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We develop the theory of topological vector space valued cone metric spaces with nonnormal
cones. We prove three general fixed point results in these spaces and deduce as corollaries several
extensions of theorems about fixed points and common fixed points, known from the theory
of (normed-valued) cone metric spaces. Examples are given to distinguish our results from the
known ones.

1. Introduction

Ordered normed spaces and cones have applications in applied mathematics, for instance, in
using Newton’s approximation method [1–4] and in optimization theory [5]. K-metric and
K-normed spaces were introduced in the mid-20th century ([2], see also [3, 4, 6]) by using
an ordered Banach space instead of the set of real numbers, as the codomain for a metric.
Huang and Zhang [7] reintroduced such spaces under the name of cone metric spaces but
went further, defining convergent and Cauchy sequences in the terms of interior points of
the underlying cone. These and other authors (see, e.g., [8–22]) proved some fixed point and
common fixed point theorems for contractive-type mappings in cone metric spaces and cone
uniform spaces.

In some of the mentioned papers, results were obtained under additional assumptions
about the underlying cone, such as normality or even regularity. In the papers [23, 24], the
authors tried to generalize this approach by using cones in topological vector spaces (tvs)
instead of Banach spaces. However, it should be noted that an old result (see, e.g., [3]) shows
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that if the underlying cone of an ordered tvs is solid and normal, then such tvs must be
an ordered normed space. So, proper generalizations when passing from norm-valued cone
metric spaces of [7] to tvs-valued cone metric spaces can be obtained only in the case of
nonnormal cones.

In the present paper we develop further the theory of topological vector space valued
cone metric spaces (with nonnormal cones). We prove three general fixed point results in
these spaces and deduce as corollaries several extensions of theorems about fixed points and
common fixed points, known from the theory of (normed-valued) cone metric spaces.

Examples are given to distinguish our results from the known ones.

2. Tvs-Valued Cone Metric Spaces

Let E be a real Hausdorff topological vector space (tvs for short) with the zero vector θ. A
proper nonempty and closed subset P of E is called a (convex) cone if P + P ⊂ P , λP ⊂ P for
λ ≥ 0 and P ∩ (−P) = θ. We will always assume that the cone P has a nonempty interior int P
(such cones are called solid).

Each cone P induces a partial order � on E by x � y ⇔ y − x ∈ P . x ≺ y will stand
for x � y and x /=y, while x 	 y will stand for y − x ∈ int P . The pair (E, P) is an ordered
topological vector space.

For a pair of elements x, y in E such that x � y, put

[
x, y

]
=
{
z ∈ E : x � z � y

}
. (2.1)

The sets of the form [x, y] are called order intervals. It is easily verified that order-intervals are
convex. A subset A of E is said to be order-convex if [x, y] ⊂ A, whenever x, y ∈ A and x � y.

Ordered topological vector space (E, P) is order-convex if it has a base of neighborhoods
of θ consisting of order-convex subsets. In this case the cone P is said to be normal. In the case
of a normed space, this conditionmeans that the unit ball is order-convex, which is equivalent
to the condition that there is a number k such that x, y ∈ E and 0 � x � y implies that
‖x‖ ≤ k‖y‖. Another equivalent condition is that

inf
{‖x + y‖ : x, y ∈ P and ‖x‖ = ‖y‖ = 1

}
> 0. (2.2)

It is not hard to conclude from (2.2) that P is a nonnormal cone in a normed space E if and
only if there exist sequences un, vn ∈ P such that

0 � un � un + vn, un + vn −→ 0 but un � 0. (2.3)

Hence, in this case, the Sandwich theorem does not hold.
Note the following properties of bounded sets.
If the cone P is solid, then each topologically bounded subset of (E, P) is also order-

bounded, that is, it is contained in a set of the form [−c, c] for some c ∈ int P .
If the cone P is normal, then each order-bounded subset of (E, P) is topologically

bounded. Hence, if the cone is both solid and normal, these two properties of subsets of E
coincide. Moreover, a proof of the following assertion can be found, for example, in [3].
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Theorem 2.1. If the underlying cone of an ordered tvs is solid and normal, then such tvs must be an
ordered normed space.

Example 2.2. (see [5]) Let E = C1
R
[0, 1] with ‖x‖ = ‖x‖∞ + ‖x′‖∞, and let P = {x ∈ E : x(t) ≥

0 on [0, 1]}. This cone is solid (it has the nonempty interior) but is not normal. Consider, for
example, xn(t) = (1 − sinnt)/(n + 2) and yn(t) = (1 + sinnt)/(n + 2). Since ‖xn‖ = ‖yn‖ = 1
and ‖xn + yn‖ = 2/(n + 2) → 0, it follows that P is a nonnormal cone.

Now consider the space E = C1
R
[0, 1] endowed with the strongest locally convex

topology t∗. Then P is also t∗-solid (it has the nonempty t∗-interior), but not t∗-normal. Indeed,
if it were normal then, according to Theorem 2.1, the space (E, t∗) would be normed, which
is impossible since an infinite-dimensional space with the strongest locally convex topology
cannot be metrizable (see, e.g., [25]).

