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1. Introduction and Preliminaries

Recently, Abbas and Jungck [1], have studied common fixed point results for noncommuting
mappings without continuity in cone metric space with normal cone. In this paper, our
results are related to the results of Abbas and Jungck, but our assumptions are more
general, and also we generalize some results of [1–3], and [4] by omitting the assumption of
normality in the results.

Let us mention that nonconvex analysis, especially ordered normed spaces, normal
cones, and topical functions ([2, 4–9]) have some applications in optimization theory. In these
cases, an order is introduced by using vector space cones. Huang and Zhang [2] used this
approach, and they have replaced the real numbers by ordering Banach space and defining
cone metric space. Consistent with Huang and Zhang [2], the following definitions and
results will be needed in the sequel.

Let E be a real Banach space. A subset P of E is called a cone if and only if:

(i) P is closed, nonempty, and P /= {0};
(ii) a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply ax + by ∈ P ;

(iii) P ∩ (−P) = {0}.
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Given a cone P ⊂ E, we define a partial ordering ≤ on E with respect to P by x ≤ y if
and only if y − x ∈ P. We will write x < y to indicate that x ≤ y but x /=y, while x � y will
stand for y − x ∈ intP (interior of P). A cone P ⊂ E is called normal if there are a number
K > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y implies ‖x‖ ≤ K‖y‖. (1.1)

The least positive number satisfying the above inequality is called the normal constant of P.
It is clear thatK ≥ 1. From [4]we know that there exists ordered Banach space E with cone P
which is not normal but with intP /=∅.

Definition 1.1 (see [2]). Let X be a nonempty set. Suppose that the mapping d : X × X 	→ E
satisfies

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X;

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space. The
concept of a cone metric space is more general than of a metric space.

Definition 1.2 (see [2]). Let (X, d) be a cone metric space. We say that {xn} is
(e) Cauchy sequence if for every c in E with 0 � c, there is an N such that for all

n,m > N, d(xn, xm) � c;

(f) convergent sequence if for every c in E with 0 � c, there is an N such that for all
n > N, d(xn, x) � c for some fixed x in X.

A cone metric space X is said to be complete if every Cauchy sequence in X is
convergent inX. The sequence {xn} converges to x ∈ X if and only if d(xn, x) → 0 as n → ∞.
It is a Cauchy if and only if d(xn, xm) → 0 as n,m → ∞.

Remark 1.3. (see [10]) Let E be an ordered Banach (normed) space. Then c is an interior point
of P, if and only if [−c, c] is a neighborhood of 0.

Corollary 1.4 (see, e.g., [11]without proof). (1) If a ≤ b and b � c, then a � c.
Indeed, c − a = (c − b) + (b − a) ≥ c − b implies [−(c − a), c − a] ⊇ [−(c − b), c − b].
(2) If a � b and b � c, then a � c.
Indeed, c − a = (c − b) + (b − a) > c − b implies [−(c − a), c − a] ⊃ [−(c − b), c − b].
(3) If 0 ≤ u � c for each c ∈ intP , then u = 0.

Remark 1.5. If c ∈ intP , 0 ≤ an and an → 0, then there exists n0 such that for all n > n0 we
have an � c.

Proof. Let 0 � c be given. Choose a symmetric neighborhood V such that c + V ⊂ P. Since
an → 0, there is n0 such that an ∈ V = −V for n > n0. This means that c ± an ∈ c + V ⊂ P for
n > n0, that is, an � c.

From this it follows that: the sequence {xn} converges to x ∈ X if d(xn, x) → 0 as n →
∞, and {xn} is a Cauchy if d(xn, xm) → 0 as n,m → ∞. In the situation with non-normal
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cone, we have only half of the lemmas 1 and 4 from [2]. Also, the fact that d(xn, yn) → d(x, y)
if xn → x and yn → y is not applicable.

