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1. Introduction

Let C be a nonempty closed convex subset of a Hilbert spaceH, T a self-mapping of C. Recall
that T is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ C.

Construction of fixed points of nonexpansive mappings via Mann’s iteration [1] has
extensively been investigated in literature (see, e.g., [2–5] and reference therein). But the
convergence about Mann’s iteration and Ishikawa’s iteration is in general not strong (see
the counterexample in [6]). In order to get strong convergence, one must modify them. In
2003, Nakajo and Takahashi [7] proposed such a modification for a nonexpansive mapping
T .

Consider the algorithm,

x0 ∈ C chosen arbitrarity,

yn = αnxn + (1 − αn)Txn,

Cn =
{
v ∈ C :

∥∥yn − v
∥∥ ≤ ‖xn − v‖},

Qn = {v ∈ C : 〈xn − v, xn − x0〉 ≤ 0},
xn+1 = PCn∩Qn(x0),

(1.1)
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where PC denotes the metric projection from H onto a closed convex subset C of H. They
prove the sequence {xn} generated by that algorithm (1.1) converges strongly to a fixed point
of T provided that the control sequence {αn} is chosen so that supn≥0αn < 1.

Let {Tn}∞n=1 be a sequence of nonexpansive self-mappings of C, {λn}∞n=1 a sequence of
nonnegative numbers in [0, 1]. For each n ≥ 1, defined a mapping Wn of C into itself as
follows:

Un,n+1 = I,

Un,n = λnTnUn,n+1 + (1 − λn)I,

Un,n−1 = λn−1Tn−1Un,n + (1 − λn−1)I,

...

Un,k = λkTkUn,k+1 + (1 − λk)I,

Un,k−1 = λk−1Tk−1Un,k + (1 − λk−1)I,

...

Un,2 = λ2T2Un,3 + (1 − λ2)I,

Wn = Un,1 = λ1T1Un,2 + (1 − λ1)I.

(1.2)

Such a mappingWn is called theW-mapping generated by Tn, Tn−1, . . . , T1 and λn, λn−1, . . . , λ1;
see [8].

In this paper, motivated by [9], for any given xi ∈ C (i = 0, 1, . . . , q, q ∈ N is a fixed
number), we will propose the following iterative progress for two infinitely nonexpansive
mappings {T (1)

n } and {T (2)
n } in a Hilbert space H:

x0, x1, . . . , xq ∈ C chosen arbitrarity,

yn = αnxn + (1 − αn)W
(1)
n zn−q,

zn = αnxn + (1 − αn)W
(2)
n xn,

Cn =
{
v ∈ K :

∥∥yn − v
∥∥2 ≤ ‖xn − v‖2 + (1 − αn)

(∥∥xn−q − x∗∥∥2 − ‖xn − x∗‖2
)}

,

Qn =
{
v ∈ K :

〈
xn − v, xn − xq

〉 ≤ 0
}
,

xn+1 = PCn∩Qn

(
xq

)
, n ≥ q

(1.3)

and prove, {xn} converges strongly to a fixed point of {T (1)
n } and {T (2)

n }.
We will use the notation:
⇀ for weak convergence and → for strong convergence.
ωw(xn) = {x : ∃xnj ⇀ x} denotes the weak ω-limit set of xn.
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2. Preliminaries

In this paper, we need some facts and tools which are listed as lemmas below.

Lemma 2.1 (see [10]). Let H be a Hilbert space, C a nonempty closed convex subset of H, and T
a nonexpansive mapping with Fix(T)/= ∅. If {xn} is a sequence in C weakly converging to x and if
{(I − T)xn} converges strongly to y, then (I − T)x = y.

Lemma 2.2 (see [11]). Let C be a nonempty bounded closed convex subset of a Hilbert space H.
Given also a real number a ∈ R and x, y, z ∈ H. Then the set D := {v ∈ C : ‖y − v‖2 ≤ ‖x − v‖2 +
〈z, v〉 + a} is closed and convex.

Let {Tn}∞n=1 be a sequence of nonexpansive self-mappings on C, where C is a nonempty closed
convex subset of a strictly convex Banach space E. Given a sequence {λn}∞n=1 in [0, 1], one defines a
sequence {Wn}∞n=1 of self-mappings on C by (1.2). Then one has the following results.

Lemma 2.3 (see [8]). Let C be a nonempty closed convex subset of a strictly convex Banach space
E, {Tn}∞n=1 a sequence of nonexpansive self-mappings on C such that

⋂∞
n=1F(Tn)/= ∅ and let {λn} be a

sequence in (0, b] for some b ∈ (0, 1). Then, for every x ∈ C and k ≥ 1 the limit limn→∞Un,kx exists.

Remark 2.4. It can be known from Lemma 2.3 that if D is a nonempty bounded subset of C,
then for ε > 0 there exists n0 ≥ k such that supx∈D‖Un,kx −Ukx‖ ≤ ε for all n > n0.