Following [7, 23, 24] we give the following.

Definition 2.3. Let X be a nonempty set and (E · P) an ordered tvs. A function d : X ×X → E
is called a tvs-cone metric and (X, d) is called a tvs-cone metric, space if the following conditions
hold:

(C1) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(C2) d(x, y) = d(y, x) for all x, y ∈ X;
(C3) d(x, z) � d(x, y) + d(y, z) for all x, y, z ∈ X.

Let x ∈ X and {xn} be a sequence in X. Then it is said the following.

(i) {xn} tvs-cone converges to x if for every c ∈ E with θ 	 c there exists a natural
number n0 such that d(xn, x) 	 c for all n > n0; we denote it by limn→∞xn = x or
xn → x as n → ∞.

(ii) {xn} is a tvs-cone Cauchy sequence if for every c ∈ E with 0 	 c there exists a
natural number n0 such that d(xm, xn) 	 c for all m,n > n0.

(iii) (X, d) is tvs-cone complete if every tvs-Cauchy sequence is tvs-convergent in X.

Taking into account Theorem 2.1, proper generalizations when passing from norm-
valued cone metric spaces of [7] to tvs-cone metric spaces can be obtained only in the case of
nonnormal cones.

We will prove now some properties of a real tvs E with a solid cone P and a tvs-cone
metric space (X, d) over it.

Lemma 2.4. (a) Let θ � xn → θ in (E, P), and let θ 	 c. Then there exists n0 such that xn 	 c for
each n > n0.

(b) It can happen that θ � xn 	 c for each n > n0, but xn � θ in (E, P).
(c) It can happen that xn → x, yn → y in the tvs-cone metric d, but that d(xn, yn) �

d(x, y) in (E, P). In particular, it can happen that xn → x in d but that d(xn, x) � θ (which is
impossible if the cone is normal).

(d) θ � u 	 c for each c ∈ int P implies that u = θ.
(e) xn → x ∧ xn → y (in the tvs-cone metric) implies that x = y.
(f) Each tvs-cone metric space is Hausdorff in the sense that for arbitrary distinct points x and

y there exist disjoint neighbourhoods in the topology tc having the local base formed by the sets of the
form Kc(x) = {z ∈ X : d(x, z) 	 c}, c ∈ int P .
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Proof. (a) It follows from xn → θ that xn ∈ int[−c, c] = (int P − c) ∩ (c − int P) for n > n0.
From xn ∈ c − int P , it follows that c − xn ∈ int P , that is, xn 	 c.

(b) Consider the sequences xn(t) = (1 − sinnt)/(n + 2) and yn(t) = (1 + sinnt)/(n + 2)
from Example 2.2. We know that in the ordered Banach space C1

R
[0, 1]

θ � xn � xn + yn (2.4)

and that xn + yn → θ (in the norm of E) but that xn � θ in this norm. On the other hand,
since xn � xn + yn → θ and xn � xn + yn 	 c, it follows that xn 	 c. Then also xn � θ in the
tvs (E, t∗) (the strongest locally convex topology) but xn 	 c (also considering the interior
with respect to t∗).

We can also consider the tvs-cone metric d : P × P → E defined by d(x, y) = x + y,
x /=y, and d(x, x) = θ. Then for the sequence {xn}we have that d(xn, θ) = xn + θ = xn → θ in
the tvs-cone metric, since xn 	 c, but xn � θ in the tvs (E, t∗) for otherwise it would tend to
θ in the norm of the space E.

(c) Take the sequence {xn} from (b) and yn = θ. Then xn → θ, and yn → θ in the
cone metric d since d(xn, θ) = xn + θ = xn 	 c and d(yn, θ) = yn + θ = θ + θ = θ 	 c, but
d(xn, yn) = xn + yn = xn � θ = d(θ, θ) in (E, t∗). This means that a tvs-cone metric may be a
discontinuous function.

(d) The proof is the same as in the Banach case. For an arbitrary c ∈ int P , it is θ � u 	
(1/n)c for each n ∈ N, and passing to the limit in θ � −u + (1/n)c it follows that θ � −u, that
is, u ∈ −P . Since P is a cone it follows that u = θ.

(e) From d(x, y) � d(x, xn) + d(xn, y) 	 c/2 + c/2 = c for each n > n0 it follows that
d(x, y) 	 c (for arbitrary c ∈ int P), which, by (d), means that x = y.

(f) Suppose, to the contrary, that for the given distinct points x and y there exists a
point z ∈ Kc(x) ∩ Kc(y). Then d(x, y) � d(x, z) + d(z, y) 	 c/2 + c/2 = c for arbitrary
c ∈ int P , implying that x = y, a contradiction.

The following properties, which can be proved in the same way as in the normed case,
will also be needed.

Lemma 2.5. (a) If u � v and v 	 w, then u 	 w.
(b) If u 	 v and v � w, then u 	 w.
(c) If u 	 v and v 	 w, then u 	 w.
(d) Let x ∈ X, {xn} and {bn} be two sequences in X and E, respectively, θ 	 c, and 0 �

d(xn, x) � bn for all n ∈ N. If bn → 0, then there exists a natural number n0 such that d(xn, x) 	 c
for all n ≥ n0.

