replacing real numbers with an ordering Banach space. The authors there gave an example
of a function which is contraction in the category of cone metric spaces but not contraction
if considered over metric spaces and hence, by proving a fixed point theorem in cone metric
spaces, ensured that this map must have a unique fixed point. After that series of articles
about cone metric spaces started to appear. Some of those articles dealt with the extension
of certain fixed point theorems to cone metric spaces (see, e.g., [2-5]), and some other with
the structure of the spaces themselves (see, e.g., [3, 6]). Very recently, some authors have
used regular cones to extend some fixed point theorems. For example, in [7] a result about
Meir-Keeler type contraction mappings has been extended to regular cone metric spaces. In
other works, some results about fixed points of multifunctions on cone metric spaces with
normal cones have been obtained as well [8]. For the use of lower semicontinuous functions
in obtaining fixed point theorems in cone metric spaces we refer to [9].

In this manuscript, we use cone-valued lower semicontinuous functions to extend
some of the results in Caristi [10] and Ekeland [11] to CMS and quasicone metric space
(QCMS). The cones under consideration are assumed to be strongly minihedral and normal
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and hence regular. In particular the cone P = [0, o) in the real line R is strongly minihedral
and normal; hence the results mentioned in the above references are recovered.

Throughout this paper E stands for a real Banach space. Let P := Pg always be a closed
subset of E. P is called cone if the following conditions are satisfied:

(C1) P#9,
(C2) ax + by € P for all x, y € P and non-negative real numbers a, b,
(C3) Pn(-P) = {0} and P #{0}.
For a given cone P, one can define a partial ordering (denoted by <: or <p) with respect
to P by x < y if and only if y — x € P. The notation x < y indicates that x < i and x # iy while
x <« y will show y — x € int P, where int P denotes the interior of P. From now on, it is

assumed that int(P) # 0.
The cone P is called

(N) normal if there is a number K > 1 such that forall x,y € E,

0<x<y=|x||<Kl]y

; (1.1)

(R) regular if every increasing sequence which is bounded from above is convergent.
That is, if {x,},>; is a sequence such that x; < x < --- < y for some y € E, then
there is x € E such that lim,,_, o ||x, — x|| = 0.

In (N), the least positive integer K, satisfying (1.1), is called the normal constant of P.
Note that, in [1, 2], normal constant K is stated a positive real number, (K > 0). However,
later on and in [2, Lemma 2.1] it was proved that there is no normal cone with constant K < 1.

Lemma 1.1. (i) Every regular cone is normal.

(ii) For each k > 1, there is a normal cone with normal constant K > k.

(iii) The cone P is regqular if every decreasing sequence which is bounded from below is
convergent.

The proof of (i) and (ii) were given in [2] and the last one just follows from definition.

Example 1.2 (see [2]). Let E = C'[0,1] with the norm || f|| = ||f|l, + If'll.,, and consider the
coneP={feE:f>0}

For each k > 1, put f(x) = x and g(x) = x*. Then, 0 < ¢ < f, ||f|| =2 and ||g]| = 2k + 1.
Since k|| f| < |/g|l, k is not normal constant of P and hence P is a nonnormal cone.

Definition 1.3. Let X be a nonempty set. Suppose that the mapping d : X x X — E satisfies
the following:

(M1) 0<d(x,y) forall x,y € X,
(M2) d(x,y) =0ifand only if x = y,
(M3) d(x,y) <d(x,z) +d(z,y), forall x,y € X.
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Then d is said to be a quasicone metric on X, and the pair (X, d) is called a quasicone
metric space (QCMS). Additionally, if d also satisfies

(M4) d(x,y) =d(y,x) forall x,y € X,

then d is called a cone metric on X, and the pair (X, d) is called a cone metric space (CMS).

Example 1.4. Let E=R*and P = {(x,y,z) € E: x,y,z >0} and X = R. Defined : X x X — E
by d(x,x) = (a|x — x|, lx — X|, y|x — X|), where a, B, y are positive constants. Then (X, d) is a
CMS. Note that the cone P is normal with the normal constant K = 1.

Definition 1.5. Let (X,d) bea CMS, x € X, and let {x,},,; be a sequence in X. Then

(i) {xn},51 converges to x if for every ¢ € E with 0 < c there is a natural number N,
such that d(x,, x) <« c for all n > N. It is denoted by lim,,, ,,x, = x or x, — x;

(ii) {xn},>1 is a Cauchy sequence if for every c € E with 0 <« c there is a natural number
N, such that d(x,, x,,) < c foralln,m > N;

(iii) (X, d) is a complete cone metric space if every Cauchy sequence in X is convergent

in X.

