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We prove common fixed point theorem for coincidentally commuting nonself mappings satisfying
generalized contraction condition of Ćirić type in cone metric space. Our results generalize and
extend all the recent results related to non-self mappings in the setting of cone metric space.

1. Introduction

Recently, Huang and Zhang [1] introduced the concept of cone metric space by replacing
the set of real numbers by an ordered Banach space and obtained some fixed point theorems
for mappings satisfying different contractive conditions. The category of cone metric spaces
is larger than metric spaces and there are different types of cones. Subsequently, many
authors like Abbas and Jungck [2], Abbas and Rhoades [3], Ilić and Rakočević [4], Raja and
Vaezpour [5] have generalized the results of Huang and Zhang [1] and studied the existence
of common fixed points of a pair of self mappings satisfying a contractive type condition in
the framework of normal conemetric spaces. However, authors like Janković et al. [6], Jungck
et al. [7], Kadelburg et al. [8, 9], Radenović and Rhoades [10], Rezapour and Hamlbarani [11]
studied the existence of common fixed points of a pair of self and nonself mappings satisfying
a contractive type condition in the situation in which the cone does not need be normal.
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The study of fixed point theorems for nonself mappings in metrically convex metric
spaces was initiated by Assad and Kirk [12]. Utilizing the induction method of Assad and
Kirk [12], many authors like Assad [13], Ćirić [14], Hadžić [15], Hadžić and Gajić [16], Imdad
and Kumar [17], Rhoades [18, 19] have obtained common fixed point in metrically convex
spaces. Recently, Ćirić and Ume [20] defined a wide class of multivalued nonself mappings
which satisfy a generalized contraction condition and proved a fixed point theorem which
generalize the results of Itoh [21] and Khan [22].

Very recently, Radenović and Rhoades [10] extended the fixed point theorem of Imdad
and Kumar [17] for a pair of nonself mappings to nonnormal cone metric spaces. Janković
et al. [6] proved new common fixed point results for a pair of nonself mappings defined on
a closed subset of metrically convex cone metric space which is not necessarily normal by
adapting Assad-Kirk’s method.

The aim of this paper is to prove common fixed point theorems for coincidentally
commuting nonself mappings satisfying a generalized contraction condition of Ćirić type in
the setting of cone metric spaces. Our results generalize mainly results of Ćirić and Ume [20]
and all the recent results related to nonself mappings in the setting of cone metric space.

2. Definitions and Preliminaries

We recall some basic definitions and preliminaries that will be needed in the sequel.

Definition 2.1 (see [1]). Let E be a real Banach space. A subset P of E is called a Cone if and
only if

(1) P is nonempty, closed and P /= {0};

(2) α, β ∈ R, α, β ≥ 0 and x, y ∈ P ⇒ αx + βy ∈ P ;

(3) P ∩ (−P) = {0}.

For a given cone P ⊆ E, a partial ordering is defined as ≤ on E with respect to P by x ≤ y, if
and only if y − x ∈ P . It is denoted as x < y to indicate that x ≤ y but x /=y, while x � y will
stand for y − x ∈ intP , where intP denotes the interior of P .

The cone P ⊂ E is called normal, if there is a number K > 0 such that for all x, y ∈ E,
0 ≤ x ≤ y implies

‖x‖ ≤ K
∥
∥y

∥
∥. (2.1)

The least positive numberK satisfying (2.1) is called the normal constant of P . It is clear that
K ≥ 1. There are nonnormal cones also.

The definition of a cone metric space given by Huang and Zhang [1] is as follows.

Definition 2.2 (see [1]). Let X be a nonempty set. Suppose that E is a real Banach space, P is a
cone with intP /= ∅ and ≤ is a partial ordering with respect to P .
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If the mapping d : X ×X → E satisfies the following:

(1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X;

then d is called a cone metric on X and (X, d) is called a cone metric space.

Example 2.3 (see [1]). Let E = R
2, P = {(x, y) ∈ E : x, y ≥ 0} ⊂ R

2, X = R, and d : X ×X → E
such that d(x, y) = (|x − y|, α|x − y|), where α ≥ 0 is a constant. Then (X, d) is a cone metric
space.

Definition 2.4 (see [1]). Let (X, d) be a cone metric space and {xn} a sequence in X. Then, one
has the following.

(1) {xn} converges to x ∈ X, if for every c ∈ E with 0 � c, there is n0 ∈ N such that for
all n ≥ n0,

d(xn, x) � c. (2.2)

It is denoted by limn→∞xn = x or xn → x, (n → ∞).