Remark 2.5. Using Lemma 2.3, we can define a mapping W : C → C as follows:

Wx = lim
n→∞

Wnx = lim
n→∞

Un,1x (2.1)

for all x ∈ C. Such a W is called the W-mapping generated by T1, T2, . . . and λ1, λ2, . . . . Since
Wn is nonexpansive mapping, W : C → C is also nonexpansive. Indeed, observe that for
each x, y ∈ C,

∥∥Wx −Wy
∥∥ = lim

n→∞
∥∥Wnx −Wny

∥∥ ≤ ∥∥x − y
∥∥. (2.2)

If {xn} is a bounded sequence in C, then we put D = {xn : n ≥ 0}. Hence, it is clear
from Remark 2.4 that for ε > 0 there exists N0 ≥ 1 such that for all n > N0, ‖Wnxn −Wxn‖ =
‖Un,1xn −U1xn‖ ≤ supx∈D‖Un,1x −U1x‖ ≤ ε. This implies that

lim
n→∞

‖Wnxn −Wxn‖ = 0. (2.3)

Lemma 2.6 (see [8]). Let C be a nonempty closed convex subset of a strictly convex Banach space E.
Let {Tn}∞n=1 be a sequence of nonexpansive self-mappings on C such that

⋂∞
n=1F(Tn)/= ∅ and let {λn}

be a sequence in (0, b] for some b ∈ (0, 1). Then, F(W) =
⋂∞

n=1F(Tn).
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3. Strong Convergence Theorem

Theorem 3.1. Let C be a closed convex subset of a Hilbert space H and let {W (1)
n } and {W (2)

n } be
defined as (1.2). Assume that αn ≤ a for all n and for some 0 < a < 1, and {αn} ∈ [b, c] for all n and
0 < b < c < 1. If F =

⋂∞
n=1[F(T

(1)
n )

⋂
F(T (2)

n )]/= ∅, then {xn} generated by (1.3) converges strongly
to PF(xq).

Proof. Firstly, we observe that Cn is convex by Lemma 2.2. Next, we show that F ⊂ Cn for all
n.

Indeed, for all x∗ ∈ F,

∥
∥yn − x∗∥∥2 ≤ αn‖xn − x∗‖2 + (1 − αn)

∥
∥zn−q − x∗∥∥2

= ‖xn − x∗‖2 + (1 − αn)
(∥
∥zn−q − x∗∥∥2 − ‖xn − x∗‖2

)
,

∥∥zn−q − x∗∥∥2 =
∥∥∥αn−qxn−q +

(
1 − αn−q

)
W

(2)
n−qxn−q − x∗

∥∥∥

= αn−q
∥∥xn−q − x∗∥∥2 +

(
1 − αn−q

)∥∥∥W (2)
n−qxn−q − x∗

∥∥∥
2

− αn−q
(
1 − αn−q

)∥∥∥W (2)
n−qxn−q − xn−q

∥∥∥
2

≤ αn−q
∥∥xn−q − x∗∥∥2 +

(
1 − αn−q

)∥∥xn−q − x∗∥∥2

− αn−q
(
1 − αn−q

)∥∥∥W (2)
n−qxn−q − xn−q

∥∥∥
2

=
∥∥xn−q − x∗∥∥2 − αn−q

(
1 − αn−q

)∥∥∥W (2)
n−qxn−q − xn−q

∥∥∥
2

≤ ∥∥xn−q − x∗∥∥2
.

(3.1)

Therefore,

∥∥yn − x∗∥∥2 ≤ ‖xn − x∗‖2 + (1 − αn)
(∥∥xn−q − x∗∥∥2 − ‖xn − x∗‖2

)
. (3.2)

That is x∗ ∈ Cn for all n ≥ q. Next we show that F ⊂ Qn for all n ≥ q.
We prove this by induction. For n = q, we have F ⊂ C = Qq. Assume that F ⊂ Qn for

all n ≥ q + 1, since xn+1 is the projection of xq onto Cn
⋂
Qn, so

〈xn+1 − z, xq − xn+1〉 ≥ 0, ∀z ∈ Cn

⋂
Qn. (3.3)

As F ⊂ Cn
⋂
Qn by the induction assumption, the last inequality holds, in particular,

for all x∗ ∈ F. This together with definition of Qn+1 implies that F ⊂ Qn+1. Hence F ⊂ Cn
⋂
Qn

for all n ≥ q.
Notice that the definition of Qn implies xn = PQnxq. This together with the fact F ⊂ Qn

further implies ‖xn − xq‖ ≤ ‖x∗ − xq‖ for all x∗ ∈ F.
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The fact xn+1 ∈ Qn asserts that 〈xn+1 − xn, xn − xq〉 ≥ 0 implies

‖xn+1 − xn‖2=
∥
∥(xn+1 − xq) − (xn − xq)

∥
∥2

=
∥
∥xn+1 − xq

∥
∥2 − ∥

∥xn − xq

∥
∥2 − 2〈xn+1 − xn, xn − xq〉

≤ ∥
∥xn+1 − xq

∥
∥2 − ∥

∥xn − xq

∥
∥2 −→ 0 (n −→ ∞).

