# Research Article

# **Convergence Theorems of Three-Step Iterative Scheme for a Finite Family of Uniformly Quasi-Lipschitzian Mappings in Convex Metric Spaces**

## Tian You-xian and Yang Chun-de

Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Correspondence should be addressed to Tian You-xian, tianyx@cqupt.edu.cn

Received 9 December 2008; Accepted 25 March 2009

Recommended by Nanjing Huang

We consider a new Noor-type iterative procedure with errors for approximating the common fixed point of a finite family of uniformly quasi-Lipschitzian mappings in convex metric spaces. Under appropriate conditions, some convergence theorems are proved for such iterative sequences involving a finite family of uniformly quasi-Lipschitzian mappings. The results presented in this paper extend, improve and unify some main results in previous work.

Copyright © 2009 T. You-xian and Y. Chun-de. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## **1. Introduction and Preliminaries**

Takahashi [1] introduced a notion of convex metric spaces and studied the fixed point theory for nonexpansive mappings in such setting. For the convex metric spaces, Kirk [2] and Goebel and Kirk [3] used the term "hyperbolic type space" when they studied the iteration processes for nonexpansive mappings in the abstract framework. For the Banach space, Petryshyn and Williamson [4] proved a sufficient and necessary condition for Picard iterative sequences and Mann iterative sequence to converge to fixed points for quasi-nonexpansive mappings. In 1997, Ghosh and Debnath [5] extended the results of [4] and gave the sufficient and necessary condition for Ishikawa iterative sequence to converge to fixed points for quasi-nonexpansive mappings. Liu [6–8] proved some sufficient and necessary conditions for Ishikawa iterative sequence and Ishikawa iterative sequence with errors to converge to fixed point for asymptotically quasi-nonexpansive mappings in Banach space and uniform convex Banach space. Tian [9] gave some sufficient and necessary conditions for an Ishikawa iterative sequence for an asymptotically quasi-nonexpansive mapping to converge to a fixed point in convex metric spaces. Very recently, Wang and Liu [10] gave some iteration sequence

with errors to approximate a fixed point of two uniformly quasi-Lipschitzian mappings in convex metric spaces. The purpose of this paper is to give some sufficient and necessary conditions for a new Noor-type iterative sequence with errors to approximate a common fixed point for a finite family of uniformly quasi-Lipschitzian mappings in convex metric spaces. The results presented in this paper generalize, improve, and unify some main results of [1–14].

First of all, let us list some definitions and notations.

Let *T* be a given self mapping of a nonempty convex subset *C* of an arbitrary real normed space. The sequence  $\{x_n\}_{n=0}^{\infty}$  defined by

$$x_{0} \in C,$$

$$x_{n+1} = \alpha_{n} x_{n} + \beta_{n} T y_{n} + \gamma_{n} u_{n}, \quad n \ge 0,$$

$$y_{n} = a_{n} x_{n} + b_{n} T z_{n} + c_{n} v_{n},$$

$$z_{n} = d_{n} x_{n} + e_{n} T x_{n} + f_{n} w_{n},$$
(1.1)

is called the Noor iterative procedure with errors [11], where  $\alpha_n$ ,  $\beta_n$ ,  $\gamma_n$ ,  $a_n$ ,  $b_n$ ,  $c_n$ ,  $d_n$ ,  $e_n$ , and  $f_n$  are appropriate sequences in [0,1] with  $\alpha_n + \beta_n + \gamma_n = a_n + b_n + c_n = d_n + e_n + f_n = 1$ ,  $n \ge 0$  and  $\{u_n\}, \{v_n\}$ , and  $\{w_n\}$  are bounded sequences in *C*. If  $d_n = 1$  ( $e_n = f_n = 0$ ),  $n \ge 0$  then (1.1) reduces to the Ishikawa iterative procedure with errors [15] defined as follows:

$$x_0 \in C,$$
  

$$x_{n+1} = \alpha_n x_n + \beta_n T y_n + \gamma_n u_n, \quad n \ge 0,$$
  

$$y_n = a_n x_n + b_n T x_n + c_n v_n.$$
(1.2)

If  $a_n = 1$  ( $b_n = c_n = 0$ ) then (1.2) reduces to the following Mann type iterative procedure with errors [15]:

$$x_0 \in C,$$
  

$$x_{n+1} = \alpha_n x_n + \beta_n T x_n + \gamma_n u_n, \quad n \ge 0.$$
(1.3)