(2) If for any c ∈ E, there is a number n0 ∈ N such that for all m,n ≥ n0

d(xn, xm) � c, (2.3)

then {xn} is called a Cauchy sequence in X.

(3) (X, d) is a complete cone metric space, if every Cauchy sequence inX is convergent.

(4) A self mapping T : X → X is said to be continuous at a point x ∈ X, if limn→∞xn =
x implies that limn→∞Txn = Tx for every {xn} in X.

The following two lemmas of Huang and Zhang [1]will be required in the sequel.

Lemma 2.5 (see [1]). Let (X, d) be a cone metric space and P a normal cone with normal constant
K. A sequence {xn} in X converges to x if and only if d(xn, x) → 0 as n → ∞.

Lemma 2.6 (see [1]). Let (X, d) be a cone metric space and P a normal cone with normal constant
K. A sequence {xn} in X is a Cauchy sequence if and only if d(xn, xm) → 0 as n,m → ∞.

The following Corollary of Rezapour [23] will be needed in the sequel.

Corollary 2.7 (see [23]). Let a, b, c, u ∈ E, the real Banach space.

(i) If a ≤ b and b � c, then a � c.

(ii) If a � b and b � c, then a � c.

(iii) If 0 ≤ u � c for each c ∈ intP , then u = 0.

The following remarks of Radenović and Rhoades [10]will be needed in the sequel.
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Remark 2.8 (see [10]). If c ∈ intP , 0 ≤ an and an → 0, then there exists n0 such that for all
n > n0, it follows that an � c.

Remark 2.9 (see [10]). If 0 ≤ d(xn, x) ≤ bn and bn → 0, then d(xn, x) � c, where {xn} is a
sequence and x is a given point in X.

Remark 2.10 (see [10]). If 0 ≤ an ≤ bn and an → a, bn → b, then a ≤ b for each cone P .

Remark 2.11 (see [10]). If E is a real Banach space with a cone P and if a ≤ λa, where a ∈ P
and 0 < λ < 1, then a = 0.

3. Main Results

In the following, we suppose that E is a Banach space, P is a cone in E with intP /= ∅, and ≤ is
partial ordering with respect to P .

Theorem 3.1. Let (X, d) be a complete cone metric space andM a nonempty closed subset of X such
that for each x ∈ M and y /∈M there exists a point z ∈ ∂M such that

d(x, z) + d
(

z, y
)

= d
(

x, y
)

. (3.1)

Suppose that f, T : M → X are two nonself mappings satisfying for all x, y ∈ M with x /=y,

d
(

Tx, Ty
) ≤ αd

(

fx, fy
)

+ βu + γv,

where u ∈ {

d
(

fx, Tx
)

, d
(

fy, Ty
)}

,

v ∈ {

d
(

fx, Tx
)

+ d
(

fy, Ty
)

, d
(

fx, Ty
)

+ d
(

fy, Tx
)}

,

(3.2)

and α, β, γ are nonnegative real numbers such that

α + 2β + 3γ + αγ < 1. (3.3)

Also assume that

(i) ∂M ⊆ fM, TM ∩M ⊂ fM;

(ii) fx ∈ ∂M ⇒ Tx ∈ M;

(iii) fM is closed in X;

Then there exists a coincidence point of f and T in M. Moreover, if T and f are coincidentally
commuting, then T and f have a unique common fixed point inM.

Proof. Two sequences {xn} and {yn} are constructed in the following way. Let x ∈ ∂M. As
∂M ⊆ fM, by (i) there exists a point x0 ∈ M such that x = fx0 ∈ ∂M. Since fx ∈ ∂M ⇒
Tx ⊂ M, from (ii) it follows that fx0 ∈ ∂M ⇒ Tx0 ∈ M ⇒ Tx0 ∈ M ∩ TM ⊂ fM. Let
x1 ∈ M be such that y1 = fx1 = Tx0 ∈ M. Since y1 = Tx0, there exists y2 = Tx1 such that
d(y1, y2) = d(Tx0, Tx1).
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If y2 ∈ M, then y2 ∈ M ∩ TM ⊆ fM which implies that there exists a point x2 ∈ M
such that y2 = fx2. Otherwise, if y2 /∈M, then there exists a point u ∈ ∂M such that

d
(

fx1, u
)

+ d
(

u, y2
)

= d
(

fx1, y2
)

. (3.4)

Since u ∈ ∂M ⊆ fM, there exists a point x2 ∈ M such that u = fx2 and thus

d
(

fx1, fx2
)

+ d
(

fx2, y2
)

= d
(

fx1, y2
)

. (3.5)

Assume that y3 = Tx2.
Thus repeating the arguments, two sequences {xn} ⊆ M and {yn} ⊆ TM ⊂ X are

obtained such that

(i) yn+1 = Txn;

