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1. Introduction and Preliminaries

In 1929, Knaster et al. [1] proved the well-known KKM theorem for an n-simplex. Ky Fan’s
generalization of theKKM theorem to infinite dimensional topological vector spaces in 1961
[2] proved to be a very versatile tool in modern nonlinear analysis with many far-reaching
applications.

Chang and Yen [3] undertook a systematic study of the KKM property, and Chang
et al. [4] generalized this property as well as the notion of a KKM(X,Y ) family of [4] to the
wider concepts of the S-KKM property and its related S-KKM(X,Y,Z) family.

Among the many contributions in the study of theKKM property and related topics,
we mention the work by Amini et al. [5] where the classes of KKM and S-KKM mappings
have been introduced in the framework of abstract convex spaces. The authors of [5] also
define a concept of convexity that contains a number of other concepts of abstract convexities
and obtain fixed point theorems for multifunctions verifying the S-KKM property on Φ-
spaces that extend results of Ben-El-Mechaiekh et al. [6] and Horvath [7], motivated by the
works of Ky Fan [2] and Browder [8]. We refer for the study of these notions to Ben-El-
Mechaiekh et al. [9], and more recently, to Park [10], and Kim and Park [11].
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In this paper, we use a concept of abstract convexity to define the almost S-KKMC
property, the corresponding notion of almost S-KKMC(X,Y ) family as well as the concept of
almost Φ-spaces.

Let X and Y be two sets, and let T : X → 2Y be a set-valued mapping. We will use the
following notations in the sequel;

(i) T(x) = {y ∈ Y : y ∈ T(x)},
(ii) T(A) = ∪x∈AT(x),

(iii) T−1(y) = {x ∈ X : y ∈ T(x)},
(iv) T−1(B) = {x ∈ X : T(x) ∩ B /=φ}, and
(v) if D is a nonempty subset of X, then 〈D〉 denotes the class of all nonempty finite

subsets of D.

For the case where X and Y are two topological spaces, a set-valued map T : X → 2Y

is said to be closed if its graph GT = {(x, y) ∈ X × Y : y ∈ T(x)} is closed. T is said to be
compact if the image T(X) of X under T is contained in a compact subset of Y .

Definition 1.1. An abstract convex space (E,C) consists of a nonempty topological space E,
and a family C of subsets of E such that E and ∅ belong to C and C is closed under arbitrary
intersection. This kind of abstract convexity was widely studied; see [5, 9, 12, 13].

Suppose that A is a nonempty subset of an abstract convex space (E,C). Then

(i) a natural definition of C-convex hull of A is

coC(A) = ∩{B ∈ C : A ⊂ B}, and (1.1)

(ii) we say that A is C-convex if for each B ∈ 〈A〉, coC(B) ⊂ A.

Remark 1.2. It is clear that ifA ∈ C, thenA is C-convex. That is, each member of C is C-convex.

Definition 1.3. We list some properties of a uniform space. A uniformity [14] for a set E is a
nonempty family U of subsets of E × E such that

(i) each member of U contains the diagonal Δwhere the diagonal Δ denotes the set of
all pairs (x, x) for x in E;

(ii) ifU ∈ U, thenU−1 ∈ U;

(iii) ifU ∈ U, then V ◦ V ⊂ U for some V ∈ U;

(iv) ifU,V ∈ U, thenU ∩ V ∈ U;

(v) ifU ∈ U and U ⊂ V ⊂ E × E, then V ∈ U.

The pair (E,C) is called a uniform space. Every member V in U is called an entourage. An
entourage is said to be symmetric if (x, y) ∈ V whenever (y, x) ∈ V .