3. Fixed Point and Common Fixed Point Results

Theorem 3.1. Let (X, d) be a tvs-cone metric space and the mappings f, g, h : X → X satisfy

d
(
fx, gy

) � pd
(
hx, hy

)
+ qd

(
hx, fx

)
+ rd

(
hy, gy

)
+ sd

(
hx, gy

)
+ td

(
hy, fx

)
, (3.1)

for all x, y ∈ X, where p, q, r, s, t ≥ 0, p+ q+ r + s+ t < 1, and q = r or s = t. If f(X)∪g(X) ⊂ h(X)
and h(X) is a complete subspace of X, then f , g, and h have a unique point of coincidence. Moreover,
if (f, h) and (g, h) are weakly compatible, then f , g, and h have a unique common fixed point.
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Recall that a point u ∈ X is called a coincidence point of the pair (f, g) and v is its
point of coincidence if fu = gu = v. The pair (f, g) is said to be weakly compatible if for each
x ∈ X, fx = gx implies that fgx = gfx.

Proof. Let x0 ∈ X be arbitrary. Using the condition f(X)∪g(X) ⊂ h(X) choose a sequence {xn}
such that hx2n+1 = fx2n and hx2n+2 = gx2n+1 for all n ∈ N0. Applying contractive condition
(3.1) we obtain that

d(hx2n+1, hx2n+2) = d
(
fx2n, gx2n+1

)

� pd(hx2n, hx2n+1) + qd(hx2n, hx2n+1) + rd(hx2n+1, hx2n+2)

+ sd(hx2n, hx2n+2) + td(hx2n+1, hx2n+1)

� pd(hx2n, hx2n+1) + qd(hx2n, hx2n+1) + rd(hx2n+1, hx2n+2)

+ s[d(hx2n, hx2n+1) + d(hx2n+1, hx2n+2)].

(3.2)

It follows that

(1 − r − s)d(hx2n+1, hx2n+2) �
(
p + q + s

)
d(hx2n, hx2n+1), (3.3)

that is,

d(hx2n+1, hx2n+2) �
p + q + s

1 − (r + s)
d(hx2n, hx2n+1). (3.4)

In a similar way one obtains that

d(hx2n+2, hx2n+3) �
p + q + t

1 − (
q + t

) · p + q + s

1 − (r + s)
d(hx2n, hx2n+1). (3.5)

Now, from (3.4) and (3.5), by induction, we obtain that

d(hx2n+1, hx2n+2) �
p + q + s

1 − (r + s)
d(hx2n, hx2n+1)

� p + q + s

1 − (r + s)
· p + r + s

1 − (
q + t

)d(hx2n−1, hx2n)

� p + q + s

1 − (r + s)
· p + r + s

1 − (
q + t

) · p + q + s

1 − (r + s)
d(hx2n−2, hx2n−1)

� · · · � p + q + s

1 − (r + s)

(
p + r + t

1 − (
q + t

) · p + q + s

1 − (r + s)

)n

d(hx0,hx1),

d(hx2n+2, hx2n+3) �
p + r + t

1 − (
q + t

)d(hx2n+1, hx2n+2)

� · · · �
(

p + r + t

1 − (
q + t

) · p + q + s

1 − (r + s)

)n+1

d(hx0, hx1).

(3.6)
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Let

A =
p + q + s

1 − (r + s)
, B =

p + r + t

1 − (
q + t

) . (3.7)

In the case q = r,

AB =
p + q + s

1 − (
q + s

) · p + r + t

1 − (
q + t

) =
p + q + s

1 − (
q + t

) · p + r + t

1 − (r + s)
< 1 · 1 = 1, (3.8)

and if s = t,

AB =
p + q + s

1 − (r + s)
· p + r + s

1 − (
q + t

) < 1 · 1 = 1. (3.9)

Now, for n < m, we have

d(hx2n+1, hx2m+1) � d(hx2n+1, hx2n+2) + · · · + d(hx2n, hx2m+1)

�
(

A
m−1∑

i=n
(AB)i +

m∑

i=n+1

(AB)i
)

d(hx0, hx1)

�
(

A(AB)n

1 −AB
+
(AB)n+1

1 −AB

)

d(hx0, hx1)

= (1 + B)
A(AB)n

1 −AB
d(hx0, hx1).

(3.10)

Similarly, we obtain

d(hx2n, hx2m+1) � (1 +A)
(AB)n

1 −AB
d(hx0, hx1),

d(hx2n, hx2m) � (1 +A)
(AB)n

1 −AB
d(hx0, hx1),

d(hx2n+1, hx2m) � (1 + B)
A(AB)n

1 −AB
d(hx0, hx1).