(ii) yn ∈ M ⇒ yn = fxn;

(iii) yn /= fxn whenever yn /∈M, then there exists fxn ∈ ∂M such that

d
(

fxn−1, fxn

)

+ d
(

fxn, yn

)

= d
(

fxn−1, yn

)

. (3.6)

Next, we claim that {fxn} is a Cauchy sequence in fM. The following are derived. Let us
denote

P =
{

fxi ∈
{

fxn

}

: fxi = yi

}

, Q =
{

fxi ∈
{

fxn

}

: fxi /=yi

}

. (3.7)

Obviously, two consecutive terms cannot lie inQ. Note that, if fxn ∈ Q, then fxn−1 and fxn+1

belong to P . Now, three cases are distinguished.

Case 1. If fxn, fxn+1 ∈ P , then yn = fxn, yn+1 = fxn+1. Now from (3.2),

d
(

fxn, fxn+1
)

= d
(

yn, yn+1
)

= d(Txn−1, Txn) ≤ αd
(

fxn−1, fxn

)

+ βu + γv, (3.8)

where

u ∈ {

d
(

fxn−1, Txn−1
)

, d
(

fxn, Txn

)}

=
{

d
(

fxn−1, yn

)

, d
(

fxn, yn+1
)}

=
{

d
(

fxn−1, fxn

)

, d
(

fxn, fxn+1
)}

,

v ∈ {

d
(

fxn−1, Txn−1
)

+ d
(

fxn, Txn

)

, d
(

fxn−1, Txn

)

+ d
(

fxn, Txn−1
)}

=
{

d
(

fxn−1, fxn

)

+ d
(

fxn, fxn+1
)

, d
(

fxn−1, fxn+1
)}

.

(3.9)
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Thus

u ∈ {

d
(

fxn−1, fxn

)

, d
(

fxn, fxn+1
)}

,

v ∈ {

d
(

fxn−1, fxn

)

+ d
(

fxn, fxn+1
)

, d
(

fxn−1, fxn+1
)}

.
(3.10)

Now four subcases arise.

Subcase 1.1. If u = d(fxn−1, fxn) and v = d(fxn−1, fxn) + d(fxn, fxn+1), then (3.8) becomes

d
(

yn, yn+1
)

= d
(

fxn, fxn+1
)

≤ αd
(

fxn−1, fxn

)

+ βd
(

fxn−1, fxn

)

+ γ
[

d
(

fxn−1, fxn

)

+ d
(

fxn, fxn+1
)]

,

d
(

fxn, fxn+1
) ≤ α + β + γ

1 − γ
d
(

fxn−1, fxn

)

.

(3.11)

Subcase 1.2. If u = d(fxn−1, fxn) and v = d(fxn−1, fxn+1), then (3.8) becomes

d
(

yn, yn+1
)

= d
(

fxn, fxn+1
)

≤ αd
(

fxn−1, fxn

)

+ βd
(

fxn−1, fxn

)

+ γ
[

d
(

fxn−1, fxn+1
)]

≤ αd
(

fxn−1, fxn

)

+ βd
(

fxn−1, fxn

)

+ γ
[

d
(

fxn−1, fxn

)

+ d
(

fxn, fxn+1
)]

,

d
(

fxn, fxn+1
) ≤ α + β + γ

1 − γ
d
(

fxn−1, fxn

)

.

(3.12)

Subcase 1.3. If u = d(fxn, fxn+1) and v = d(fxn−1, fxn) + d(fxn, fxn+1), then (3.8) becomes

d
(

fxn, fxn+1
) ≤ αd

(

fxn−1, fxn

)

+ βd
(

fxn, fxn+1
)

+ γ
[

d
(

fxn−1, fxn

)

+ d
(

fxn, fxn+1
)]

,

d
(

fxn, fxn+1
) ≤ α + γ

1 − β − γ
d
(

fxn−1, fxn

)

.

(3.13)

Subcase 1.4. If u = d(fxn, fxn+1) and v = d(fxn−1, fxn+1), then (3.8) becomes

d
(

fxn, fxn+1
) ≤ αd

(

fxn−1, fxn

)

+ βd
(

fxn, fxn+1
)

+ γ
[

d
(

fxn−1, fxn+1
)]

,

≤ αd
(

fxn−1, fxn

)

+ βd
(

fxn, fxn+1
)

+ γ
[

d
(

fxn−1, fxn

)

+ d
(

fxn, fxn+1
)]

,

d
(

fxn, fxn+1
) ≤ α + γ

1 − β − γ
d
(

fxn−1, fxn

)

.