Let (E, d) be a metric space. A mapping  $T : E \to E$  is said to be asymptotically nonexpansive, if there exists a sequence  $\{K_n\} \in [1,\infty]$ ,  $\lim_{n\to\infty} K_n = 1$ , such that

$$d(T^n x, T^n y) \le K_n d(x, y), \quad \forall x, y \in E, \quad n \ge 0.$$
(1.4)

Let F(T) be the set of fixed points of T in E and  $F(T) \neq \emptyset$ , a mapping T is said to be asymptotically quasi-nonexpansive, if there exists  $\{K_n\} \subset [1, \infty)$  with  $\lim_{n\to\infty} K_n = 1$  such that

$$d(T^n x, p) \le K_n d(x, p), \quad \forall x \in E, \ p \in F(T), \ n \ge 0.$$

$$(1.5)$$

Moreover, *T* is said to be uniformly quasi-Lipschitzian, if there exists L > 0 such that

$$d(T^n x, p) \le Ld(x, p), \quad \forall x \in E, \ p \in F(T), \ n \ge 0.$$
(1.6)

*Remark* 1.1. If F(T) is nonempty, then it follows from the above definitions that an asymptotically nonexpansive mapping must be asymptotically quasi-nonexpansive, and an asymptotically quasi-nonexpansive mapping must be a uniformly quasi-Lipschitzian with  $L = \sup_{n>0} \{K_n\} < \infty$ . However, the inverse is not true in general.

*Definition 1.2* (see [9]). Let (E, d) be a metric space, and let  $I = [0,1], \{\alpha_n\}, \{\gamma_n\}$  be real sequences in [0,1] with  $\alpha_n + \beta_n + \gamma_n = 1$ . A mapping  $W : E^3 \times I^3 \to X$  is said to be a convex structure on E if, for any  $(x, y, z, \alpha_n, \beta_n, \gamma_n) \in E^3 \times I^3$  and  $u \in E$ ,

$$d(W(x, y, z, \alpha_n, \beta_n, \gamma_n)u) \le \alpha_n d(x, u) + \beta_n d(y, u) + \gamma_n d(z, u).$$
(1.7)

If (E, d) is a metric space with a convex structure W, then (E, d) is called a convex metric space. Let (E, d) be a convex metric space, a nonempty subset C of E is said to be convex if

$$W(x, y, z, \lambda_1, \lambda_2, \lambda_3) \in C, \quad \forall (x, y, z, \lambda_1, \lambda_2, \lambda_3) \in C^3 \times I^3.$$
(1.8)

*Definition 1.3.* Let (E, d) be a convex metric space with a convex structure  $W : E^3 \times I^3$  and  $T_i : E \to E$  be a finite family of uniformly quasi-Lipschitzian mappings with i = 1, 2, ..., N. Let  $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{a_n\}, \{b_n\}, \{c_n\}, \{d_n\}, \{e_n\}, \text{ and } \{f_n\}$  be nine sequences in [0, 1] with

$$\alpha_n + \beta_n + \eta_n = a_n + b_n + c_n = d_n + e_n + f_n = 1, \quad n = 0, 1, 2, \dots$$
(1.9)

For a given  $x_0 \in E$ , define a sequence  $\{x_n\}$  as follows:

$$x_{n+1} = W(x_n, T_n^n y_n, u_n; \alpha_n, \beta_n, \gamma_n), \quad n \ge 0,$$
  

$$y_n = W(f(x_n), T_n^n z_n, v_n; a_n, b_n, c_n),$$
  

$$z_n = W(f(x_n), T_n^n x_n, w_n; d_n, e_n, f_n),$$
  
(1.10)

where  $T_n^n = T_{n(\text{mod }N)}^n$ ,  $f : E \to E$  is a Lipschitz continuous mapping with a Lipschitz constant  $\xi > 0$  and  $\{u_n\}, \{v_n\}, \{w_n\}$  are any given three sequences in E. Then  $\{x_n\}$  is called the Noor-type iterative sequence with errors for a finite family of uniformly quasi-Lipschitzian mappings  $\{T_i\}_{i=1}^N$ . If f = I (the identity mapping on E) in (1.10), then the sequence  $\{x_n\}$  defined by (1.10) can be written as follows:

$$x_{n+1} = W(x_n, T_n^n y_n, u_n; \alpha_n, \beta_n, \gamma_n), \quad n \ge 0;$$
  

$$y_n = W(x_n, T_n^n z_n, v_n; a_n, b_n, c_n),$$
  

$$z_n = W(x_n, T_n^n x_n, w_n; d_n, e_n, f_n).$$
(1.11)