Remark 1.6. Let 0 � c. If 0 ≤ d(xn, x) ≤ bn and bn → 0, then eventually d(xn, x) � c, where
xn, x are sequence and given point in X.

Proof. It follows from Remark 1.5, Corollary 1.4(1), and Definition 1.2(f).

Remark 1.7. If 0 ≤ an ≤ bn and an → a, bn → b, then a ≤ b, for each cone P.

Remark 1.8. If E is a real Banach space with cone P and if a ≤ λa where a ∈ P and 0 < λ < 1,
then a = 0.

Proof. The condition a ≤ λa means that λa − a ∈ P, that is, −(1 − λ)a ∈ P. Since a ∈ P and
1 − λ > 0, then also (1 − λ)a ∈ P. Thus we have (1 − λ)a ∈ P ∩ (−P) = {0} and a = 0.

Remark 1.9. Let (X, d) be a cone metric space. Let us remark that the family {N(x, e) : x ∈
X, 0 � e}, whereN(x, e) = {y ∈ X : d(y, x) � e}, is a subbasis for topology on X. We denote
this cone topology by τc, and note that τc is a Hausdorff topology (see, e.g., [11] without
proof).

For the proof of the last statement, we suppose that for each c, 0 � cwe haveN(x, c)∩
N(y, c)/=∅. Thus, there exists z ∈ X such that d(z, x) � c and d(z, y) � c. Hence, d(x, y) ≤
d(x, z) + d(z, y) � c/2 + c/2 = c. Clearly, for each n, we have c/n ∈ intP , so c/n − d(x, y) ∈
intP ⊂ P . Now, 0 − d(x, y) ∈ P , that is, d(x, y) ∈ −P ∩ P , and we have d(x, y) = 0.

We find it convenient to introduce the following definition.

Definition 1.10. Let (X, d) be a cone metric space and P a cone with nonempty interior.
Suppose that the mappings f, g : X 	→ X are such that the range of g contains the range
of f , and f(X) or g(X) is a complete subspace of X. In this case we will say that the pair
(f, g) is Abbas and Jungck’s pair, or shortly AJ’s pair.

Definition 1.11 (see [1]). Let f and g be self-maps of a set X (i.e., f, g : X → X) . If w = fx =
gx for some x in X, then x is called a coincidence point of f and g, and w is called a point of
coincidence of f and g. Self-maps f and g are said to be weakly compatible if they commute
at their coincidence point, that is, if fx = gx for some x ∈ X, then fgx = gfx.

Proposition 1.12 (see [1]). Let f and g be weakly compatible self-maps of a set X. If f and g have a
unique point of coincidence w = fx = gx, then w is the unique common fixed point of f and g.

2. Main Results

In this section we will prove some fixed point theorems of contractive mappings for cone
metric space. We generalize some results of [1–4] by omitting the assumption of normality in
the results.

Theorem 2.1. Suppose that (f, g) is AJ’s pair, and that for some constant λ ∈ (0, 1) and for every
x, y ∈ X, there exists

u ≡ u(x, y) ∈
{
d(gx, gy), d(fx, gx), d(fy, gy),

d(fx, gy) + d(fy, gx)
2

}
, (2.1)
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such that

d(fx, fy) ≤ λ · u. (2.2)

Then f and g have a unique coincidence point inX. Moreover if f and g are weakly compatible, f and
g have a unique common fixed point.

Proof. Let x0 ∈ X, and let x1 ∈ X be such that gx1 = fx0 = y0. Having defined xn ∈ X, let
xn+1 ∈ X be such that gxn+1 = fxn = yn.