(3.14)
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Combining all Subcases 1.1, 1.2, 1.3, and 1.4, it follows that

d
(

fxn, fxn+1
) ≤ hd

(

fxn−1, fxn

)

, (3.15)

where h = max{(α + β + γ)/(1 − γ), (α + γ)/(1 − β − γ)} = (α + β + γ)/(1 − γ). Hence

d
(

fxn, fxn+1
)

= d
(

yn, yn+1
) ≤ α + β + γ

1 − γ
d
(

fxn−1, fxn

)

. (3.16)

Case 2. If fxn ∈ P, fxn+1 ∈ Q, then yn = fxn, yn+1 /= fxn+1. Now,

d
(

fxn, fxn+1
) ≤ d

(

fxn, fxn+1
)

+ d
(

fxn+1, yn+1
)

= d
(

fxn, yn+1
)

by (3.6)

= d
(

yn, yn+1
)

= d(Txn−1, Txn).

(3.17)

Proceeding as in Case 1,

d
(

fxn, fxn+1
) ≤ d

(

yn, yn+1
)

= d(Txn−1, Txn) ≤
α + β + γ

1 − γ
d
(

fxn−1, fxn

)

. (3.18)

Case 3. If fxn ∈ Q, fxn+1 ∈ P , then fxn−1 ∈ P , yn /= fxn, yn+1 = fxn+1, yn−1 = fxn−1 and
yn = Txn−1. Now,

d
(

fxn, fxn+1
)

= d
(

fxn, yn+1
)

≤ d
(

fxn, yn

)

+ d
(

yn, yn+1
)

= d
(

fxn, yn

)

+ d(Txn−1, Txn)

= d
(

fxn, yn

)

+ αd
(

fxn−1, fxn

)

+ βu + γv.

(3.19)

Thus

d
(

fxn, fxn+1
) ≤ d

(

fxn, yn

)

+ αd
(

fxn−1, fxn

)

+ βu + γv, (3.20)



8 Fixed Point Theory and Applications

where

u ∈ {

d
(

fxn−1, Txn−1
)

, d
(

fxn, Txn

)}

=
{

d
(

fxn−1, yn

)

, d
(

fxn, yn+1
)}

=
{

d
(

fxn−1, yn

)

, d
(

fxn, fxn+1
)}

,

v =
{

d
(

fxn−1, Txn−1
)

+ d
(

fxn, Txn

)

, d
(

fxn−1, Txn

)

+ d
(

fxn, Txn−1
)}

=
{

d
(

fxn−1, yn

)

+ d
(

fxn, fxn+1
)

, d
(

fxn−1, yn+1
)

+ d
(

fxn, yn

)}

.

(3.21)

Thus

u ∈ {

d
(

fxn−1, yn

)

, d
(

fxn, fxn+1
)}

,

v ∈ {

d
(

fxn−1, yn

)

+ d
(

fxn, yn+1
)

, d
(

fxn−1, yn+1
)

+ d
(

fxn, yn

)}

.
(3.22)

Again four subcases arise.

Subcase 3.1. If u = d(fxn−1, yn), v = d(fxn−1, yn) + d(fxn, fxn+1), then (3.20) becomes

d
(

fxn, fxn+1
)

= d
(

fxn, yn+1
)

≤ d
(

fxn, yn

)

+ αd
(

fxn−1, fxn

)

+ βd
(

fxn−1, yn

)

+ γ
[

d
(

fxn−1, yn

)

+ d
(

fxn, fxn+1
)]

≤ [

d
(

fxn−1, yn

) − d
(

fxn−1, fxn

)]

+ αd
(

fxn−1, fxn

)

+
(

β + γ
)

d
(

fxn−1, yn

)

+ γd
(

fxn, fxn+1
)

by (3.6)

≤ 1 + β + γ

1 − γ
d
(

fxn−1, yn

)

+
α − 1
1 − γ

d
(

fxn−1, fxn

)

=
1 + β + γ + α − 1

1 − γ
d
(

fxn−1, yn

)

.