Definition 1.4. If (E,C) is an abstract convex space with a uniformityU, thenwe say that (E,C)
is an abstract convex uniform space.
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Definition 1.5. Let A be a nonempty subset of an abstract convex uniform space (E,C) which
has a uniformity U, and U has a symmetric basis N. Then A is called almost C-convex if, for
any K ∈ 〈A〉 and for any V ∈ N, there exists a mapping hK,V : K → A such that hK,V (x) ∈
V [x] for all x ∈ K and coC(hK,V (K)) ⊂ A. Moreover, we call the mapping hK,V : K → A a
C-convex-inducing mapping.

Remark 1.6. It is clear that every C-convex set must be almost C-convex, but the converse is
not true. And in general, the C-convex-inducing mapping is not unique. If U,V ∈ N and
U ⊂ V , then hA,U : A → X can be regarded as hA,V : A → X. If A ⊂ B, then hA,U : A → X
can be regarded as hB,U : B → X.

Recently, Amini et al. [5] introduced the class of multifunctions with the S − KKMC
property in abstract convex spaces.

Definition 1.7 (see [5]). Let Z be a nonempty set, (X,C) an abstract convex space, and Y a
topological space. If S : Z → 2X , T : X → 2Y and F : Z → 2Y are three multifunctions
satisfying

T(coC(S(A))) ⊂ ∪x∈AF(x), for each A ∈ 〈Z〉, (1.2)

then F is called a S-KKMC mapping with respect to T . If the multifunction T : X → 2Y

satisfies the requirement that for any S-KKMC mapping F with respect to T , the family
{F(x) : x ∈ Z} has the finite intersection property where F(x) denotes the closure of F(x),
then T is said to have the S-KKMC property with respect to C. We define

S −KKMC(Z,X, Y ) :=
{
T : W → 2Y | T has the S −KKMC property with respect to C

}
.

(1.3)

We extended the S −KKMC property to the almost S −KKMC property, as follows.

Definition 1.8. Let Z be a nonempty set, let X be an almost C-convex subset of an abstract
convex uniform space (E,C)which has a uniformityU andU has a symmetric basisN, and let
Y be a topological space. If S : Z → 2X , T : X → 2Y and F : Z → 2Y are three multifunctions
satisfying for each A ∈ 〈Z〉, each B ∈ 〈S(A)〉, and each U ∈ N, there exists a C-convex-
inducing mapping hB,U : B → W such that

T(coC(hB,U(B))) ⊂ F(A), (1.4)

then F is called an almost S-KKMC mapping with respect to T . If the multifunction T : X →
2Y satisfies the requirement that for any almost S-KKMC mapping F with respect to T , the
family {F(x) : x ∈ Z} has the finite intersection property, then T is said to have the almost
S-KKMC property with respect to C. We define

al − S −KKMC(Z,X, Y )

:=
{
T : W → 2Y | T has the almost S −KKMC property with respect to C

}
.

(1.5)
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From the above definitions, we have the following proposition of the al − S −
KKMC(Z,X, Y ) family.

Proposition 1.9. Let X be a nonempty set, let Y be an almost C-convex subset of an abstract convex
uniform space (E,C), letZ andW be two topological spaces, and let S : X → 2Y be a multifunction. If
T ∈ al−S−KKMC(X,Y,Z) and if f : Z → W is continuous, then fT ∈ al−S−KKMC(X,Y,W).

The Φ-mappings and the Φ-spaces, in an abstract convex space setting, were also
introduced by Amini et al. [5].

Definition 1.10 (see [5]). Let (X,C) be an abstract convex space, and Y a topological space. A
map T : Y → 2X is called a Φ-mapping if there exists a multifunction F : Y → 2X such that

(i) for each y ∈ Y , A ∈ 〈F(y)〉 implies coC(A) ⊂ T(y), and

(ii) Y = ∪x∈XintF−1(x).

The mapping F is called a companion mapping of T .
Furthermore, if the abstract convex space (X,C) which has a uniformity U and U has

a symmetric basis N, then X is called a Φ-space if for each entourage V ∈ N, there exists a
Φ-mapping T : X → 2X such that GT ⊂ V .