Lemma 1.6 (see [1]). Let (X,d) be a CMS, let P be a normal cone with normal constant K, and let
{xn} be a sequence in X. Then,

(i) the sequence {x,} converges to x if and only if d (x,,x) — 0 (or equivalently ||d(x,, x)|| —
0);

(ii) the sequence {x,} is Cauchy if and only if d(x,, X,n) — 0 (or equivalently ||d(x,, Xm)|| —
0);

(iii) the sequence {x,} converges to x and the sequence {y,} converges to y then d(x,, y,) —
d(x,y).
Lemma 1.7 (see [1, 2]). Let (X, d) be a CMS over a cone P in E. Thenone has the following.

(1) Int(P) + Int(P) C€ Int(P) and A Int(P) C Int(P), A > 0.

(2) If ¢ > 0, then there exists 6 > 0 such that ||b|| < 6 implies b < c.

(3) For any given ¢ > 0 and cy > 0 there exists ng € N such that c¢y/ny < c.
)

(4) If ay,, by, are sequences in E such that a, — a, b, — band a, < b, foralln > 1, then
a<b.

Definition 1.8 (see [12]). P is called minihedral cone if sup{x, y} exists for all x,y € E, and
strongly minihedral if every subset of E which is bounded from above has a supremum.

It is easy to see that every strongly minihedral normal cone is regular.

Example 1.9. Let E = C[0,1] with the supremum norm and P = {f € E : f > 0}. Then P
is a cone with normal constant M = 1 which is not regular. This is clear, since the sequence
x" is monotonicly decreasing, but not uniformly convergent to 0. Thus, P is not strongly
minihedral. It is easy to see that the cone mentioned in Example 1.4 is strongly minihedral.
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Definition 1.10 (see [1]). Let (X,d) beaCMSand A C X. A is said to be sequentially compact if
for any sequence {x,} in A there is a subsequence {x,, } of {x,} such that {x,, } is convergent
in A.

Remark 1.11 (see [6]). Every cone metric space (X, d) is a topological space which is denoted
by (X, 7.). Moreover, a subset A C X is sequentially compact if and only if A is compact.

2. Main Results

Let (X,d) beaCMS, C C X, and ¢ : C — E a function on X. Then, the function ¢ is called a
lower semicontinuous (L.s.c) on C whenever

lim x, = x = ¢(x) < lim infp(x,) = supir;f(p(xm). (2.1)
n— o0 n— oo TlZl mzan

Also,let T : C — C be an arbitrary selfmapping on C such that
d(x,Tx) <p(x) —p(Tx) VxeX. (2.2)

Then, T is called a Caristi map on (X, d).
The following Lemma will be used to prove the next results.

Lemma 2.1. If {c,} is a decreasing sequence (via the partial ordering obtained by the closed cone P)
such that ¢, — u, then u = inf{c, : n € N}.

Proof. Since {c,} is an increasing sequence, ¢,, — ¢, € P, forn > mand ¢, —¢, — ¢p—u, forall
m. Then closeness of P implies that u < ¢, for all m. To see that u is the greatest lower bound
of {c,}, assume that some v € E satisfies ¢,, > v for all m. From (¢, — v) — (u —v) and the
closeness of P we get (u —v) € P or v < u which shows that u = inf{c, : n € N}. O

Proposition 2.2. Let (X, d) be a compact CMS, P a strongly minihedral cone, and ¢ : X — P CE
a lower semicontinuous (l.s.c) function. Then, @ attains a minimum on X.

Proof. Let u = inf{¢p(x) : x € X} which exists by strong minihedrality. For each n € N, there
is an x, € X such that ¢(x,) — u < ¢/n, where ¢ € int P. Since X is compact, then {x,} has a
convergent subsequence. Let {y,} be this sequence and let y = lim y,.

From the definition of lower semicontinuity and Lemma 2.1 it follows that

¢(y) < lim infp(y,) < lim inf(u + %) =u. (2.3)
But then, by the definition of u, ¢(xp) < ¢(x) for all x € X. This completes the proof. O

Theorem 2.3. Let (X, d) be a CMS, C a compact subset of X, P a strongly minihedral normal cone,
and ¢ : C — P C E a lower semicontinuous (l.s.c) function. Then, each selfmap T : C — C
satisfying (2.2) has a fixed point in X.