(3.23)

Thus

d
(

fxn, fxn+1
) ≤ α + β + γ

1 − γ
d
(

fxn−1, yn

)

, (3.24)

where using Case 2,

d
(

fxn−1, yn

)

= d
(

yn−1, yn

)

= d(Txn−2, Txn−1) ≤
α + β + γ

1 − γ
d
(

fxn−2, fxn−1
)

. (3.25)



Fixed Point Theory and Applications 9

Then (3.24) becomes

d
(

fxn, fxn+1
) ≤

[
α + β + γ

1 − γ

]2

d
(

fxn−2, fxn−1
)

. (3.26)

Subcase 3.2. If u = d(fxn−1, yn), v = d(fxn−1, yn+1) + d(fxn, yn), then (3.20) becomes

d
(

fxn, fxn+1
)

= d
(

fxn, yn+1
)

≤ d
(

fxn, yn

)

+ αd
(

fxn−1, fxn

)

+ βd
(

fxn−1, yn

)

+ γ
[

d
(

fxn−1, yn+1
)

+ d
(

fxn, yn

)]

≤ d
(

fxn, yn

)

+ αd
(

fxn−1, fxn

)

+ βd
(

fxn−1, yn

)

+ γ
[

d
(

fxn−1, fxn

)

+ d
(

fxn, fxn+1
)

+ d
(

fxn, yn

)]

≤ d
(

fxn, yn

)

+ αd
(

fxn−1, fxn

)

+ βd
(

fxn−1, yn

)

+ γ
[

d
(

fxn−1, yn

)

+ d
(

fxn, fxn+1
)]

by (3.6).

(3.27)

Proceeding as in Subcase 3.1, it follows that

d
(

fxn, fxn+1
) ≤

[
α + β + γ

1 − γ

]2

d
(

fxn−2, fxn−1
)

. (3.28)

Subcase 3.3. If u = d(fxn, fxn+1), v = d(fxn−1, yn) + d(fxn, fxn+1), then (3.20) becomes

d
(

fxn, fxn+1
)

= d
(

fxn, yn+1
)

≤ d
(

fxn, yn

)

+ αd
(

fxn−1, fxn

)

+ βd
(

fxn, fxn+1
)

+ γ
[

d
(

fxn−1, yn

)

+ d
(

fxn, fxn+1
)]

≤ [

d
(

fxn−1, yn

) − d
(

fxn−1, fxn

)]

+ αd
(

fxn−1, fxn

)

+ βd
(

fxn, fxn+1
)

+ γ
[

d
(

fxn−1, yn

)

+ d
(

fxn, fxn+1
)]

≤ α + γ

1 − β − γ
d
(

fxn−1, yn

)

.

(3.29)

Thus

d
(

fxn, fxn+1
) ≤ α + γ

1 − β − γ
d
(

fxn−1, yn

)

, (3.30)

where using Case 2,

d
(

fxn−1, yn

)

= d
(

yn−1, yn

)

= d(Txn−2, Txn−1) ≤
α + β + γ

1 − γ
d
(

fxn−2, fxn−1
)

. (3.31)
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Then (3.30) becomes

d
(

fxn, fxn+1
) ≤

[
α + β + γ

1 − γ

]

,

[
α + γ

1 − β − γ

]

d
(

fxn−2, fxn−1
)

. (3.32)

Subcase 3.4. If u = d(fxn, fxn+1), v = d(fxn−1, yn+1) + d(fxn, yn), then (3.20) becomes

d
(

fxn, fxn+1
)

= d
(

fxn, yn+1
)

≤ d
(

fxn, yn

)

+ αd
(

fxn−1, fxn

)

+ βd
(

fxn, fxn+1
)

+ γ
[

d
(

fxn−1, yn+1
)

+ d
(

fxn, yn

)]

≤ [

d
(

fxn−1, yn

) − d
(

fxn−1, fxn

)]

+ αd
(

fxn−1, fxn

)

+ βd
(

fxn, fxn+1
)

+ γ
[

d
(

fxn−1, fxn

)

+ d
(

fxn, fxn+1
)

+ d
(

fxn, yn

)]

=
[

d
(

fxn−1, yn

) − d
(

fxn−1, fxn

)]

+ αd
(

fxn−1, fxn

)

+ βd
(

fxn, fxn+1
)

+ γ
[

d
(

fxn−1, yn

)

+ d
(

fxn, fxn+1
)]

.

(3.33)

Proceeding as in Subcase 3.1, it follows that

d
(

fxn, fxn+1
) ≤

[
α + β + γ

1 − γ

]

,

[
α + γ

1 − β − γ

]

d
(

fxn−2, fxn−1
)

. (3.34)

Combining all four Subcases 3.1, 3.2, 3.3, and 3.4, we have

d
(

fxn, fxn+1
) ≤ kd

(

fxn−2, fxn−1
)

, (3.35)

where k = max{[(α + β + γ)/(1 − γ)]2, [(α + β + γ)/(1 − γ)], [(α + γ)/(1 − β − γ)]} =
[(α + β + γ)/(1 − γ)]2 < 1 by (3.3). Hence

d
(

fxn, fxn+1
) ≤

[
α + β + γ

1 − γ

]2

d
(

fxn−2, fxn−1
)

. (3.36)

Now, combining main Cases 1, 2, and 3, it follows that

d
(

fxn, fxn+1
) ≤ μwn, (3.37)
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where

μ = max

{

α + β + γ

1 − γ
,

[
α + β + γ

1 − γ

]2
}

=
α + β + γ

1 − γ
as

α + β + γ

1 − γ
< 1 by (3.3),

wn ∈ {

d
(

fxn−1, fxn

)

, d
(

fxn−2, fxn−1
)}

.