We first show that

d
(
yn, yn+1

) ≤ λd
(
yn−1, yn

)
, for n ≥ 1. (2.3)

We have that

d
(
yn, yn+1

)
= d

(
fxn, fxn+1

) ≤ λ · u, (2.4)

where

u ∈
{
d
(
gxn, gxn+1

)
, d

(
fxn, gxn

)
, d

(
fxn+1, gxn+1

)
,
d
(
fxn, gxn+1

)
+ d

(
fxn+1, gxn

)
2

}

=

{
d
(
yn−1, yn

)
, d

(
yn, yn+1

)
,
d
(
yn−1, yn+1

)
2

}
.

(2.5)

Now we have to consider the following three cases.
If u = d(yn−1, yn) then clearly (2.3) holds. If u = d(yn, yn+1) then according

to Remark 1.8 d(gxn, gxn+1) = 0, and (2.3) is immediate. Finally, suppose that u =
(1/2)d(yn−1, yn+1). Now,

d
(
yn, yn+1

) ≤ λ
d
(
yn−1, yn+1

)
2

≤ λ

2
d
(
yn−1, yn

)
+
1
2
(
yn, yn+1

)
. (2.6)

Hence, d(yn, yn+1) ≤ λd(yn−1, yn), and we proved (2.3).
Now, we have

d
(
yn, yn+1

) ≤ λnd
(
y0, y1

)
. (2.7)

We will show that {yn} is a Cauchy sequence. For n > m, we have

d
(
yn, ym

) ≤ d
(
yn, yn−1

)
+ d

(
yn−1, yn−2

)
+ · · · + d

(
ym+1, ym

)
, (2.8)
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and we obtain

d
(
yn, ym

) ≤ (
λn−1 + λn−2 + · · · + λm

)
d
(
y1, y0

)

≤ λm

1 − λ
d
(
y1, y0

) −→ 0 as m −→ ∞.

(2.9)

From Remark 1.5 it follows that for 0 � c and large m : λm(1 − λ)−1d(y1, y0) � c; thus,
according to Corollary 1.4(1), d(yn, ym) � c. Hence, by Definition 1.2(e), {yn} is a Cauchy
sequence. Since f(X) ⊆ g(X) and f(X) or g(X) is complete, there exists a q ∈ g(X)
such that gxn → q ∈ g(X) as n → ∞. Consequently, we can find p ∈ X such that
gp = q.

Let us show that fp = q. For this we have

d(fp, q) ≤ d
(
fp, fxn

)
+ d

(
fxn, q

) ≤ λ · un + d
(
fxn, q

)
, (2.10)

where

un ∈
{
d
(
gxn, gp

)
, d

(
fxn, gxn

)
, d

(
fp, gp

)
,
d
(
fxn, gp

)
+ d

(
fp, gp

)
2

}
. (2.11)

Let 0 � c. Clearly at least one of the following four cases holds for infinitely many n.

(Case 10)

d(fp, q) ≤ λ · d(gxn, gp
)
+ d

(
fxn, q

) � λ · c

2λ
+
c

2
= c. (2.12)

(Case 20)

d(fp, q) ≤ λ · d(fxn, gxn

)
+ d

(
fxn, q

)
≤ λ · d(fxn, q

)
+ λ · d(q, gxn

)
+ d

(
fxn, q

)
= (λ + 1) · d(fxn, q

)
+ λ · d(q, gxn

)

� (λ + 1) · c

2(λ + 1)
+ λ · c

2λ
= c.

(2.13)

(Case 30)

d(fp, q) ≤ λ · d(fp, gp) + d
(
fxn, q

)
, that is,

d(fp, q) � 1
1 − λ

· c

1/(1 − λ)
= c.

(2.14)
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(Case 40)

d(fp, q) ≤ λ · d
(
fxn, gp

)
+ d

(
fp, gp

)
2

+ d
(
fxn, q

)

≤ λd
(
fxn, gp

)
2

+
1
2
d(fp, gp) + d

(
fxn, q

)
, that is,

d(fp, q) ≤ (λ + 2)d
(
fxn, q

) � (λ + 2)
c

(λ + 2)
= c.