(3.11)

Hence, for n < m

d(hxn, hxm) � max
{
(1 + B)

A(AB)n

1 −AB
, (1 +A)

(AB)n

1 −AB

}
d(hx0, hx1) = λnd(hx0, hx1), (3.12)

where λn → 0, as n → ∞.
Now, using properties (a) and (d) from Lemma 2.5 and only the assumption that the

underlying cone is solid, we conclude that {hxn} is a Cauchy sequence. Since the subspace
h(X) is complete, there exist u, v ∈ X such that hxn → v = hu (n → ∞).
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We will prove that hu = fu = gu. Firstly, let us estimate that d(hu, fu) = d(v, fu). We
have that

d
(
hu, fu

) � d(hu, hx2n+1) + d
(
hx2n+1, fu

)
= d(v, hx2n+1) + d

(
fu, gx2n+1

)
. (3.13)

By the contractive condition (3.1), it holds that

d
(
fu, gx2n+1

) � pd(hu, hx2n+1) + qd
(
hu, fu

)
+ rd

(
hx2n+1, gx2n+1

)

+ sd
(
hu, gx2n+1

)
+ td

(
hx2n+1, fu

)

= pd
(
v, fx2n

)
+ qd

(
v, fu

)
+ rd

(
fx2n, gx2n+1

)

+ sd
(
v, gx2n+1

)
+ td

(
fx2n, fu

)

� pd
(
v, fx2n

)
+ qd

(
v, fu

)
+ rd

(
fx2n, gx2n+1

)

+ sd
(
v, gx2n+1

)
+ td

(
fx2n, v

)
+ td

(
v, fu

)
.

(3.14)

Now it follows from (3.13) that

(
1 − q − t

)
d
(
v, fu

) � d(v, hx2n+1) + pd
(
v, fx2n

)

+ rd
(
fx2n, gx2n+1

)
+ sd

(
v, gx2n+1

)
+ td

(
fx2n, v

)
.

(3.15)

that is,

(
1 − q − t

)
d
(
v, fu

) � (1 + s)d
(
v, gx2n+1

)
+
(
p + t

)
d
(
v, fx2n

)
+ rd

(
fx2n, gx2n+1

)
,

d
(
v, fu

) � 1 + s

1 − q − t
d
(
v, gx2n+1

)
+

p + t

1 − q − t
d
(
v, fx2n

)
+

r

1 − q − t
d
(
fx2n, gx2n+1

)
.

(3.16)

Let c ∈ int P . Then there exists n0 such that for n > n0 it holds that

d
(
v, gx2n+1

) 	 1 − q − t

3(1 + s)
c, d

(
v, fx2n

) 	 1 − q − t

3
(
p + t

) c (3.17)

and d(fx2n, gx2n+1) 	 (1 − q − t)/(3r)c, that is, d(v, fu) 	 c for n > n0. Since c ∈ int P was
arbitrary, it follows that d(v, fu) = 0, that is, fu = hu = v.

Similarly using that

d
(
hu, gu

) � d(hu, hx2n+1) + d
(
hx2n+1, gu

)

= d(hu, hx2n+1) + d
(
fx2n, gu

)
,

(3.18)

it can be deduced that hu = gu = v. It follows that v is a common point of coincidence for f ,
g, and h, that is,

v = fu = gu = hu. (3.19)
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Now we prove that the point of coincidence of f, g, h is unique. Suppose that there is
another point v1 ∈ X such that

v1 = fu1 = gu1 = hu1 (3.20)

for some u1 ∈ X. Using the contractive condition we obtain that

d(v, v1) = d
(
fu, gu1

)

� pd(hu, hu1) + qd
(
hu, fu

)
+ rd

(
hu1, gu1

)
+ sd

(
hu, gu1

)
+ td

(
hu1fu

)

= pd(v, v1) + q · 0 + r · 0 + sd(v, v1) + td(v, v1) =
(
p + s + t

)
d(v, v1).

(3.21)

Since p + s + t < 1, it follows that d(v, v1) = 0, that is, v = v1.
Using weak compatibility of the pairs (f, h) and (g, h) and proposition 1.12 from [16],

it follows that the mappings f, g, h have a unique common fixed point, that is, fv = gv =
hv = v.

Corollary 3.2. Let (X, d) be a tvs-cone metric space and the mappings f, g, h : X → X satisfy

d
(
fx, gy

) � αd
(
hx, hy

)
+ β

[
d
(
hx, fx

)
+ d

(
hy, gy

)]
+ γ

[
d
(
hx, gy

)
+ d

(
hy, fx

)]
(3.22)

for all x, y ∈ X, where α, β, γ ≥ 0 and α+2β+2γ < 1. If f(X)∪g(X) ⊂ h(X) and h(X) is a complete
subspace of X, then f, g, and h have a unique point of coincidence. Moreover, if (f, h) and (g, h) are
weakly compatible, then f, g, and h have a unique common fixed point.

Putting in this corollary h = iX and taking into account that each self-map is weakly
compatible with the identity mapping, we obtain the following.

Corollary 3.3. Let (X, d) be a complete tvs-cone metric space, and let the mappings f, g : X → X
satisfy

d
(
fx, gy

) � αd
(
x, y

)
+ β

[
d
(
x, fx

)
+ d

(
y, gy

)]
+ γ

[
d
(
x, gy

)
+ d

(
y, fx

)]
(3.23)

for all x, y ∈ X, where α, β, γ ≥ 0 and α + 2β + 2γ < 1. Then f and g have a unique common fixed
point in X. Moreover, any fixed point of f is a fixed point of g, and conversely.