If  $d_n = 1$  for all  $n \ge 0$  in (1.10), then  $z_n = x_n$  for all  $n \ge 0$  and the sequence  $\{x_n\}$  defined by (1.10) can be written as follows:

$$x_{n+1} = W(f(x_n), T_n^n y_n, u_n; \alpha_n, \beta_n, \gamma_n), \quad n \ge 0,$$
  

$$y_n = W(f(x_n), T_n^n x_n, v_n; a_n, b_n, c_n).$$
(1.12)

If f = I and  $d_n = 1$  for all  $n \ge 0$ , then the sequence  $\{x_n\}$  defined by (1.10) can be written as follows:

$$x_{n+1} = W(x_n, T_n^n y_n, u_n; \alpha_n, \beta_n, \gamma_n), \quad n \ge 0,$$
  

$$y_n = W(x_n, T_n^n x_n, v_n; a_n, b_n, c_n),$$
(1.13)

which is the Ishikawa type iterative sequence with errors considered in [9]. Further, if f = I and  $d_n = a_n = 1$  for all  $n \ge 0$ , then  $z_n = y_n = x_n$  for all  $n \ge 0$  and (1.10) reduces to the following Mann type iterative sequence with errors [9]:

$$x_{n+1} \equiv W(x_n, T_n^n x_n, u_n; \alpha_n, \beta_n, \gamma_n), \qquad n \ge 0.$$
(1.14)

In order to prove our main results, the following lemmas will be needed.

**Lemma 1.4.** Let (E, d) be a convex metric space,  $T_i : E \to E$  be a uniformly quasi-Lipschitzian mapping for i = 1, 2, ..., N such that  $F := \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$ . Then there exists a constant  $L \ge 1$  such that, for all i = 1, 2, ..., N,

$$d(T_i^n x, p) \le Ld(x, p), \quad \forall x \in X, \ p \in F, \ n \ge 0.$$
(1.15)

*Proof.* In fact, for each i = 1, 2, ..., N, since  $T_i : E \rightarrow E$  is a uniformly quasi-Lipschitzian mapping, we have

$$d(T_i^n x, p) \le L_i d(x, p) \le L d(x, p), \quad \forall x \in E, \ p \in F, \ n \ge 0,$$
(1.16)

where

$$L = \max_{i=1,2,\dots,N} \{ \max\{L_i, 1\} \}.$$
 (1.17)

This completes the proof.

Fixed Point Theory and Applications

**Lemma 1.5** (see [7]). Let  $\{p_n\}, \{q_n\}, \{r_n\}$  be three nonexpansive squences satisfying the following conditions:

$$p_{n+1} \le (1+q_n)p_n + r_n, \quad \forall n \ge 0, \quad \sum_{n=0}^{\infty} q_n < \infty, \quad \sum_{n=0}^{\infty} r_n < \infty.$$
 (1.18)

Then

- (1)  $\lim_{n\to\infty} p_n$  exists;
- (2) In addition, if  $\liminf_{n\to\infty} p_n = 0$ , then  $\lim_{n\to\infty} p_n = 0$ .

**Lemma 1.6.** Let (E, d) be a complete convex metric space and C be a nonempty closed convex subset of E. Let  $T_i : C \to C$  be a finite family of uniformly quasi-Lipschitzian mapping for i = 1, 2, ..., Nsuch that  $F := \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$  and  $f : C \to C$  be a contractive mapping with a contractive constant  $\xi \in (0, 1)$ .Let  $\{x_n\}$  be the iterative sequence with errors defined by (1.10) and  $\{u_n\}, \{v_n\}, \{w_n\}$  be three bounded sequences in C. Let  $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{a_n\}, \{b_n\}, \{c_n\}, \{d_n\}, \{e_n\}, \{f_n\}$  be sequences in [0,1] satisfying the following conditions:

(i)  $\alpha_n + \beta_n + \gamma_n = a_n + b_n + c_n = d_n + e_n + f_n = 1$ ,  $\forall n \ge 0$ ;