Fixed Point Theory and Applications 5

Proof. By Proposition 2.2, ¢ attains its minimum at some point of C, say u € C. Since u is the
minimum point of ¢, we have ¢(Tu) > ¢(u). By (2.2),

0<d(u,Tu) < p(u) —p(Tu) <O0. (2.4)

Thus, d(u, Tu) =0 and so Tu = u. O
The following theorem is an extension of the result of Caristi ([10, Theorem 2.1']).

Theorem 2.4. Let (X, d) be a complete CMS, P a strongly minihedral normal cone, and ¢ : X —
P C E a lower semicontinuous (I.s.c) function. Then, each selmap T : X — X satisfying (2.2) has a
fixed point in X.

Proof. Let P have the normal constant K. Let S(x) := {z € X : d(x,z) < ¢(x) — ¢(z)} and
a(x) == inf{p(z) : z € S(x)} for all x € X. Since x € S(x), S(x) #P and s0 0 < a(x) < ¢(x).

For x € X, set x; := x and construct a sequence x1,x,X3,...,Xp,... in the following
way: let x,,1 € S(x,) be such that ¢(x,.1) < a(x,) +co/n, where ¢y € Int(P) # (. Thus, one can
observe that

(1) d(xn, xni1) < @(xn) = p(xns1),

(i) a(xn) < @(xns1) < alxn) +co/n
forall n > 1. Note that, (i) implies that the sequence {¢(x,)} is a decreasing sequence in E and
P is regular cone. So, the sequence {¢p(x,)} is convergent. Thus, for each € > 0, there exists

N, such that ||p(x,,) — ¢(x,)|| < €/K for all n, m > N,. For m > n, the triangular inequality
implies that

m-1

A(x, xXm) < DA (xj,xj1) < @) = P(Xm). (2.5)

j=n

Hence, ||d(x, y)|| £ K|l¢(xn) — @p(xm)|| < K(e/K) = €. By Lemma 1.6, ||d(x,, x,,)|| — 0 yields
that the sequence {x,} is a Cauchy in X. Completeness of (X, d) implies that the sequence
{x,} is convergent to some point in X, say v.

By (2.5), p(xn) — ¢p(xm) — d(xm, x,) € P and so

(P(xm) < (P(xn) = d (X, xn) (2.6)

for all m > n. By regarding (2.6), Lemma 1.6, and lower semicontinuity of the function ¢, one
can obtain that

¢(y) < 'rr}l—{noo inf ¢(x) < n}llnoo inf [(x,) — d(om, xn)| = @(x) — d (%, y) (2.7)

for all n > 1. Thus,

0<d(xny) <p(xn) - 9(y) (2.8)
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for all n > 1. Hence, y € S(x,) and it is trivial that ¢(x,) < ¢(y) for all n > 1. Note that (ii)
implies that

a:= lim a(x,) = lim ¢(x,). (2.9)

n—oo

Thus, a < ¢(x,) for all n > 1. On the other hand, by lower semicontinuity of ¢ and (2.9), one
can obtain that

¢(y) < lim infp(x,) = a. (2.10)

Therefore, a = ¢(y).
Since y € S(x,,) for eachn > 1 and Ty € S(y), the following inequalities are obtained:

d(xn, Ty) < d(xn,y) +d(y, Ty) < o(xa) —oy) +9(y) —9(Ty) = p(xa) - @(Ty).  (2.11)

Hence, Ty € S(x,) for all n > 1. This implies that a(x,) < ¢(Ty) for alln > 1.
By (2.9), 9(Ty) > ais obtained. As ¢(Ty) < ¢(y) is observed by (2.2) and that ¢(y) = a,
then

¢(y) =a<o(Ty) <o(y) (2.12)

is achieved. Hence, ¢(Ty) = ¢(y). Finally, by (2.2) we have Ty = y. O
The following theorem is a generalization of the result in [11].