(2.15)

In all cases, we obtain d(fp, q) � c for each c ∈ intP. Using Corollary 1.4(3), it follows that
d(fp, q) = 0, or fp = q.

Hence, we proved that f and g have a coincidence point p ∈ X and a point of
coincidence q ∈ X such that q = f(p) = g(p). If q1 is another point of coincidence, then
there is p1 ∈ X with q1 = fp1 = gp1. Now,

d(q, q1) = d(fp, fp1) ≤ λ · u, (2.16)

where

u ∈
{
d
(
gp, gp1

)
, d(fp, gp), d

(
fp1, gp1

)
,
d
(
fp, gp1

)
+ d

(
fp1, gp

)
2

}

=

{
d
(
q, q1

)
, 0,

d
(
q, q1

)
+ d

(
q1, q

)
2

}
=
{
0, d

(
q, q1

)}
.

(2.17)

Hence, d(q, q1) = 0, that is, q = q1.
Since q = f(p) = g(p) is the unique point of coincidence of f and g, and f and g

are weakly compatible, q is the unique common fixed point of f and g by Proposition 1.12
[1].

In the next theorem, among other things, we generalize the well-known Zamfirescu
result [12, (21′′)].

Theorem 2.2. Suppose that (f, g) is AJ’s pair, and that for some constant λ ∈ (0, 1) and for every
x, y ∈ X, there exists

u ≡ u(x.y) ∈
{
d(gx, gy),

d(fx, gx) + d(fy, gy)
2

,
d(fx, gy) + d(fy, gx)

2

}
, (2.18)

such that

d(fx, fy) ≤ λ · u. (2.19)
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Then f and g have a unique coincidence point in X. Moreover, if f and g are weakly compatible, f
and g have a unique common fixed point.

Proof. Let x0 ∈ X, and let x1 ∈ X be such that gx1 = fx0 = y0. Having defined xn ∈ X, let
xn+1 ∈ X be such that gxn+1 = fxn = yn.

We first show that

d
(
yn, yn+1

) ≤ λd
(
yn−1, yn

)
for n ≥ 1. (2.20)

Notice that

d
(
yn, yn+1

)
= d

(
fxn, fxn+1

) ≤ λ · un, (2.21)

where

un ∈
{
d
(
gxn, gxn+1

)
,
d
(
fxn, gxn

)
+ d

(
fxn+1, gxn+1

)
2

,
d
(
fxn, gxn+1

)
+ d

(
fxn+1, gxn

)
2

}

=

{
d
(
yn−1, yn

)
,
d
(
yn−1, yn

)
+ d

(
yn, yn+1

)
2

,
d
(
yn−1, yn+1

)
2

}
.

(2.22)

As in Theorem 2.1, we have to consider three cases.
If u = d(yn−1, yn), then clearly (2.20) holds. If u = [d(yn−1, yn) + d(yn, yn+1)]/2, then

from (2.19) with x = xn and y = xn+1, as λ ∈ (0, 1), we have

d
(
yn, yn+1

) ≤ λ
d
(
yn−1, yn

)
+ d

(
yn, yn+1

)
2

≤ λ
d
(
yn−1, yn

)
2

+
d
(
yn, yn+1

)
2

. (2.23)

Hence, d(yn, yn+1) ≤ λd(yn−1, yn), and in this case (2.20) holds. Finally, if u =
[d(yn−1, yn+1)]/2, then

d
(
yn, yn+1

) ≤ λ
d
(
yn−1, yn+1

)
2

≤ λ
d
(
yn−1, yn

)
+ d

(
yn, yn+1

)
2

≤ λ
d
(
yn−1, yn

)
2

+
d
(
yn, yn+1

)
2

,

(2.24)

and (2.20) holds. Thus, we proved that in all three cases (2.20) holds.
Now, from the proof of Theorem 2.1, we know that {gxn+1} = {fxn} = {yn} is a Cauchy

sequence. Hence, there exist q in g(X) and p ∈ X such that gxn → q, n → ∞, and g(p) = q.
Now we have to show that fp = q. For this we have

d
(
fp, q

) ≤ d
(
fp, fxn

)
+ d

(
fxn, q

) ≤ λ · un + d
(
fxn, q

)
, (2.25)
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where

un ∈
{
d
(
gxn, gp

)
,
d
(
fxn, gxn

)
+ d(fp, gp)