(ii) 
$$\sum_{n=0}^{\infty} (\beta_n + \gamma_n) < \infty;$$

(iii)  $M_0 = \sup_{p \in F, n \ge 0} \{ d(u_n, p) + d(v_n, p) + d(w_n, p) + d(f(p), p) \} < \infty.$ 

Then the following conclusions hold:

(1) for all  $p \in F$  and  $n \ge 0$ ,

$$d(x_{n+1}, p) \le \left[1 + \beta_n L \left(1 + L + L^2\right)\right] d(x_n, p) + M \eta_n,$$
(1.19)

where  $L = \max_{i=1,2,\dots,N} \{L_i\}$ ,  $\eta_n = \beta_n + \gamma_n$  for all  $n \ge 0$  and

$$M = L(1+L)[d(u_n, p) + d(v_n, p) + d(w_n, p) + d(f(p), p)].$$
(1.20)

(2) there exists a constant  $M_i > 0$  such that

$$d(x_{n+m}, p) \le M_1 d(x_n, p) + M M_1 \sum_{k=n}^{n+m-1} \eta_k, \quad \forall p \in F,$$
 (1.21)

for all  $n, m \ge 0$ .

*Proof.* (1) It follows from (1.7), (1.10), and Lemma 1.4 that

$$d(x_{n+1}, p) = d(W(x_n, T_n^n y_n, u_n; \alpha_n, \beta_n, \gamma_n), p)$$

$$\leq \alpha_n d(x_n, p) + \beta_n d(T_n^n y_n, p) + \gamma_n d(u_n, p),$$

$$d(y_n, p) = d(W(f(x_n), T_n^n z_n, v_n; a_n, b_n, c_n), p)$$

$$\leq a_n d(f(x_n), p) + b_n d(T_n^n z_n, p) + c_n d(v_n, p)$$

$$\leq a_n d(f(x_n), f(p)) + a_n d(f(p), p) + b_n Ld(z_n, p) + c_n d(v_n, p)$$

$$\leq a_n \xi d(x_n, p) + a_n d(f(p), p) + b_n Ld(z_n, p) + c_n d(v_n, p),$$

$$d(z_n, p) = d(W(f(x_n), T_n^n x_n, w_n; d_n, e_n, f_n), p)$$

$$\leq d_n d(f(x_n), f(p)) + d_n d(f(p), p) + e_n Ld(x_n, p) + f_n d(w_n, p)$$

$$\leq d_n d(f(x_n), f(p)) + d_n d(f(p), p) + e_n Ld(x_n, p) + f_n d(w_n, p)$$

$$\leq (d_n \xi d(x_n, p) + d_n d(f(p), p) + f_n d(w_n, p)).$$
(1.23)

Substituting (1.23) into (1.22) and simplifying it, we have

$$d(x_{n+1}, p) \leq \alpha_n d(x_n, p)$$
  
+  $\beta_n L[a_n \xi d(x_n, p) + a_n d(f(p), p) + b_n L d(z_n, p) + c_n d(v_n, p)] + \gamma_n d(u_n, p)$   
$$\leq (\alpha_n + \beta_n L \xi a_n) d(x_n, p) + \beta_n L a_n d(f(p), p)$$
  
+  $\beta_n L^2 b_n d(z_n, p) + \beta_n L c_n d(v_n, p) + \gamma_n d(u_n, p).$ 
(1.25)

Substituting (1.24) into (1.25) and simplifying it, we get

$$\begin{aligned} d(x_{n+1}, p) &\leq (\alpha_n + \beta_n L a_n \xi) d(x_n, p) \\ &+ \beta_n L^2 b_n [(d_n \xi + e_n L) d_n(x_n, p) + d_n d(f(p), p) + f_n d(w_n, p)] \\ &+ \beta_n L a_n d(f(p), p) + \beta_n L c_n d(v_n, p) + \gamma_n d(u_n, p) \\ &= \{\alpha_n + \beta_n L [a_n \xi + L b_n (d_n \xi + e_n L)] \} d(x_n, p) + \beta_n L^2 b_n d_n d(f(p), p) \\ &+ \beta_n L a_n d(f(p), p) + \beta_n L^2 b_n f_n d(w_n, p) + \beta_n L c_n d(v_n, p) + \gamma_n d(u_n, p) \end{aligned}$$