Remark 1.11. (i) If T : Y → 2X is aΦ-mapping, then for each nonempty subset Y1 of Y ,
T |Y1 : Y1 → X is also a Φ-mapping.

(ii) It is easy to see that if X1 ⊂ X and C1 = {C ∩ X1 : C ∈ C}, then (X1,C1) is also a
Φ-space.

In order to establish themain result of this paper for themultifunctions with the almost
S − KKMC property, we need the following definitions concerning the almost Φ-mappings
and the almost Φ-spaces.

Definition 1.12. LetX be an almost C-convex subset of an abstract convex uniform space (E,C)
which has a uniformity U and U has a symmetric base family N, and Y a topological space.
A map T : Y → 2X is called an almost Φ-mapping if there exists a multifunction F : Y → 2X

such that

(i) for each y ∈ Y , A ∈ 〈F(y)〉 and U ∈ N, there exists a C-convex-inducing hA,U :
A → X such that coC(hA,U(A)) ⊂ U[T(y)], and

(ii) Y = ∪x∈XintF−1(x).

The mapping F is called an almost companion mapping of T .
Furthermore, X is called an almost Φ-space, if, for each entourage V ∈ N, there exists

an almost Φ-mapping T : X → 2X such that GT ⊂ V .

Definition 1.13. Let X be an almost Φ-space, and let T : X → 2X . We say that T has the
approximate fixed point property if, for each U ∈ N, there exists x ∈ X such that U[x] ∩
T(x)/=φ.

2. Main Results

Using the above introduced concepts and definitions, we now state our main theorem.



Fixed Point Theory and Applications 5

Theorem 2.1. LetX be an almostΦ-space, and let s : X → X be a surjective single-valued function.
If T ∈ al − s −KKMC(X,X,X) is compact, then T has the approximate fixed point property.

Proof. Let N be a symmetric basis of the uniform structure, and let U ∈ N. Take V ∈ N
such that V ◦ V ⊂ U. Then, by the definition of the almost Φ-space, there exists an almsot
Φ-mapping F : X → 2X such that GF ⊂ V . Since F is an almsot Φ-mapping, there exists an
almost companion mapping G : X → 2X such that X = ∪x∈XintG−1(x).

Let K = T(X). Then K is compact, since T is compact. Hence there exists A ∈ 〈X〉
such thatK ⊂ ∪x∈AintG−1(x). Since s is surjective, there exists a finite subset B of X such that
K ⊂ ∪z∈BintG−1(s(z)).

Now, we define P : X → 2X by

P(z) = K \ intG−1(s(z)), for each z ∈ X. (2.1)

By the definition of P , we obtain that P is not an almost s −KKMC mapping with respect to
T . Hence, there exist N = {z1, z2, . . . , zk} ⊂ X and D ∈ 〈s(N)〉 such that for any C-convex-
inducing hD,V : D → W∞, we have

T(coC(hD,V (D))) /⊆ ∪k
i=1P(zi). (2.2)

So, for any C-convex-inducing hD,V : D → X, there exist xU ∈ coC(hD,V (D)) and yU ∈
T(xU) such that yU /∈ ∪k

i=1P(zi). Consequently, yU ∈ ∩k
i=1intG

−1(s(zi)), and so s(zi) ∈ G(yU)
for all i = 1, 2, . . . , k. Since F is an almost Φ-mapping, there exists a C-convex-inducing h∗

D,V :
D → X such that coC(h∗

D,V (D)) ⊂ V [F(yU)]. So xU ∈ adC(h∗
D,V (D)) and xU ∈ V [F(yU)].

Thus, there exists zU ∈ F(yU) such that xU ∈ V [zU]. Since X is an almost Φ-space, we have
(yU, zU) ∈ GF ⊂ V , and so (yU, xU) = (yU, zU) ◦ (zU, xU) ∈ V ◦ V ⊂ U, that is, yU ∈ U[xU].
Therefore, yU ∈ U[xU] ∩ T(xU). The proof is finished.