In the case of a cone metric space with a normal cone, this result was proved in [14].
Now put first g = f in Theorem 3.1 and then h = g. Choosing appropriate values for

coefficients, we obtain the following.

Corollary 3.4. Let (X, d) be a tvs-cone metric space. Suppose that the mappings f, g : X → X
satisfy the contractive condition

d
(
fx, fy

) � λ · d(gx, gy), (3.24)

d
(
fx, fy

) � λ · (d(fx, gx) + d
(
fy, gy

))
, (3.25)
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or

d
(
fx, fy

) � λ · (d(fx, gy) + d
(
fy, gx

))
, (3.26)

for all x, y ∈ X, where λ is a constant (λ ∈ [0, 1) in (3.24) and λ ∈ [0, 1/2) in (3.25) and (3.26)). If
f(X) ⊂ g(X) and g(X) is a complete subspace of X, then f and g have a unique point of coincidence
in X. Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point.

In the case when the space E is normed and the cone P is normal, these results were
proved in [9].

Similarly one obtains the following.

Corollary 3.5. Let (X, d) be a tvs-cone metric space, and let f, g : X → X be such that f(X) ⊂
g(X). Suppose that

d
(
fx, fy

) � αd
(
fx, gx

)
+ βd

(
fy, gy

)
+ γd

(
gx, gy

)
, (3.27)

for all x, y ∈ X, where α, β, γ ∈ [0, 1) and α + β + γ < 1, and let fx = gx imply that fgx = ggx for
each x ∈ X. If f(X) or g(X) is a complete subspace of X, then the mappings f and g have a unique
common fixed point in X. Moreover, for any x0 ∈ X, the f-g-sequence {fxn} with the initial point x0

converges to the fixed point.

Here, an f-g-sequence (also called a Jungck sequence) {fxn} is formed in the
following way. Let x0 ∈ X be arbitrary. Since f(X) ⊂ g(X), there exists x1 ∈ X such that
fx0 = gx1. Having chosen xn ∈ X, xn+1 ∈ X is chosen such that gxn+1 = fxn.

In the case when the space E is normed and under the additional assumption that the
cone P is normal, these results were firstly proved in [10].

Corollary 3.6. Let (X, d) be a complete tvs-cone metric space. Suppose that the mapping f : X → X
satisfies the contractive condition

d
(
fx, fy

) � λ · d(x, y), (3.28)

d
(
fx, fy

) � λ · (d(fx, x) + d
(
fy, y

))
, (3.29)

or

d
(
fx, fy

) � λ · (d(fx, y) + d
(
fy, x

))
(3.30)

for all x, y ∈ X, where λ is a constant (λ ∈ [0, 1) in (3.28) and λ ∈ [0, 1/2) in (3.29) and (3.30)).
Then f has a unique fixed point in X, and for any x ∈ X, the iterative sequence {fnx} converges to
the fixed point.

In the case when the space E is normed and under the additional assumption that
the cone P is normal, these results were firstly proved in [7]. The normality condition was
removed in [8].

Finally, we give an example of a situation where Theorem 3.1 can be applied, while the
results known so far cannot.



10 Fixed Point Theory and Applications

Example 3.7 (see [26, Example 3.3]). Let X = {1, 2, 3}, E = C1
R
[0, 1] with the cone P as in

Example 2.2 and endowed with the strongest locally convex topology t∗. Let the metric d :
X × X → E be defined by d(x, y)(t) = 0 if x = y and d(1, 2)(t) = d(2, 1)(t) = 6et, d(1, 3)(t) =
d(3, 1)(t) = (30/7)et, and d(2, 3)(t) = d(3, 2)(t) = (24/7)et. Further, let f, g : X → X be given
by, fx = 1, x ∈ X and g1 = g3 = 1, g2 = 3. Finally, let h = IX .

Taking p = q = r = s = 0, t = 5/7, all the conditions of Theorem 3.1 are fulfilled. Indeed,
since f1 = g1 = f3 = g3 = 1, we have only to check that

d
(
f3, g2

) � 0 · d(3, 2) + 0 · d(3, f3) + 0 · d(2, g2) + 0 · d(3, g2) + 5
7
d
(
2, f3

)
, (3.31)

which is equivalent to

30
7
et ≤ 5

7
d
(
2, f3

)
(t) =

5
7
d(2, 1)(t) =

5
7
· 6et = 30

7
et. (3.32)

Hence, we can apply Theorem 3.1 and conclude that the mappings f, g, h have a unique
common fixed point (u = 1).

On the other hand, since the space (E, P, t∗) is not an ordered Banach space and its
cone is not normal, neither of the mentioned results from [7–10, 14] can be used to obtain
such conclusion. Thus, Theorem 3.1 and its corollaries are proper extensions of these results.

Note that an example of similar kind is also given in [24].
The following example shows that the condition “p = q or s = t” in Theorem 3.1 cannot

be omitted.