Fixed Point Theory and Applications

$$\leq \left[1 + \beta_{n}L(1 + L + L^{2})\right]d(x_{n}, p) + \left[\beta_{n}L^{2}b_{n}d_{n} + \beta_{n}La_{n}\right]d(f(p), p) + \gamma_{n}d(u_{n}, p) + \beta_{n}Lc_{n}d(v_{n}, p) + \beta_{n}L^{2}b_{n}f_{n}d(w_{n}, p) \leq \left[1 + \beta_{n}L(1 + L + L^{2})\right]d(x_{n}, p) + \beta_{n}L(1 + L)d(f(p), p) + \gamma_{n}L(1 + L)d(f(p), p) + L(1 + L)(\beta_{n} + \gamma_{n})d(u_{n}, p) + L(1 + L)(\beta_{n} + \gamma_{n})d(v_{n}, p) + L(1 + L)(\beta_{n} + \gamma_{n})d(w_{n}, p) = \left[1 + \beta_{n}L(1 + L + L^{2})\right]d(x_{n}, p) + L(1 + L)(\beta_{n} + \gamma_{n})[d(u_{n}, p) + d(v_{n}, p) + d(w_{n}, p) + d(f(p), p)] = \left[1 + \beta_{n}L(1 + L + L^{2})\right]d(x_{n}, p) + M\eta_{n}, \quad \forall n \ge 0, \ p \in F,$$
(1.26)

where

$$M = L(1+L)[d(u_n, p) + d(v_n, p) + d(w_n, p) + d(f(p), p)], \quad \eta_n = \beta_n + \gamma_n.$$
(1.27)

(2) Since  $1 + x \le e^x$  for all  $x \ge 0$ , it follows from (1.26) that, for  $n, m \ge 0$  and  $p \in F$ ,

$$d(x_{n+m}, p) \leq \left[1 + \beta_{n+m-1}L(1+L+L^{2})\right]d(x_{n+m-1}, p) + M\eta_{n+m-1}$$

$$\leq e^{\beta_{n+m-1}L(1+L+L^{2})}d(x_{n+m-1}, p) + M\eta_{n+m-1}$$

$$\leq e^{\beta_{n+m-1}L(1+L+L^{2})}\left\{\left[1 + \beta_{n+m-2}L(1+L+L^{2})\right]d(x_{n+m-2}, p) + M\eta_{n+m-2}\right\} + M\eta_{n+m-1}$$

$$\leq e^{L(1+L+L^{2})(\beta_{n+m-1}+\beta_{n+m-2})}d(x_{n+m-1}, p) + M\left[e^{\beta_{n+m-1}L(1+L+L^{2})}\eta_{n+m-2} + \eta_{n+m-1}\right]$$

$$\leq \cdots$$

$$\leq M_{1}d(x_{n}, p) + M_{1}M\sum_{k=n}^{n+m-1}\eta_{k},$$
(1.28)

where

$$M_1 = e^{L(1+L+L^2)\sum_{k=0}^{\infty}\beta_k}.$$
(1.29)

This completes the proof.

7

#### 2. Main Results

**Theorem 2.1.** Let (E, d) be a complete convex metric space and C be a nonempty closed convex subset of E. Let  $T_i : C \to C$  be a finite family of uniformly quasi-Lipschitzian mapping for i = 1, 2, ..., Nsuch that  $F := \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$  and  $f : C \to C$  be a contractive mapping with a contractive constant  $\xi \in (0, 1)$ . Let  $\{x_n\}$  be the iterative sequence with errors defined by (1.10) and  $\{u_n\}, \{v_n\}, \{w_n\}$  be three bounded sequence in C and  $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{a_n\}, \{b_n\}, \{c_n\}, \{d_n\}, \{e_n\}$  and  $\{f_n\}$  be nine sequences in [0,1] satisfying the following conditions:

(i)  $\alpha_n + \beta_n + \gamma_n = a_n + b_n + c_n = d_n + e_n + f_n = 1, \forall n \ge 0,$ 

(ii) 
$$\sum_{n=0}^{\infty} (\beta_n + \gamma_n) < \infty$$
,

(iii) 
$$M_0 = \sup_{p \in F, n \ge 0} \{ d(u_n, p) + d(v_n, p) + d(w_n, p) + d(f(p), p) \} < \infty.$$

Then the sequence  $\{x_n\}$  converges to a common fixed point  $p \in F$  if and only if  $\liminf_{n\to\infty} d(x_n, F) = 0$ , where  $d(x, F) = \inf\{d(x, F), p \in F\}$ .

