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1. Introduction

Let (X, d) be a metric space and S a closed and nonempty subset of X. Denote by 2X (resp.,
C(X)) the family of all nonempty (resp., nonempty and closed) subsets of X. A mapping
T : S → 2X is said to satisfy condition(P) if, for every closed ball B of S with radius r ≥ 0
and any sequence {xn} in S for which d(xn, B) → 0 and d(xn, T(xn)) → 0 as n → ∞,
there exists x0 ∈ B such that x0 ∈ T(x0) where d(x, B) = inf{d(x, y) : y ∈ B}. If Ω is any
nonempty set, we say that the operator T : Ω × S → 2X satisfies condition(P) if for each
ω ∈ Ω, the mapping T(ω, ·) : S → 2X satisfies condition(P). We should observe that this
latter condition is related to a condition that was originally introduced by Petryshyn [1] for
single-valued operators, in order to prove existence of fixed points. However, in our case, the
condition is used to prove the measurability of a certain operator. On the other hand, in the
year 2001, Shahzad (cf. [2]) using an idea of Itoh (cf. [3]), see also ([4]), proved that under a
somewhat more restrictive condition, named condition (A), the following result.

Theorem S. Let S be a nonempty separable complete subset of a metric space X and T : Ω × C →
C(X) a continuous random operator satisfying condition (A). Then T has a deterministic fixed point
if and only if T has a random fixed point.
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We shall show that the above result is still valid if the operator T is only lower semi-
continuous. In addition, the assumption that each value T(x) is closed has been relaxed
without an extra assumption. Furthermore we state a new condition which generalizes
condition (A) and allow us to generalize several known results, such as, Bharucha-Reid [5,
Theorem 7], Domı́nguez Benavides et al. [6, Theorem 3.1] and Shahzad [2, Theorem 2.1].

2. Preliminaries

Let (Ω,A) be a measurable space and let (X, d) be a metric space. A mapping F : Ω → 2X ,
is said to be measurable if F−1(G) = {ω ∈ Ω : F(ω) ∩ G/=φ} is measurable for each open
subset G of X. This type of measurability is usually called weakly (cf. [7]), but since this is
the only type of measurability we use in this paper, we omit the term “weakly”. Notice that
if X is separable and if, for each closed subset C of X, the set F−1(C) is measurable, then F is
measurable.

Let C be a nonempty subset of X and F : C → 2X , then we say that F is lower (upper)
semi-continuous if F−1(A) is open (closed) for all open (closed) subsets A of X. We say that
F is continuous if F is lower and upper semi-continuous.

A mapping F : Ω×X → Y is called a random operator if, for each x ∈ X, the mapping
F(·, x) : Ω → Y is measurable. Similarly a multivaluedmapping F : Ω×X → 2Y is also called
a random operator if, for each x ∈ X, F(·, x) : Ω → 2Y is measurable. A measurable mapping
ξ : Ω → Y is called a measurable selection of the operator F : Ω → 2Y if ξ(ω) ∈ F(ω) for
each ω ∈ Ω. A measurable mapping ξ : Ω → X is called a random fixed point of the random
operator F : Ω × X → X (or F : Ω × X → 2X) if for every ω ∈ Ω, ξ(ω) = F(ω, ξ(ω)) (or
ξ(ω) ∈ F(ω, ξ(ω))). For the sake of clarity, we mention that F(ω, ξ(ω)) = F(ω, ·)(ξ(ω)).

Let C be a closed subset of the Banach space X, and suppose that F is a mapping from
C into the topological vector space Y . We say the F is demiclosed at y0 ∈ Y if, for any sequences
{xn} in C and {yn} in Y with yn ∈ F(xn), {xn} converges weakly to x0 and {yn} converges
strongly to y0, then it is the case that x0 ∈ C and y0 ∈ F(x0). On the other hand, we say
that F is hemicompact if each sequence {xn} in C has a convergent subsequence, whenever
d(xn, F(xn)) → 0 as n → ∞.

3. Main Results

Theorem 3.1. LetC be a closed separable subset of a complete metric spaceX, and let T : Ω×C → 2X

be measurable in ω and enjoy condition(P). Suppose, for each ω ∈ Ω, that h(ω, x) = d(x, T(ω, x))
is upper semi-continuous and the set

F(ω) := {x ∈ C : x ∈ T(ω, x)}/=φ. (3.1)

Then T has a random fixed point.