2
,
d
(
fxn, gp

)
+ d

(
fp, gxn

)
2

}
. (2.26)

Let 0 � c. Clearly at least one of the following three cases holds for infinitely many n.

(Case 10)

d(fp, q) ≤ λ · d(gxn, gp
)
+ d

(
fxn, q

) � λ · c

2λ
+
c

2
= c. (2.27)

(Case 20)

d(fp, q) ≤ λ · d
(
fxn, gxn

)
+ d(fp, gp)

2
+ d(fxn, q)

≤ λd
(
fxn, gxn

)
2

+
d(fp, gp)

2
+ d

(
fxn, q

)
, that is,

d(fp, q) ≤ (λ + 2)d
(
fxn, q

)
+ λd

(
gxn, q

) � (λ + 2)
c

2(λ + 2)
+ λ

c

2λ
= c.

(2.28)

(Case 30)

d(fp, q) ≤ λ · d
(
fxn, gp

)
+ d

(
fp, gxn

)
2

+ d
(
fxn, q

)

≤ λd
(
fxn, gp

)
2

+
1
2
d(fp, q) +

λ

2
d
(
q, gxn

)
+ d

(
fxn, q

)
, that is,

d(fp, q) ≤ (λ + 2)d
(
fxn, q

)
+ λd

(
gxn, q

) � (λ + 2)
c

2(λ + 2)
+ λ

c

2λ
= c.

(2.29)

In all cases we obtain d(fp, q) � c for each c ∈ intP. Using Corollary 1.4(3), it follows that
d(fp, q) = 0, or fp = q.

Thus we showed that f and g have a coincidence point p ∈ X, that is, point of
coincidence q ∈ X such that q = fp = gp. If q1 is another point of coincidence then there
is p1 ∈ X with q1 = fp1 = gp1. Now from (2.19), it follows that

d
(
q, q1

)
= d

(
fp, fp1

) ≤ λ · u, (2.30)
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where

u ∈
{
d
(
gp, gp1

)
,
d(fp, gp) + d

(
fp1, gp1

)
2

,
d
(
fp, gp1

)
+ d

(
fp1, gp

)
2

}

=

{
d(q, q), 0,

d
(
q, q1

)
+ d

(
q1, q

)
2

}
=
{
0, d

(
q, q1

)}
.

(2.31)

Hence, d(q, q1) = 0, that is, q = q1. If f and g are weakly compatible, then as in the proof of
Theorem 2.1, we have that q is a unique common fixed point of f and g. The assertion of the
theorem follows.

Now as corollaries, we recover and generalize the recent results of Huang and Zhang
[2], Abbas and Jungck [1], and Vetro [3]. Furthermore as corollaries, we obtain recent results
of Rezapour and Hamlborani [4].

Corollary 2.3. Suppose that (f, g) is AJ’s pair, and that for some constant λ ∈ (0, 1) and for every
x, y ∈ X,

d(fx, fy) ≤ λ · d(gx, gy). (2.32)

Then f and g have a unique coincidence point inX. Moreover if f and g are weakly compatible, f and
g have a unique common fixed point.

Corollary 2.4. Suppose that (f, g) is AJ’s pair, and that for some constant λ ∈ (0, 1) and for every
x, y ∈ X,

d(fx, fy) ≤ λ · d(fx, gx) + d(fy, gy)
2

. (2.33)

Then f and g have a unique coincidence point inX. Moreover if f and g are weakly compatible, f and
g have a unique common fixed point.