Proof. The necessity is obvious. Now prove the sufficiency. In fact, from Lemma 1.6, we have

$$d(x_{n+1},F) \le \left[1 + \beta_n L \left(1 + L + L^2\right)\right] d(x_n,F) + M\eta_n, \quad \forall n \ge 0,$$
(2.1)

where  $\eta_n = \beta_n + \gamma_n$ . By conditions (i) and (ii), we know that

$$\sum_{n=0}^{\infty} \eta_n < \infty, \qquad \sum_{n=0}^{\infty} \beta_n < \infty.$$
(2.2)

It follows from Lemma 1.5 that  $\lim_{n\to\infty} d(x_n, F)$  exists. Since  $\lim \inf_{n\to\infty} d(x_n, F) = 0$ , we have

$$\lim_{n \to \infty} d(x_n, F) = 0.$$
(2.3)

Next prove that  $\{x_n\}$  is a Cauchy sequence in *C*. In fact, for any given  $\varepsilon > 0$ , there exists a positive integer  $N_0$  such that

$$d(x_n, F) \le \frac{\varepsilon}{8M_1}, \qquad \sum_{n=N_0}^{\infty} \eta_n \le \frac{\varepsilon}{4M_1M}, \quad \forall n \ge 0.$$
(2.4)

From (2.4), there exist  $p_1 \in F$  and positive integer  $N_1 > N_0$  such that

$$d(x_{N_1}, p_1) < \frac{\varepsilon}{4M_1}.$$
(2.5)

Thus Lemma 1.6 implies that, for any positive integers n, m with  $n > N_1$ ,

$$d(x_{n+m}, x_n) \leq d(x_{n+m}, p_1) + d(p_1, x_n)$$
  

$$\leq M_1 d(x_{N_1}, p_1) + M_1 M \sum_{k=N_1}^{n+m-1} \eta_k + M_1 d(x_{N_1}, p_1) + M_1 M \sum_{k=N_1}^{n-1} \eta_k$$
  

$$\leq 2M_1 \frac{\varepsilon}{4M_1} + 2M_1 M \frac{\varepsilon}{4M_1 M}$$
  

$$= \varepsilon.$$
(2.6)

This shows that  $\{x_n\}$  is a Cauchy sequence in a nonempty closed convex subset *C* of a complete convex metric space *E*. Without loss of generality, we can assume that  $\lim_{n\to\infty} x_n = p^* \in E$ . Next prove that  $p^* \in F$ . In fact, for any given  $\varepsilon' > 0$ , there exists a positive integer  $N_2$  such that for all  $n \ge N_2$ ,

$$d(x_n, p^*) \le \frac{\varepsilon'}{4L}, \quad d(x_n, F) \le \frac{\varepsilon'}{8L}.$$
(2.7)

Again from (2.7), there exist  $p_2 \in F$  and positive integer  $N_3 > N$  such that

$$d(x_{N_3}, P_2) \le \frac{\varepsilon'}{4L}.$$
(2.8)

Thus, for any i = 1, 2, ..., N, from (2.7) and (2.8), we have

$$d(T_{i}P^{*}, P^{*}) \leq d(T_{i}P^{*}, P_{2}) + d(P_{2}, T_{i}x_{N_{3}}) + d(T_{i}x_{N_{3}}, P^{*})$$

$$\leq Ld(P^{*}, p_{2}) + Ld(p_{2}, x_{N_{3}}) + Ld(x_{N_{3}}, P^{*})$$

$$\leq L\{d(P^{*}, x_{N_{3}}) + d(x_{N_{3}}, p_{2})\} + Ld(p_{2}, x_{N_{3}}) + Ld(x_{N_{3}}, P^{*})$$

$$= 2Ld(P^{*}, x_{N_{3}}) + 2Ld(x_{N_{3}}, p_{2})$$

$$< \frac{\varepsilon'}{2} + \frac{\varepsilon'}{2} = \varepsilon'.$$
(2.9)

By the arbitrariness of  $\varepsilon' > 0$ , we know that  $T_i P^* = P^*$  for all i = 1, 2, ..., N, that is,  $p^* \in F$ . This completes the proof of Theorem 2.1.