Proof. Let Z = {zn} be a countable dense subset of C. Define F : Ω → 2C by F(ω) = {x ∈ C :
x ∈ T(ω, x)}. Firstly, we show that F is measurable. To this end, let B0 be an arbitrary closed
ball of C, and set

L(B0) =
∞⋂

k=1

⋃

z∈Zk

{
ω ∈ Ω : d(z, T(ω, z)) <

1
k

}
, (3.2)
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where Zk = Bk ∩ Z and Bk = {x ∈ C : d(x, B0) < 1/k}. We claim that F−1(B0) = L(B0).
To see this, let ω ∈ F−1(B0). Then there exists x ∈ B0 such that x ∈ T(ω, x). Since h(ω, ·) is
upper semi-continuous, for each k ∈ N, there exists znk ∈ Zk such that d(znk , T(ω, znk)) < 1/k.
Therefore ω ∈ L(B0). On the other hand, if ω ∈ L(B0), then there exists a subsequence {znk}
of {zn} such that

d(znk , B0) <
1
k
, d(znk , T(ω, znk)) <

1
k

(3.3)

for all k ∈ N. This means that d(znk , B0) → 0 and d(znk , T(ω, znk)) → 0 as n → ∞.
Consequently, by condition(P), there exists x0 ∈ B0 such that x0 ∈ T(ω, x0). Hence ω ∈
F−1(B0). Then we conclude that F−1(B0) = L(B0), and thus F−1(B0) is measurable. To complete
the proof, let G be an arbitrary open subset of C. Then by the separability of C,

G =
∞⋃

n=1

Bn where each Bn is a closed ball of C. (3.4)

Since F−1(G) =
⋃∞

n=1 F
−1(Bn), we conclude that F is measurable. Additionally, we show that

F(ω) is closed for each ω ∈ Ω. To see this, let xn ∈ F(ω) such that xn → x ∈ C. Then, let
B0 = {x} be a degenerated ball centered at x and radius r = 0, and since d(xn, T(ω, xn)) = 0,
condition(P) implies that x ∈ T(ω, x). Hence x ∈ F(ω) and thus by the Kuratowski and
Ryll-Nardzewski Theorem [8], F has a measurable selection ξ : Ω → C such that ξ(ω) ∈
T(ω, ξ(ω)) for each ω ∈ Ω.

As a consequence of Theorem 3.1, we derive a new result for a lower semi-continuous
random operator.

Theorem 3.2. LetC be a closed separable subset of a complete metric spaceX, and let T : Ω×C → 2X

be a lower semi-continuous random operator, which enjoys condition(P). Suppose, for each ω ∈ Ω,
that the set

F(ω) := {x ∈ C : x ∈ T(ω, x)}/=φ. (3.5)

Then T has a random fixed point.

Proof. Due to Theorem 3.1, it is enough to show that h(ω, ·) is upper semi-continuous. To
see this, we will prove that A = {x ∈ C : d(x, T(ω, x)) < α} is open in C for α > 0. Let
a ∈ A and select ε = α − d(a, T(ω, a)). Then there exists y ∈ T(ω, a) so that d(a, y) < ε/3 +
d(a, T(ω, a)). Since T(ω, ·) is lower semi-continuous, there exists a positive number r < ε/3
such that T(ω, u) ∩ B(y; ε/3)/= ∅ for all u ∈ B(a; r). Hence, we may choose zu ∈ T(ω, u) ∩
B(y; ε/3) for which,

d(u, zu) ≤ d(u, a) + d
(
a, y

)
+ d

(
y, zu

)
< α, (3.6)

and consequently, d(u, T(ω, u)) < α. Therefore, A is open, and proof is complete.
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We observe that if the mapping h(x) = d(x, T(x)) is upper semi-continuous, then not
necessarily the mapping T is lower semi-continuous. Consider the following example.

Let T : R → 2R be defined by

T(x) =

⎧
⎨

⎩
1, x /= 0

[2, 3], x = 0.
(3.7)

Then h(x) = |x − 1| for x /= 0 while h(0) = 2, which is upper semi-continuous. On the other
hand, T is not lower semi-continuous.

Now, we derive several consequences of Theorem 3.2. We first obtain an extension of
one of the main results of [6].