Corollary 2.5. Suppose that (f, g) is AJ’s pair, and that for some constant λ ∈ (0, 1) and for every
x, y ∈ X,

d(fx, fy) ≤ λ · d(fx, gy) + d(fy, gx)
2

. (2.34)

Then f and g have a unique coincidence point inX. Moreover if f and g are weakly compatible, f and
g have a unique common fixed point.

In the next corollary, among other things, we generalize the well-known result [12,
(9′)].
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Corollary 2.6. Suppose that (f, g) is AJ’s pair, and that for some constant λ ∈ (0, 1) and for every
x, y ∈ X, there exists

u = u(x, y) ∈ {d(gx, gy), d(fx, gx), d(fy, gy)}, (2.35)

such that

d(fx, fy) ≤ λ · u. (2.36)

Then f and g have a unique coincidence point inX. Moreover if f and g are weakly compatible, f and
g have a unique common fixed point.

Now, we generalize the well-known Bianchini result [12, (5)].

Corollary 2.7. Suppose that (f, g) is AJ’s pair, and that for some constant λ ∈ (0, 1) and for every
x, y ∈ X, there exists

u = u(x, y) ∈ {d(fx, gx), d(fy, gy)}, (2.37)

such that

d(fx, fy) ≤ λ · u. (2.38)

Then f and g have a unique coincidence point inX. Moreover if f and g are weakly compatible, f and
g have a unique common fixed point.

When in the next theorem we set g = IX, the identity map on X,E = (−∞,+∞) and
P = [0,+∞[, we get the theorem of Hardy and Rogers [12, (18)].

Theorem 2.8. Suppose that (f, g) is AJ’s pair, and that there exist nonnegative constants ai satisfying∑5
i=1ai < 1 such that, for each x, y ∈ X,

d(fx, fy) ≤ a1d(gx, gy) + a2d(gx, fx) + a3d(gy, fy) + a4d(gx, fy) + a5d(gy, fx). (2.39)

Then f and g have a unique coincidence point inX. Moreover if f and g are weakly compatible, f and
g have a unique common fixed point.

Proof. Let us define the sequences xn and yn as in the proof of Theorem 2.1 We have to show
that

d
(
yn, yn+1

) ≤ λd
(
yn−1, yn

)
, for some λ ∈ (0, 1), n ≥ 1. (2.40)
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From

d
(
yn+1, yn

)
= d

(
fxn+1, fxn

) ≤ a1d
(
gxn+1, gxn

)
+ a2d

(
gxn+1, fxn+1

)
+ a3d

(
gxn, fxn

)
+ a4d

(
gxn+1, fxn

)
+ a5d

(
gxn, fxn+1

)
= a1d

(
yn, yn−1

)
+ a2d

(
yn, yn+1

)
+ a3d

(
yn−1, yn

)
+ a5d

(
yn−1, yn+1

)
,

d
(
yn, yn+1

)
= d

(
fxn, fxn+1

) ≤ a1d
(
gxn, gxn+1

)
+ a2d

(
gxn, fxn

)
+ a3d

(
gxn+1, fxn+1

)
+ a4d

(
gxn, fxn+1

)
+ a5d

(
gxn+1, fxn

)
= a1d

(
yn−1, yn

)
+ a2d

(
yn−1, yn

)
+ a3d

(
yn, yn+1

)
+ a4d

(
yn−1, yn+1

)
,

(2.41)

we obtain

2d
(
yn, yn+1

) ≤ 2a1d
(
yn−1, yn

)
+ 2a2d

(
yn−1, yn

)
+ a3d

(
yn, yn+1

)
+ a4d

(
yn−1, yn+1

)
+
(
a3 + a4 + a5

)
d
(
yn, yn+1

)
.