Theorem 2.5. Let ¢ : X — E be a l.s.c function on a complete CMS, where P is a strongly
minihedral normal cone. If ¢ is bounded below, then there exits y € X such that

o(y) <o(x)+d(y,x) VxeX withx#y. (2.13)

Proof. It is enough to show that the point y, obtained in Theorem 2.4, satisfies the statement
of the theorem. Following the same notation in the proof of Theorem 2.4, it is needed to show
that x ¢ S(y) for x # y. Assume the contrary that for some z #y, we have z ¢ S(y). Then, 0 <

d(y, z) < p(y) — p(z) implies ¢(z) < ¢(y) = a. By triangular inequality,
d(xn,2) < d(xn, y) +d(y,2) < 9(n) = 9(y) +9(¥) = 9(2) = 9lxa) —9p(2),  (214)

which implies that z € S(x,) and thus a(x,) < ¢(y) for all n > 1. Taking the limit when n
tends to infinity, one can obtain a < ¢(z), which is in contradiction with ¢(z) < ¢(y) = a.
Thus, for any x € X, x #y implies x ¢ S(v), that is,

x#zy = d(y,x) > ¢(y) - p(x). (2.15)
0

Letd, : X — E be defined by d.(y) := d(x,y).
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Theorem 2.6. Let (X, d) be a sequentially complete QCMS and let P be a strongly minihedral normal
cone. Assume that for each x € X, the function d, defined above is continuous on X and § is a family
of mappings f : X — X. If there exists a l.s.c function ¢ : X — P such that

d(x, f(x)) <p(x)—p(f(x)), VxeX, VfeF, (2.16)
then for each x € X there is a common fixed point u of F such that

d(x,u) < ¢(x)—s, wheres=inf{¢p(x):xeX}. (2.17)

Proof. Let P be strongly minihedral normal cone with normal constant K. First note that
strong minihedrality of P guarantees that s exists. Let S(x) := {z € X : d(x,y) < ¢(x) — ¢p(z)}
and a(x) = {p(z) : z € S(x)} for all x € X. Note that x € S(x), so S(x)#0 and also
0<a(x) < p(x).

For x € X, set x1 := x and construct a sequence x1, X2, X3,...,Xy, ... as in the proof of
Theorem 2.4: x,.1 € S(x,) such that ¢(x,.1) < a(x,) + co/n, co > 0. Thus, one can observe
that for each n,

(i) d(xp, xps1) < (P(xn) - (P(xn+1)/
(ii) a(x,) < @(xp41) < a(xy,) + co/n.

Similar to the proof of Theorem 2.4, (ii) implies that

a:= lim a(x,) = lim ¢(x,). (2.18)

n—oo

Also, by using the same method in the proof of Theorem 2.4, it can be shown that {x,}
is a Cauchy sequence and converges to some y € X and ¢(y) = a.

We shall show that f(y) = y for all f € ¥. Assume the contrary that thereis f € ¥ such
that f(y) #y. Then (2.16) with x = y implies that ¢(f(y)) < ¢(y) = a. Thus, by definition of
a, there is n € N such that ¢(f(y)) < a(x,). Since y € S(x,),

d(xn, f(y)) <d(xn,y) +d(y, f(y)) < [p(xn) W) ] +[0(y) —o(f (¥))] =9(xn) — 0 (f ((5)1)9,)

which implies that f(y) € S(x,). Hence a(x,) < ¢(f(y)) which is in a contradiction with
o(f(y)) <a(xy). Thus, f(y) =y for all f € ¥. Since y € S(x,,), we have

d(xn,y) < @(xn) —@(y) < p(x,) —inf{e(z) 1 z € X} = p(x) -5 (2.20)

is obtained. O
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The following theorem is a generalization of [13, Theorem 2.2].

Theorem 2.7. Let A be a set, (X,d) as in Theorem 2.6, § : A — X a surjective mapping, and
F = {f} a family of arbitrary mappings f : A — X. If there exists a l.c.s. function ¢ : X — P such
that

d(g(a), f(a)) <@(g(a)) -¢(f(a)), VfeF (2.21)

and each a € A, then g and §F have a common coincidence point, that is, for some b € A, g(b) = f(b)
forall f € .

Proof. Let x be arbitrary and y € X as in Theorem 2.6. Since g is surjective, for each x € X
there is some a = a(x) such that g(a) = x. Let f € ¥ be a fixed mapping. Define by f a
mapping h = h(f) of X into itself such that h(x) = f(a), where a = a(x), that is, g(a) = x. Let
H be a family of all mappings h = h(f). Then, (2.21) yields that

d(x, h(x)) < p(x) — p(h(x)), Vhe K. (2.22)

Thus, by Theorem 2.6, y = h(y) for all h € H. Hence g(b) = f(b) for all f € ¥, where b = b(y)
is such that g(b) = v. O
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