Theorem 3.3. Let C be a weakly compact separable subset of a Banach space X, and let T : Ω ×C →
2X be a lower semi-continuous random operator. Suppose, for eachω ∈ Ω, that I−T(ω, ·) is demiclosed
at 0 and the set

F(ω) := {x ∈ C : x ∈ T(ω, x)}/=φ. (3.8)

Then T has a random fixed point.

Proof. In order to apply Theorem 3.2, we just need to prove that T enjoys condition(P). To
this end, let ω be fixed in Ω. Suppose that B0 is a closed ball of C with radius r ≥ 0 where
{xn} is a sequence in C such that d(xn, B0) → 0 and d(xn, T(ω, xn)) → 0 as n → ∞. Since C
is separable, the weak topology on C is metrizable, and thus there exists a weakly convergent
subsequence {xnk} of {xn}, so that xnk → x weakly, while d(xnk , T(ω, xnk)) → 0 as k → ∞.
Consequently, for each k ∈ N, there exists zk ∈ T(ω, xnk) such that

‖xnk − zk‖ −→ 0 as k −→ ∞. (3.9)

Hence, the demiclosedness of I − T(ω, ·) implies that x ∈ T(ω, x), and thus T(ω, ·) enjoys
condition(P).

Before we give an extension of the main result of [4], we observe that condition(P) is
basically applied to those closed balls directly used to prove themeasurability of themapping
F, as will be seen in the proof of the next result.

Theorem 3.4. Let C be a closed separable subset of a complete metric space X, and let T : Ω × C →
C(X) be a continuous hemicompact random operator. If, for each ω ∈ Ω, the set

F(ω) := {x ∈ C : x ∈ T(ω, x)}/=φ, (3.10)

then T has a random fixed point.

Proof. Due to Theorem 3.2, it would be enough to show that T(ω, ·) enjoys condition(P) for
every ω ∈ Ω. To see this, let B0 be a closed ball of C, and let {xn} be a sequence in C such
that d(xn, B0) → 0 and d(xn, T(ω, xn)) → 0 as n → ∞. Then by the hemicompactness
of T , there exists a convergent subsequence {xnk} of {xn}, so that xnk → x ∈ B0. Hence
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d(xnk , T(ω, xnk)) → 0 as k → ∞. This means that, for each k ∈ N, there exists zk ∈ T(ω, xnk)
such that

d(xnk , zk) −→ 0 as k −→ ∞. (3.11)

Consequently, zk → x. On the other hand, since T is upper semi-continuous at x, for every
ε > 0 there exist k0 ∈ N such that

T(ω, xnk) ⊂ B(T(ω, x); ε) for all k ≥ k0. (3.12)

Hence, x ∈ B(T(ω, x); ε). Since ε is arbitrary and T(ω, x) is closed, we derive that x ∈ T(ω, x),
and thus T satisfies condition(P).

Corollary 3.5. Let C be a locally compact separable subset of a complete metric space X, and let
T : Ω × C → C(X) be a continuous random operator. Suppose, for each ω ∈ Ω, that the set

F(ω) := {x ∈ C : x ∈ T(ω, x)}/=φ. (3.13)

Then T has a random fixed point.

Proof. Let G be an arbitrary open subset of C, and let x ∈ G. Since C is locally compact, there
exists a compact ball B centered at x such that B ⊂ G. Now, we prove that condition(P)
holds with respect to B. To see this, let ω ∈ Ω, and let {xn} be a sequence in X such that
d(xn, B) → 0 and d(xn, T(ω, xn)) → 0 as n → ∞. Then there exists a sequence {yn} in B so
that d(xn, yn) → 0 as n → ∞. Since B is compact, there exists a convergent subsequence
{ynk} of {yn} such that ynk → x, and consequently xnk → x with x ∈ B as well as
d(xnk , T(ω, xnk)) → 0 as k → ∞. Since T is upper semi-continuous, we derive, as in the proof
of Theorem 3.4, that x ∈ T(x). In addition, since T is lower semi-continuous, we may follow
the proof of Theorem 3.1, to conclude that F−1(B) is measurable. Hence, the separability of C
implies that we can select countably many compact balls Bi centered at corresponding points
xi ∈ G such that

F−1(G) =
⋃

i∈N
F−1(Bi). (3.14)

Therefore, F is measurable.

Next, we get a stochastic version of Schauder’s Theorem, which is also an extension of
a Theorem of Bharucha-Reid (see [5, Theorem 10]). We also observe that our proof is much
easier and quite short.