(3.38)

Following the procedure of Assad and Kirk [12], it can be easily shown by induction that for
n > 1,

d
(

fxn, fxn+1
) ≤ μ(n−1)/2w2, where w2 =

{

d
(

fx2, fx1
)

, d
(

fx0, fx1
)}

. (3.39)

By triangle inequality, for n > m, it follows that

d
(

fxn, fxm

) ≤ d
(

fxn, fxn−1
)

+ d
(

fxn−1, fxn−2
)

+ · · · + d
(

fxm+1, fxm

)

≤
(

μ(n−1)/2 + μ(n−2)/2 + · · · + μ(m−1)/2
)

w2

≤

√

μn−1

1 − √
μ
w2 −→ 0 as m −→ ∞.

(3.40)

From Remark 2.9, d(fxn, fxm) � c, which implies by Definition 2.4(2) that {fxn} is a Cauchy
sequence in fM which is a closed subset of the complete cone metric space and hence is
complete. Then there exists a point z ∈ M ∩ fM such that fxn → z as n → ∞. Thus

d
(

fxn, z
) � c for sufficiently large n. (3.41)

Since z ∈ fM, there exists a point w ∈ M such that z = fw. By the construction of {fxn}, it
was seen that there exists a subsequence {fxm} such that

ym = fxm = Txm−1. (3.42)

We will prove that Tw = z. Consider

d(Tw, z) ≤ d(Tw, Txm−1) + d(Txm−1, z)

≤ [

αd
(

fw, fxm−1
)

+ βu + γv
]

+ d
(

fxm, z
)

=
[

αd
(

z, fxm−1
)

+ βu + γv
]

+ d
(

fxm, z
)

,

(3.43)
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where

u ∈ {

d
(

fw, Tw
)

, d
(

fxm−1, Txm−1
)}

=
{

d(z, Tw), d
(

fxm−1, fxm

)}

,

v ∈ {

d
(

fw, Tw
)

+ d
(

fxm−1, Txm−1
)

, d
(

fw, Txm−1
)

+ d
(

fxm−1, Tw
)}

=
{

d(z, Tw) + d
(

fxm−1, fxm

)

, d
(

z, fxm

)

+ d
(

fxm−1, Tw
)}

.

(3.44)

Thus

u ∈ {

d(z, Tw), d
(

fxm−1, fxm

)}

,

v ∈ {

d(z, Tw) + d
(

fxm−1, fxm

)

, d
(

z, fxm

)

+ d
(

fxm−1, Tw
)}

.
(3.45)

Now again four cases arise.

Case 1. If u = d(z, Tw), v = d(z, Tw) + d(fxm−1, fxm), then (3.43) becomes

d(Tw, z) ≤ αd
(

z, fxm−1
)

+ βd(z, Tw) + γ
[

d(z, Tw) + d
(

fxm−1, fxm

)]

+ d
(

fxm, z
)

≤ αd
(

z, fxm−1
)

+ βd(z, Tw) + γ
[

d(z, Tw) + d
(

fxm−1, z
)

+ d
(

z, fxm

)]

+ d
(

fxm, z
)

=
α + γ

1 − β − γ
d
(

z, fxm−1
)

+
1 + γ

1 − β − γ
d
(

fxm, z
)

.

(3.46)

Case 2. If u = d(z, Tw), v = d(z, fxm) + d(fxm−1, Tw), then (3.43) becomes

d(Tw, z) ≤ αd
(

z, fxm−1
)

+ βd(z, Tw) + γ
[

d
(

z, fxm

)

+ d
(

fxm−1, Tw
)]

+ d
(

fxm, z
)

≤ αd
(

z, fxm−1
)

+ βd(z, Tw) + γ
[

d
(

z, fxm

)

+ d
(

fxm−1, z
)

+ d(z, Tw)
]

+ d
(

fxm, z
)

=
α + γ

1 − β − γ
d
(

z, fxm−1
)

+
1 + γ

1 − β − γ
d
(

fxm, z
)

.