Example 3.8 (see [26, Example 3.4]). Let X = {x, y, u, v}, where x = (0, 0, 0), y = (4, 0, 0),
u = (2, 2, 0), and v = (2,−2, 1). Let d be the Euclidean metric in R

3, and let the tvs-cone metric
d1 : X ×X → E (E, P , and t∗ are as in the previous example) be defined in the following way:
d1(a, b)(t) = d(a, b) ·ϕ(t), where ϕ ∈ P is a fixed function, for example, ϕ(t) = et. Consider the
mappings

f =
(
x y u v
u v v u

)
, g =

(
x y u v
y x y x

)
, (3.33)

and let h = iX . By a careful computation it is easy to obtain that

d
(
fa, gb

) ≤ 3
4
max

{
d(a, b), d

(
a, fa

)
, d

(
b, gb

)
, d

(
a, gb

)
, d

(
b, fa

)}
, (3.34)

for all a, b ∈ X. We will show that f and g satisfy the following contractive condition: there
exist p, q, r, s, t ≥ 0 with p + q + r + s + t < 1 and q /= r, s /= t such that

d1
(
fa, gb

) � pd1(a, b) + qd1
(
a, fa

)
+ rd1

(
b, gb

)
+ sd1

(
a, gb

)
+ td1

(
b, fa

)
(3.35)

holds true for all a, b ∈ X. Obviously, f and g do not have a common fixed point.
Taking (3.34) into account, we have to consider the following cases.
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(1) In case d1(fa, gb) � (3/4)d1(a, b), then (3.35) holds for p = 3/4, r = t = 0 and
q = s = 1/9.

(2) In case d1(fa, gb) � (3/4)d1(a, fa), then (3.35) holds for q = 3/4, p = r = t = 0 and
s = 1/5.

(3) In case d1(fa, gb) � (3/4)d1(b, gb), then (3.35) holds for r = 3/4, p = q = t = 0 and
s = 1/5.

(4) In case d1(fa, gb) � (3/4)d1(a, gb), then (3.35) holds for s = 3/4, p = r = t = 0 and
q = 1/5.

(5) In case d1(fa, gb) � (3/4)d1(b, fa), then (3.35) holds for t = 3/4, p = r = s = 0 and
q = 1/5.

4. Quasicontractions in Tvs-Cone Metric Spaces

Definition 4.1. Let (X, d) be a tvs-cone metric space, and let f, g : X → X. Then, f is called a
quasi-contraction (resp., a g-quasi-contraction) if for some constant λ ∈ [0, 1) and for all x, y ∈ X,
there exists

u ∈ C
(
x, y

)
=
{
d
(
x, y

)
, d

(
x, fx

)
, d

(
x, fy

)
, d

(
y, fy

)
, d

(
y, fx

)}
,

(
resp., u ∈ C

(
g;x, y

)
=
{
d
(
gx, gy

)
, d

(
gx, fx

)
, d

(
gx, fy

)
, d

(
gy, fy

)
, d

(
gy, fx

)})
,

(4.1)

such that

d
(
fx, fy

) � λ · u. (4.2)

Theorem 4.2. Let (X, d) be a complete tvs-cone metric space, and let f, g : X → X be such that
fX ⊂ gX and gX is closed. If f is a g-quasi-contraction with λ ∈ [0, 1/2), then f and g have a
unique point of coincidence. Moreover, if the pair (f, g) is weakly compatible or, at least, occasionally
weakly compatible, then f and g have a unique common fixed point.

Recall that the pair (f, g) of self-maps on X is called occasionally weakly compatible
(see [27] or [28]) if there exists x ∈ X such that fx = gx and fgx = gfx.

Proof. Let us remark that the condition fX ⊂ gX implies that starting with an arbitrary x0 ∈
X, we can construct a sequence {yn} of points in X such that yn = fxn = gxn+1 for all n ≥ 0.
We will prove that {yn} is a Cauchy sequence. First, we show that

d
(
yn, yn+1

) � λ

1 − λ
d
(
yn−1, yn

)
(4.3)

for all n ≥ 1. Indeed,

d
(
yn, yn+1

)
= d

(
fxn, fxn+1

) ≤ λun, (4.4)
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where

un ∈ {
d
(
gxn, gxn+1

)
, d

(
gxn, fxn

)
, d

(
gxn+1, fxn+1

)
, d

(
gxn, fxn+1

)
, d

(
gxn+1, fxn

)}

=
{
d
(
yn−1, yn

)
, d

(
yn−1, yn

)
, d

(
yn, yn+1

)
, d

(
yn−1, yn+1

)
, d

(
yn, yn

)}

=
{
d
(
yn−1, yn

)
, d

(
yn, yn+1

)
, d

(
yn−1, yn+1

)
, θ
}
.

(4.5)

The following four cases may occur:

(1) First, d(yn, yn+1) � λd(yn−1, yn) � λ/(1 − λ)d(yn−1, yn).

(2) Second, d(yn, yn+1) � λd(yn, yn+1) and so d(yn, yn+1) = θ. In this case, (4.3) follows
immediately, because λ < λ/(1 − λ).

(3) Third, d(yn, yn+1) � λd(yn−1, yn+1) � λd(yn−1, yn) + λd(yn, yn+1). It follows that (4.3)
holds.