Corollary 3.6. Let C be a compact and convex subset of a Fréchet space X, and let T : Ω × C → C
be a continuous random operator. Then T has a random fixed point.

Proof. As we know, every Fréchet space is a complete metric space, and since C is compact,
C itself is a complete separable metric space. In addition, for each ω ∈ Ω, there exists x ∈ C
such that T(ω, x) = x. This means that the set F(ω), defined in Theorem 3.1, is nonempty.
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Since C is compact, any sequence in C contains a convergent subsequence, which means that
T is trivially a hemicompact operator. Consequently, by Theorem 3.4, T has a random fixed
point.

Before obtaining an extension of Bharucha-Reid [5, Theorem 3.7], we define a
contraction mapping for metric spaces. Let X be a metric space, and let Ω be a measurable
space. A random operator T : Ω × X → X is said to be a random contraction if there exists a
mapping k : Ω → [0, 1) such that

d
(
T(ω, x), T

(
ω, y

) ≤ k(ω)d
(
x, y

)
for allx, y ∈ X. (3.15)

Theorem 3.7. Let X be a complete separable metric space, and let T : Ω × X → X be a continuous
random operator such that T2 is a contraction with constant k(ω) for each ω ∈ Ω. Then T has a
unique random fixed point.

Proof. For eachω ∈ Ω, themapping T2 has a unique fixed point, ξ(ω), which is also the unique
fixed point of T . It remains to show that the mapping ξ : Ω → X defined by T(ω, ξ(ω)) = ξ(ω)
is measurable. To see this, let f0 : Ω → X be an arbitrarymeasurable function. Then, we claim
that T(ω, f0(ω)) is measurable. To this end, let Z = {zn} be a countable dense set of X. Let
ω ∈ Ω and let k ∈ N. Define

hk : Ω −→ X by hk(ω) = zm, (3.16)

wherem is the smallest natural number for which d(zm, f0(ω)) < 1/k. Since f0 is measurable,
so are the sets Em = {ω ∈ Ω : d(zm, f0(ω)) < 1/k}, which, as a matter of fact, conform
a disjoint covering of Ω. Consequently, {hk} is a sequence of measurable functions that
converges pointwise to f0. On the other hand, the range of each hk is a subset of Z, and
hence constant on each set Em. Since the mapping T is measurable in ω, then, for each k ∈ N,
T(ω, hk(ω)) is also measurable. Therefore the continuity of T on the second variable implies
that

T(ω, hk(ω)) −→ T
(
ω, f0(ω)

)
as k −→ ∞, (3.17)

for each ω ∈ Ω. Hence T(ω, f0(ω)) is measurable. Define the sequence

fn(ω) = T
(
ω, fn−1(ω)

)
, n ∈ N. (3.18)

Then {fn} is a sequence of measurable functions. Since fn(ω) = Tn(ω, f0(ω)), the fact that T2

is a contraction implies that fn(ω) → ξ(ω). Therefore, the mapping ξ is measurable, which
completes the proof.

As a direct consequence of Theorem 3.7, we derive the extension mentioned earlier
where the spaceX is more general, and the randomness on the mapping k has been removed.

Corollary 3.8. Let X be a complete separable metric space, and let T : Ω × X → X be a random
contraction operator with constant k(ω) for each ω ∈ Ω. Then T has a unique random fixed point.
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Next, one can derive a corollary of the proof of Theorem 3.7, which is a theorem of
Hans [9].

Corollary 3.9. Let X be a complete separable metric space, and let T : Ω × X → X be a continuous
random operator. Suppose, for each ω ∈ Ω, that there exists n ∈ N such that Tn is a contraction with
constant k(ω). Then T has a unique random fixed point.

Proof. As in the proof of the theorem, the mapping T has a unique fixed point for each ω ∈ Ω.
The rest of the proof follows the proof of the theorem with the appropriate changes of the
second power of T by the nth power of T .

Notice that Theorem 3.7 holds for single-valued operators. The following question is
formulated for multivalued operators taking closed and bounded values in X.

Open Question

Suppose that X is a complete separable metric space, and let T : Ω × X → CB(X) be a
continuous random operator such that T2 is a contraction with constant k(ω) for each ω ∈ Ω.
Then does T have a unique random fixed point?
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