(3.47)

Case 3. If u = d(fxm−1, z) + d(z, fxm), v = d(z, Tw) + d(fxm−1, fxm), then (3.43) becomes

d(Tw, z) ≤ αd
(

z, fxm−1
)

+ β
[

d
(

fxm−1, z
)

+ d
(

z, fxm

)]

+ γ
[

d(z, Tw) + d
(

fxm−1, fxm

)]

+ d
(

fxm, z
)

≤ αd
(

z, fxm−1
)

+ β
[

d
(

fxm−1, z
)

+ d
(

z, fxm

)]

+ γ
[

d(z, Tw) + d
(

fxm−1, z
)

+ d
(

z, fxm

)]

+ d
(

fxm, z
)

=
α + β + γ

1 − γ
d
(

z, fxm−1
)

+
1 + β + γ

1 − γ
d
(

fxm, z
)

.

(3.48)
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Case 4. If u = d(fxm−1, z) + d(z, fxm), v = d(z, fxm) + d(fxm−1, Tw), then (3.43) becomes

d(Tw, z) ≤ αd
(

z, fxm−1
)

+ β
[

d
(

fxm−1, z
)

+ d
(

z, fxm

)]

+ γ
[

d
(

z, fxm

)

+ d
(

fxm−1, Tw
)]

+ d
(

fxm, z
)

≤ αd
(

z, fxm−1
)

+ β
[

d
(

fxm−1, z
)

+ d
(

z, fxm

)]

+ γ
[

d(z, Tw) + d
(

fxm−1, z
)

+ d
(

z, fxm

)]

+ d
(

fxm, z
)

=
α + β + γ

1 − γ
d
(

z, fxm−1
)

+
1 + β + γ

1 − γ
d
(

fxm, z
)

.

(3.49)

Combining Cases 1, 2, 3, and 4, it follows that

d(Tw, z) ≤ max
{

α + γ

1 − β − γ
,
α + β + γ

1 − γ

}

d
(

z, fxm−1
)

+max
{

1 + γ

1 − β − γ
,
1 + β + γ

1 − γ

}

d
(

fxm, z
)

=
α + β + γ

1 − γ
d
(

z, fxm−1
)

+
1 + β + γ

1 − γ
d
(

fxm, z
)

.

(3.50)

Thus

d(Tw, z) ≤ kd
(

z, fxm−1
)

+ k′d
(

fxm, z
)

, (3.51)

where k = (α + β + γ)/(1 − γ), k′ = (1 + β + γ)/(1 − γ).
Let c ∈ E be given with 0 � c. From fxm−1 → z as m → ∞ and Definition 2.4(1),

d
(

fxm−1, z
) � c

3k
∀n > m ≥ N2. (3.52)

From Txm−1 → z as m → ∞ and by Definition 2.4 (1),

d
(

fxm, z
)

= d(Txm−1, z) � c

3k′ ∀n > m ≥ N3. (3.53)

From the definition of convergence in cone metric space and by (3.52) and (3.53), inequality
(3.43) becomes

d(Tw, z) � kc

2k
+
k′c
2k′ =

c

2
+
c

2
= c. (3.54)

Therefore, d(Tw, z) � c for each c ∈ intP . Then by (iii) of Corollary 2.7, we have d(Tw, z) =
0, that is, Tw = z = fw which implies that w is the coincidence point of f and T .
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Since T and f are coincidentally commuting, Tfw = fTw for w ∈ C(f, T) which
implies Tz = fz. Consider

d(Tz, z) = d(Tz, Tw)

≤ αd
(

fz, fw
)

+ βu + γv

≤ αd(Tz, z) + βu + γv,

(3.55)

where

u ∈ {

d
(

fz, Tz
)

, d
(

fw, Tw
)}

= {0, 0} = {0}.
v ∈ {

d
(

fz, Tz
)

+ d
(

fw, Tw
)

, d
(

fz, Tw
)

+ d
(

fw, Tz
)}

= {0, d(Tz, z) + d(z, Tz)} = {0, 2d(Tz, z)}.
(3.56)

Thus u ∈ {0} and v ∈ {0, 2d(Tz, z)}. Two cases arise.

Case 1. If u = 0 and v = 0, then (3.55) becomes

d(Tz, z) ≤ αd(Tz, z) + β0 + γ0

≤ αd(Tz, z).
(3.57)

Case 2. If u = 0 and v = 2d(Tz, z), then (3.55) becomes

d(Tz, z) ≤ αd(Tz, z) + β0 + γd(Tz, z)

≤ (

α + 2γ
)

d(Tz, z).
(3.58)

Combining Cases 1 and 2, it follows that

d(Tz, z) ≤ max
{

α + 2γ, α
}

d(Tz, z) =
(

α + 2γ
)

d(Tz, z). (3.59)

Since α+2γ ≤ α+2β+3γ +αγ < 1 by (3.3), it follows from Remark 2.11 that d(Tz, z) = 0which
implies that Tz = z. Thus fz = Tz = z.