(3.4)

We now claim that ‖W (1)xn − xn‖ → 0 and ‖W (2)xn − xn‖ → 0. Indeed,

∥
∥
∥xn −W

(1)
n zn−q

∥
∥
∥ =

∥
∥xn − yn

∥
∥

1 − αn

≤ ‖xn − xn+1‖ +
∥
∥xn+1 − yn

∥
∥

1 − αn
,

(3.5)

since xn+1 ∈ Cn, we have

∥∥yn − xn+1
∥∥2 ≤ ‖xn − xn+1‖2 + (1 − αn)

(∥∥xn−q − x∗∥∥2 − ‖xn − x∗‖2
)
−→ 0. (3.6)

Thus
∥∥∥xn −W

(1)
n zn−q

∥∥∥ −→ 0. (3.7)

We now show limn→∞‖W (2)
n xn − xn‖ = 0. Let {‖W (2)

nk
xnk − xnk‖} be any subsequence of

{‖W (2)
n xn − xn‖}. Since C is a bounded subset ofH, there exists a subsequence {xnkj

} of {xnk}
such that

lim
j→∞

∥∥∥xnkj
− x∗

∥∥∥ = lim sup
k→∞

‖xnk − x∗‖ := r. (3.8)

Since
∥∥∥xnkj

− x∗
∥∥∥ ≤

∥∥∥xnkj
−W

(1)
nkj

znkj
−q
∥∥∥ +

∥∥∥W (1)
nkj

znkj
−q − x∗

∥∥∥

≤
∥∥∥xnkj

−W
(1)
nkj

znkj
−q
∥∥∥ +

∥∥∥znkj
−q − x∗

∥∥∥,
(3.9)

it follows that r = limj→∞‖xnkj
− x∗‖ ≤ lim infj→∞‖znkj

− x∗‖. By (3.1), we have

∥∥∥znkj
− x∗

∥∥∥ ≤
∥∥∥xnkj

− x∗
∥∥∥
2
. (3.10)

Hence

lim sup
j→∞

∥∥∥znkj
− x∗

∥∥∥ ≤ lim
j→∞

∥∥∥xnkj
− x∗

∥∥∥ = r. (3.11)
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Thus,

lim
j→∞

∥
∥
∥znkj

− x∗
∥
∥
∥ = r = lim

j→∞

∥
∥
∥xnkj

− x∗
∥
∥
∥. (3.12)

Using (3.1) again, we obtain that

αnkj
−q
(
1 − αnkj

−q
)∥∥
∥W (2)

nkj
−qxnkj

−q − xnkj
−q
∥
∥
∥
2 ≤

∥
∥
∥xnkj

−q − x∗
∥
∥
∥
2 −

∥
∥
∥znkj

−q − x∗
∥
∥
∥
2 −→ 0. (3.13)

This imply that limj→∞‖W (2)
nkj

xnkj
− xnkj

‖ = 0. For the arbitrariness of {xnk} ⊂ {xn}, we have

limn→∞‖W (2)
n xn − xn‖ = 0 and

‖zn − xn‖ = (1 − αn)
∥
∥∥W (2)

n xn − xn

∥
∥∥ −→ 0. (3.14)

Thus, by (3.4), (3.7) and (3.14), we have

∥∥∥W (1)
n xn − xn

∥∥∥ ≤
∥∥∥W (1)

n xn −W
(1)
n zn−q

∥∥∥ +
∥∥∥W (1)

n zn−q − xn

∥∥∥

≤ ∥∥zn−q − xn

∥∥ +
∥∥∥W (1)

n zn−q − xn

∥∥∥

≤
∥∥∥W (1)

n zn−q − xn

∥∥∥ +
∥∥zn−q − xn−q

∥∥ +
∥∥xn−q − xn−q+1

∥∥

+
∥∥xn−q+1 − xn−q+2

∥∥ + · · · + ‖xn−1 − xn‖
−→ 0.

(3.15)

Since limn→∞‖W (1)
n xn −W (1)xn‖ = 0 and limn→∞‖W (2)

n xn −W (2)xn‖ = 0, we have

lim
n→∞

∥∥∥W (1)xn − xn

∥∥∥ = 0,

lim
n→∞

∥∥∥W (2)xn − xn

∥∥∥ = 0.
(3.16)

Thus, using (3.16), Lemma 2.1, and the boundedness of {xn}, we get that ∅/=ωw(xn) ⊂ F.
Since xn = PQn(xq) and F ⊂ Qn, we have ‖xn−xq‖ ≤ ‖x∗ −xq‖where x∗ := PF(xq). By the weak
lower semicontinuity of the norm, we have ‖w−xq‖ ≤ ‖x∗ −xq‖ for allw ∈ ωw(xn). However,
since ωw(xn) ⊂ F, we must have w = x∗ for all w ∈ ωw(xn). Hence xn ⇀ x∗ = PF(xq) and

‖xn − x∗‖2 = ∥∥xn − xq

∥∥2 + 2〈xn − xq, xq − x∗〉 + ∥∥xq − x∗∥∥2

≤ 2
(∥∥x∗ − xq

∥∥2 +
〈
xn − xq, xq − x∗〉

)
−→ 0.

(3.17)

That is, {xn} converges to PF(xq).
This completes the proof.
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