Taking f = I in Theorem 2.1, then we have the following theorem.

**Theorem 2.2.** Let (E,d) be a complete convex metric space and C be a nonempty closed convex subset of E. Let  $T_i : C \to C$  be a finite family of uniformly quasi-Lipschitzian mapping for i = 1, 2, ..., N such that  $F := \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$ . Let  $\{x_n\}$  be the iterative sequence with errors defined by (1.11) and  $\{u_n\}, \{v_n\}, \{w_n\}$  be three bounded sequence in C, and  $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{a_n\}, \{b_n\}, \{c_n\}, \{d_n\}, \{e_n\}, and \{f_n\}$  be nine sequence in [0,1] satisfying the conditions (i)–(iii) of Theorem 2.1. Then the sequence  $\{x_n\}$  converges to a common fixed point  $p \in F$  if and only if

$$\liminf_{n \to \infty} d(x_n, F) = 0, \tag{2.10}$$

where  $d(x, F) = \inf \{ d(x, F), p \in F \}$ .

Taking  $d_n = 1$  in Theorem 2.1, then we have the following theorem.

**Theorem 2.3.** Let (E, d) be a complete convex metric space and C be a nonempty closed convex subset of E. Let  $T_i : C \to C$  be a finite family of uniformly quasi-Lipschitzian mapping for i = 1, 2, ..., Nsuch that  $F := \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$  and  $f : C \to C$  be a contractive mapping with a contractive constant  $\xi \in (0, 1)$ . Let  $\{x_n\}$  be the iterative sequence with errors defined by (1.12) and  $\{u_n\}, \{v_n\}$  be two bounded sequences in C and  $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{a_n\}, \{b_n\}, \{c_n\}$  be nine sequences in [0, 1] satisfying the conditions (ii) and (iii) of Theorem 2.1 and  $\alpha_n + \beta_n + \gamma_n = a_n + b_n + c_n = 1$  for all  $n \ge 0$ . Then the sequence  $\{x_n\}$  converges to a common fixed point  $p \in F$  if and only if

$$\liminf_{n \to \infty} d(x_n, F) = 0, \tag{2.11}$$

where  $d(x, F) = \inf \{ d(x, p), p \in F \}$ .

*Remark* 2.4. Theorems 2.1–2.3 generalize, improve, and unify some corresponding results in [1–14].

Similarly, we can obtain the following results.

**Theorem 2.5.** Let (E, d) be a complete convex metric space and C be a nonempty closed convex subset of E. Let  $T_i : C \to C$  be a finite family of asymptotically quasi-nonexpansive mapping for i = 1, 2, ..., N such that  $F := \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$  and  $f : C \to C$  be a contractive mapping with a contractive constant  $\xi \in (0, 1)$ . Let  $\{x_n\}$  be the iterative sequence with errors defined by (1.10) and  $\{u_n\}, \{v_n\}, \{w_n\}$  be three bounded sequences in C and  $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{a_n\}, \{b_n\}, \{c_n\}, \{d_n\}, \{e_n\},$ and  $\{f_n\}$  be nine sequences in [0, 1] satisfying the conditions (i)-(iii) of Theorem 2.1. Then the sequence  $\{x_n\}$  converges to a common fixed point  $p \in F$  if and only if

$$\liminf_{n \to \infty} d(x_n, F) = 0, \tag{2.12}$$

where  $d(x, F) = \inf \{ d(x, p), p \in F \}$ .

*Proof.* From Remark 1.1, we know that each asymptotically quasi-nonexpansive mapping  $T_i$ :  $C \rightarrow C, i = 1, 2, ..., N$  must be a uniformly quasi-Lipschitzian with

$$L_i = \sup_{n \ge 0} \left\{ k_n^{(i)} \right\} < \infty, \tag{2.13}$$

where  $\{k_n^{(i)}\} \in [1, \infty)$  is the sequence appeared in (1.5). Hence the conclusion of Theorem 2.5 can be obtained from Theorem 2.1 immediately. This completes the proof.