(4) Fourth, d(yn, yn+1) � λ · θ = θ and so d(yn, yn+1) = θ. Hence, (4.3) holds.

Thus, by putting h = λ/(1−λ) < 1, we have that d(yn, yn+1) � hd(yn−1, yn). Now, using
(4.3), we have

d
(
yn, yn+1

) � hd
(
yn−1, yn

) � · · · � hnd
(
y0, y1

)
, (4.6)

for all n ≥ 1. It follows that

d
(
yn, ym

) � d
(
yn, yn−1

)
+ d

(
yn−1, yn−2

)
+ · · · + d

(
ym+1, ym

)

�
(
hn−1 + hn−2 + . . . + hm

)
d
(
y0, y1

)

� hm

1 − h
d
(
y0, y1

) −→ θ, as m −→ ∞.

(4.7)

Using properties (a) and (d) from Lemma 2.5, we obtain that {yn} is a Cauchy sequence.
Therefore, since X is complete and gX is closed, there exists z ∈ X such that

yn = fxn = gxn+1 −→ gz, as n −→ ∞. (4.8)

Now we will show that fz = gz.
By the definition of g-quasicontraction, we have that

d
(
fxn, fz

) � λ · un, (4.9)

where un∈{d(gxn, gz), d(gxn, fxn), d(gz, fz), d(gz, fxn), d(gxn, fz)}. Observe that d(gz, fz)�
d(gz, fxn) + d(fxn, fz) and d(gxn, fz) � d(gxn, fxn) + d(fxn, fz). Now let 0 	 c be given.
In all of the possible five cases there exists n0 ∈ N such that (using (4.9)) one obtains that
d(fxn, fz) 	 c:

(1) d(fxn, fz) � λ · d(gxn, gz) 	 λ(c/λ) = c;

(2) d(fxn, fz) � λ · d(gxn, fxn) 	 λ(c/λ) = c;
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(3) d(fxn, fz) � λ · d(gz, fz) � λd(gz, fxn) + λd(fxn, fz); it follows that d(fxn, fz) �
(λ/(1 − λ))d(gz, fxn) 	 (λ/(1 − λ))((1 − λ)c/λ) = c;

(4) d(fxn, fz) � λ · d(gz, fxn) 	 λ(c/λ) = c;

(5) d(fxn, fz) � λ ·d(gxn, fz) � λd(gxn, fxn)+λd(fxn, fz); it follows that d(fxn, fz) �
(λ/(1 − λ))d(gxn, fxn) 	 (λ/(1 − λ))((1 − λ)c/λ) = c.

It follows that fxn → fz (n → ∞). The uniqueness of limit in a cone metric space
implies that fz = gz = t. Thus, z is a coincidence point of the pair (f, g), and t is its
point of coincidence. It can be showed in a standard way that this point of coincidence is
unique. Using lemma 1.6 of [27] one readily obtains that, in the case when the pair (f, g) is
occasionally weakly compatible, the point t is the unique common fixed point of f and g.

In the normed case and assuming that the cone is normal (but letting λ ∈ [0, 1)), this
theorem was proved in [11].

Puting g = iX in Theorem 4.2 we obtain the following.

Corollary 4.3. Let (X, d) be a complete tvs-cone metric space, and let the mapping f : X → X be
a quasi-contraction with λ ∈ [0, 1/2). Then f has a unique fixed point in X, and for any x ∈ X, the
iterative sequence {fnx} converges to the fixed point.

In the case of normed-valued cone metric spaces and under the assumption that the
underlying cone P is normal (and with λ ∈ [0, 1)), this result was obtained in [12]. Normality
condition was removed in [13].

From Theorem 4.2, as corollaries, among other things, we again recover and extend
the results of Huang and Zhang [7] and Rezapour and Hamlbarani [8]. The following three
corollaries follow in a similar way.

In the next corollary, we extend the well-known result [29, (9’)].

Corollary 4.4. Let (X, d) be a complete tvs-cone metric space, and let f, g : X → X be such that
fX ⊂ gX and gX is closed. Further, let for some constant λ ∈ [0, 1) and every x, y ∈ X there exists

u = u
(
x, y

) ∈ {
d
(
gx, gy

)
, d

(
gx, fx

)
, d

(
gy, fy

)}
(4.10)

such that

d
(
fx, fy

) � λ · u. (4.11)

Then f and g have a unique point of coincidence. Moreover, if the pair (f, g) is occasionally weakly
compatible, then they have a unique common fixed point.

We can also extend the well-known Bianchini’s result [29, (5)]

Corollary 4.5. Let (X, d) be a complete tvs-cone metric space, and let f, g : X → X be such that
fX ⊂ gX and gX is closed. Further, let for some constant λ ∈ [0, 1) and every x, y ∈ X, there exists

u = u
(
x, y

) ∈ {
d
(
gx, fx

)
, d

(
gy, fy

)}
(4.12)
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such that

d
(
fx, fy

) ≤ λ · u. (4.13)

Then f and g have a unique point of coincidence. Moreover, if the pair (f, g) is occasionally weakly
compatible, then they have a unique common fixed point.