(2.42)

Thus,

d
(
yn, yn+1

) ≤ 2a1 + a2 + a3 + a4

2 − a3 − a4 − a5
· d(yn−1, yn

)
= λ · d(yn−1, yn

)
, (2.43)

where λ = (2a1 + a2 + a3 + a4)(2 − a3 − a4 − a5)
−1 ∈ (0, 1), and we proved (2.40).

Now, from the proof of Theorem 2.1, we know that {gxn+1} = {fxn} = {yn} is a Cauchy
sequence. Hence, there exist q in g(X) and p ∈ X such that gxn → q, n → ∞, and gp = q.

We have to show that fp = q. For this we have

d(fp, q) ≤ d
(
fp, fxn

)
+ d

(
fxn, q

) ≤ a1d
(
gxn, gp

)
+ a2d

(
gxn, fxn

)
+ a3d

(
gp, fp

)
+ a4d

(
gxn, fp

)
+ a5d

(
gp, fxn

)
+ d

(
fxn, q

)
≤ a1d

(
gxn, q

)
+ a2d

(
gxn, q

)
+ a2d

(
q, fxn

)
+ a3d(q, fp)

+ a4d
(
gxn, q

)
+ a4d(q, fp) +

(
a5 + 1

)
d
(
q, fxn

)
, that is,

d(fp, q) ≤ a1 + a2 + a4

1 − a3 − a4
d
(
gxn, q

)
+
1 + a2 + a5

1 − a3 − a4
d
(
fxn, q

)

� a1 + a2 + a4

1 − a3 − a4

c

2((a1 + a2 + a4)/(1 − a3 − a4))

+
1 + a2 + a5

1 − a3 − a4

c

2((1 + a2 + a5)/(1 − a3 − a4))
= c.

(2.44)

Then according to Corollary 1.4(3), d(fp, q) = 0, that is, fp = q.



12 Fixed Point Theory and Applications

Thus we showed that f and g have a coincidence point p ∈ X, that is, point of
coincidence q ∈ X such that q = fp = gp. If q1 is another point of coincidence then there
is p1 ∈ X with q1 = fp1 = gp1. Now,

d
(
q, q1

)
= d

(
fp, fp1

)
≤ a1d

(
gp, gp1

)
+ a2d

(
gp, fp

)
+ a3d

(
gp1, fp1

)
+ a4d

(
gp, fp1

)
+ a5d

(
gp1, fp

)
=
(
a1 + a4 + a5

)
d
(
q, q1

)
.

(2.45)

According to Remark 1.8, and because 0 ≤ a1 + a4 + a5 ≤
∑5

i=1ai < 1, we get d(q, q1) = 0, that
is, q = q1. If f and g are weakly compatible, then as in the proof of Theorem 2.1, we have that
q is a unique common fixed point of f and g. The assertion of the theorem follows.

It is clear that, for the special choice of ai in Theorem 2.8, all the results fromCorollaries
2.3, 2.4, and 2.5, could be obtained.

Finally, we add an example with Banach type contraction on non-normal cone metric
space (see Corollary 2.3).

Example 2.9. Let X = R, E = C1
R
[0, 1], and P = {ϕ ∈ E : ϕ ≥ 0}. Define d : X × X → E by

d(x, y) = |x − y|ϕ where ϕ : [0, 1] → R such that ϕ(t) = et. It is easy to see that d is a cone
metric on X. Consider the mappings f, g : X → X in the following manner:

fx =

⎧⎨
⎩

1
1 + α

x + β, x /= 0,

0, x = 0,
gx =

{
x + (1 + α)β, x /= 0,
0, x = 0,

(2.46)

where α > 1, β ∈ R. One can see that

d(fx, fy) ≤ kd(gx, gy), (2.47)

for all x, y ∈ X, where k = 1/α ∈ (0, 1). The mappings f and g commute at x = 0, the only
coincidence point. So f and g are weakly compatible. All the conditions of the Corollary 2.3
hold, then f and g have a common fixed point.
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