Remark 2.2. In the case, ifX is aΦ-space and T ∈ s−KKMC(X,X,X), then the above theorem
reduces to Amini et al. [5, Theorem2.5]

From Theorem 2.1 above, we obtain immediately the following fixed point theorem.

Theorem 2.3. Suppose that all of the assumptions of Theorem 2.1 hold. If T is closed, then T has a
fixed point in X.

Proof. By Theorem 2.1, for eachU ∈ N, there exist xU, yU ∈ X such that yU ∈ U[xU] ∩ T(xU).
Since T is compact, without loss of generality, we may assume that yU converges to some y
in X; then xU also converges to y since X is a Hausdorff uniform space and (xU, yU) ∈ U for
each U ∈ N. By the closedness of T , we have that y ∈ T(y).

Corollary 2.4. LetX be an almostΦ-space, and let s : X → X be a surjective single-valued function.
Suppose T ∈ al−s−KKMC(X,X,X) such that T(X) is totally bounded. Then T has the approximate
fixed point property.

Corollary 2.5. Suppose that all of the assumptions of the above Corollary 2.5 hold. If T is closed, then
T has a fixed point in X.
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In case X is an almost convex subset of Hausdorff topological vector spaces and for
each A ⊂ X, we have

(i) coC(A) = co(A), and

(ii) al − s −KKMC(X,X,X) = al − s −KKM(X,X,X).

This allows us to state the following results.

Theorem 2.6. Let E be a Hausdorff locally convex space, let X be an almost convex subset of E, and
let s : X → X be a surjective function. Assume that T ∈ al − s − KKM(X,X,X) is compact and
closed, then T has a fixed point in X.

Proof. Let C be the family of all convex subsets of E, and let B0 = {V α : α ∈ Λ} be a local basis
of E such that each V α ∈ B0 is symmetric and convex for each α ∈ Λ. For each x ∈ X, we set
Vα[x] = x + V α. Noting that x ∈ Vα[x]. Set

N =
{
Vα | Vα = ∪x∈X

{(
x, y

)
: y ∈ Vα[x]

}
, α ∈ Λ

}
. (2.3)

Then N is a basis of a uniformity of E. For each Vβ ∈ N, β ∈ Λ, we define the two set-valued
mappings G,F : X → 2X by G(x) = F(x) = Vβ[x] for each x ∈ X. Then we have

(i) for each x ∈ X, co(G(x)) = co(Vβ[x]) ⊂ Vβ[Vβ[x]] = Vβ[F(x)], and

(ii) X = ∪x∈XintG−1(x).

So,G is an almost companion mapping of F. This implies that F is an almostΦ-mapping such
that GF ⊂ Vβ. Therefore, X is an almost Φ-space.

All conditions of Theorems 2.1 and 2.3 are therefore fulfilled; the result follows from
an argument similar to those in the proofs of Theorems 2.1 and 2.3.

Theorem 2.7. Let E be a topological vector space, let X be an almost convex subset of E, and let
s : X → X be a surjective function. Suppose that T ∈ al − s −KKM(X,X,X) is compact, then for
any symmetric convex neighborhood V of 0 in E, there is xV ∈ X such that (xV + V ) ∩ T(xV )/=φ.

Proof. Let C be the family of all convex subsets of E, and let B0 = {aV : a > 0} be a new local
basis of E. We will use B0 to construct a weaker topology on E such that E becomes a new
topological vector space. For each x ∈ X, we set Va[x] = x + aV . Noting that x ∈ Va[x]. Set

N =
{
Va | Va = ∪x∈X

{(
x, y

)
: y ∈ Va[x]

}
, a > 0

}
. (2.4)

ThenN is a basis of a uniformity of E. In vein of the reasonings similar to those of Theorems
2.1 and 2.6, we complete the proof.
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