In the next corollary, we extend the well-known result of Jungck [30, Theorem 1.1].

Corollary 4.6. Let (X, d) be a complete tvs-cone metric space, and let f, g : X → X be such that
fX ⊂ gX and gX is closed. Further, let for some constant λ ∈ [0, 1) and every x, y ∈ X,

d
(
fx, fy

) � λ · d(gx, gy). (4.14)

Then f and g have a unique point of coincidence. Moreover, if the pair (f, g) is occasionally weakly
compatible, then they have a unique common fixed point.

Remark 4.7. Note that in the previous three corollaries it is possible that the parameter λ takes
values from [0, 1) (and not only in [0, 1/2) as in Theorem 4.2). Namely, it is possible to show
that the sequence {yn} used in the proof, is a Cauchy sequence because the condition on u is
stronger.

Now, we prove the main result of Das and Naik [31] in the frame of tvs-cone metric
spaces in which the cone need not be normal.

Theorem 4.8. Let (X, d) be a complete tvs-cone metric space. Let g be a self-map on X such that g2

is continuous, and let f be any self-map on X that commutes with g. Further let f and g satisfy

fgX ⊂ g2X, (4.15)

and let f be a g-quasi-contraction. Then f and g have a unique common fixed point.

Proof. By (4.15), starting with an arbitrary x0 ∈ gX, we can construct a sequence {xn} of
points in fX such that yn = fxn = gxn+1, n ≥ 0 (as in Theorem 4.2). Now gyn+1 = gfxn+1 =
fgxn+1 = fyn = zn, n ≥ 1. It can be proved as in Theorem 4.2 that {zn} is a Cauchy sequence
and hence convergent to some z ∈ X. Further, we will show that g2z = fgz. Since

lim
n→∞

gyn = lim
n→∞

gfxn = lim
n→∞

fgxn = lim
n→∞

fyn = lim
n→∞

zn = z, (4.16)

it follows that

lim
n→∞

g4xn = lim
n→∞

g3fxn = lim
n→∞

fg3xn = g2z, (4.17)

because g2 is continuous. Now, we obtain

d
(
g2z, fgz

)
� d

(
g2z, g3fxn

)
+ d

(
g3fxn, fgz

)
� d

(
g2z, g3fxn

)
+ λ · un, (4.18)



Fixed Point Theory and Applications 15

where

un ∈
{
d
(
g4xn, f

2z
)
, d

(
g4xn, fg

3xn

)
, d

(
g2z, fgz

)
, d

(
g4xn, fgz

)
, d

(
g2z, fg3xn

)}
. (4.19)

Let θ 	 c be given. Since g3fxn → g2z and g4xn → g2z, choose a natural number n0 such
that for all n ≥ n0 we have d(g2z, g3fxn) 	 c(1 − λ)/2 and d(g4xn, fg

3xn) 	 (1 − λ)c/2λ.
Again, we have the following cases:

(a)

d
(
g2z, fgz

)
� d

(
g2z, g3fxn

)
+ λd

(
g4xn, g

2z
)
	 c

2
+ λ

c

2λ
= c. (4.20)

(b)

d
(
g2z, fgz

)
� d

(
g2z, g3fxn

)
+ λd

(
g4xn, fg

3z
)

� d
(
g2z, g3fxn

)
+ λd

(
g4xn, g

2z
)
+ λd

(
g2z, fg3xn

)

= (1 + λ)d
(
g2z, g3fxn

)
+ λd

(
g4xn, g

2z
)

	 (1 + λ)
c(1 − λ)

2
+ λ

(1 − λ)c
2λ

	 c.

(4.21)

(c)

d
(
g2z, fgz

)
� d

(
g2z, g3fxn

)
+ λd

(
g2z, fgz

)
. Hence,

d
(
g2z, fgz

)
� 1

1 − λ
d
(
g2z, g3fxn

)
	 1

1 − λ

c(1 − λ)
2

= c.
(4.22)

(d)

d
(
g2z, fgz

)
� d

(
g2z, g3fxn

)
+ λd

(
g4xn, fgz

)

� d
(
g2z, g3fxn

)
+ λd

(
g4xn, g

2z
)
+ d

(
g2z, fgz

)
. Hence,

d
(
g2z, fgz

)
� 1

1 − λ
d
(
g2z, g3fxn

)
+

λ

1 − λ
d
(
g4xn, g

2z
)

	 1
1 − λ

c(1 − λ)
2

+
λ

1 − λ

(1 − λ)c
2λ

= c.

(4.23)

(e)

d
(
g2z, fgz

)
� d

(
g2z, g3fxn

)
+ λd

(
g2z, fg3xn

)
	 c

2
+ λ

c

2λ
= c. (4.24)
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Therefore, d(g2z, fgz) 	 c for all θ 	 c. By property (d) of Lemma 2.4, g2z = fgz,
and so fgz is a common fixed point for f and g. Indeed, putting in the contractivity condition
x = fgz, y = gz, we get f(fgz) = fgz. Since g2z = fgz, that is, g(gz) = f(gz), we have that
g(fgz) = fg2z = f(fgz) = fgz.
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