Fixed Point Theory and Applications

**Theorem 2.6.** Let (E, d) be a complete convex metric space and C be a nonempty closed convex subset of E. Let  $T_i : C \to C$  be a finite family of asymptotically quasi-nonexpansive mapping for, i = 1, 2, ..., N such that  $F := \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$ . Let  $\{x_n\}$  be the iterative sequence with errors defined by (1.11) and  $\{u_n\}, \{v_n\}, \{w_n\}$  be three bounded sequence in Cand  $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{a_n\}, \{b_n\}, \{c_n\}, \{d_n\}, \{e_n\}, and \{f_n\}$  be nine sequence in [0, 1] satisfying the conditions (i)–(iii) of Theorem 2.1. Then the sequence  $\{x_n\}$  converges to a common fixed point  $p \in F$ if and only if

$$\liminf_{n \to \infty} d(x_n, F) = 0, \tag{2.14}$$

where  $d(x, F) = \inf \{d(x, p), p \in F\}$ .

#### Acknowledgment

The authors would like to express their thanks to the referees for their helpful comments and suggestions.

#### References

- W. Takahashi, "A convexity in metric space and nonexpansive mappings. I," Kodai Mathematical Seminar Reports, vol. 22, pp. 142–149, 1970.
- [2] W. A. Kirk, "Krasnoselskii's iteration process in hyperbolic space," Numerical Functional Analysis and Optimization, vol. 4, no. 4, pp. 371–381, 1982.
- [3] K. Goebel and W. A. Kirk, "Iteration processes for nonexpansive mappings," in *Topological Methods in Nonlinear Functional Analysis (Toronto, Canada, 1982)*, vol. 21 of *Contemporary Mathematics*, pp. 115–123, American Mathematical Society, Providence, RI, USA, 1983.
- [4] W. V. Petryshyn and T. E. Williamson, Jr., "Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings," *Journal of Mathematical Analysis and Applications*, vol. 43, pp. 459–497, 1973.
- [5] M. K. Ghosh and L. Debnath, "Convergence of Ishikawa iterates of quasi-nonexpansive mappings," *Journal of Mathematical Analysis and Applications*, vol. 207, no. 1, pp. 96–103, 1997.
- [6] Q. Liu, "Iterative sequences for asymptotically quasi-nonexpansive mappings," Journal of Mathematical Analysis and Applications, vol. 259, no. 1, pp. 1–7, 2001.
- [7] Q. Liu, "Iterative sequences for asymptotically quasi-nonexpansive mappings with error member," *Journal of Mathematical Analysis and Applications*, vol. 259, no. 1, pp. 18–24, 2001.
- [8] Q. Liu, "Iteration sequences for asymptotically quasi-nonexpansive mapping with an error member of uniform convex Banach space," *Journal of Mathematical Analysis and Applications*, vol. 266, no. 2, pp. 468–471, 2002.
- [9] Y.-X. Tian, "Convergence of an Ishikawa type iterative scheme for asymptotically quasi-nonexpansive mappings," *Computers & Mathematics with Applications*, vol. 49, no. 11-12, pp. 1905–1912, 2005.
- [10] C. Wang and L. W. Liu, "Convergence theorems for fixed points of uniformly quasi-Lipschitzian mappings in convex metric spaces," *Nonlinear Analysis: Theory, Methods & Applications*, vol. 70, no. 5, pp. 2067–2071, 2009.
- [11] Y. J. Cho, H. Zhou, and G. Guo, "Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings," *Computers & Mathematics with Applications*, vol. 47, no. 4-5, pp. 707–717, 2004.
- [12] H. Fukhar-ud-din and S. H. Khan, "Convergence of iterates with errors of asymptotically quasinonexpansive mappings and applications," *Journal of Mathematical Analysis and Applications*, vol. 328, no. 2, pp. 821–829, 2007.
- [13] J. U. Jeong and S. H. Kim, "Weak and strong convergence of the Ishikawa iteration process with errors for two asymptotically nonexpansive mappings," *Applied Mathematics and Computation*, vol. 181, no. 2, pp. 1394–1401, 2006.

- [14] H. Zhou, J. I. Kang, S. M. Kang, and Y. J. Cho, "Convergence theorems for uniformly quasi-Lipschitzian mappings," *International Journal of Mathematics and Mathematical Science*, vol. 2004, no. 15, pp. 763–775, 2004.
- 15, pp. 763–775, 2004.
  [15] Y. Xu, "Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations," *Journal of Mathematical Analysis and Applications*, vol. 224, no. 1, pp. 91–101, 1998.