Uniqueness: if p /= z is another common fixed point of f and T inM, then p = Tp = fp.
Now by (3.2), it follows that

d
(

Tp, Tz
) ≤ αd

(

fp, fz
)

+ βu + γv,

d
(

p, z
) ≤ αd

(

p, z
)

+ βu + γv,
(3.60)
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where

u ∈ {

d
(

fp, Tp
)

, d
(

fz, Tz
)}

= {0},
v ∈ {

d
(

fp, Tp
)

+ d
(

fz, Tz
)

, d
(

fp, Tz
)

+ d
(

fz, Tp
)}

=
{

0, 2d
(

p, z
)}

.
(3.61)

Thus u = 0 and v ∈ {0, 2d(p, z)}. Two cases arise.

Case 1. If u = 0 and v = 0, then (3.60) becomes d(p, z) ≤ αd(p, z). Since α < α+2β+3γ +αγ < 1,
by Remark 2.11 we have d(p, z) = 0 which implies that z = p is the unique common fixed
point of f and T .

Case 2. If u = 0 and v = 2d(p, z), then (3.60) becomes

d
(

p, z
) ≤ αd

(

p, z
)

+ γ
(

2d
(

p, z
))

=
(

α + 2γ
)

d
(

p, z
)

(3.62)

Since α + 2γ < α + 2β + 3γ + αγ < 1, by Remark 2.11 we have d(p, z) = 0 which implies z = p is
the unique common fixed point of f and T . Hence fz = Tz = z is the unique common fixed
point of f and T inM.

The following example illustrates Theorem 3.1.

Example 3.2. Let E = R2, P = {(x, y) : x ≥ 0, y ≥ 0},X = [0,∞), d(x, y) = (|x−y|, k|x−y|), k ≥
0 and M = [0, 1/3]. Define two nonself mappings T, f : M → X as Tx = 2x/(1 + 2x) and
fx = 2x for all x ∈ M.

Now let us see that conditions (i)–(iii) in Theorem 3.1 are satisfied.
It may be seen that ∂M = {0, 1/3}, TM = [0, 2/5], and fM = [0, 2/3]. Then ∂M ⊂ fM

and TM ∩ M = [0, 2/5] ∩ [0, 1/3] = [0, 1/3] ⊂ fM. Also, fx ∈ ∂M ⇒ Tx ∈ M as f0 = 0 ∈
∂M ⇒ T0 = 0 ∈ M. Moreover fM is closed in X.

Next, we shall see that inequality (3.2) is satisfied by taking α = 2/3 and β = γ = 1/24.
It is easy to see that α + 2β + 3γ + αγ < 1.

Now, LHS of inequality (3.2) is d(Tx, Ty) = (|Tx−Ty|, k|Tx−Ty|). Taking x = 1/3 and
y = 1/6, it follows that d(Tx, Ty) = (0.15, 0.15k).

Next, RHS of inequality (3.2) is αd(fx, fy)+βu+γv, where d(fx, fy) = (0.334, 0.334k),
u = {(0.26, 0.26k), (0.084, 0.084k)}, and v = {(0.34, 0.34k), (0.476, 0.476k)}. Then RHS of
inequality (3.2) is (0.248, 0.248k) if u = (0.26, 0.26k) and v = (0.34, 0.34k). Thus LHS of
inequality (3.2) < RHS of inequality (3.2). Similarly, LHS of inequality (3.2) < RHS of
inequality (3.2) for all possible cases of u and v. Thus all the conditions of Theorem 3.1 are
satisfied. Hence “0” is the unique common fixed point of f and T inM.

Corollary 3.3. Let (X, d) be a complete cone metric space andM a nonempty closed subset ofX such
that for each x ∈ M and y /∈M there exists a point z ∈ ∂M such that

d(x, z) + d
(

z, y
)

= d
(

x, y
)

. (3.63)
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Suppose that T : M → X is a nonself mapping satisfying for all x, y ∈ M with x /=y,

d
(

Tx, Ty
) ≤ αd

(

x, y
)

+ βu + γv

where u ∈ {

d(x, Tx), d
(

y, Ty
)}

,

v ∈ {

d(x, Tx) + d
(

y, Ty
)

, d
(

x, Ty
)

+ d
(

y, Tx
)}

,

(3.64)

and α, β, γ are nonnegative real numbers such that α+2β+3γ +αγ < 1. Also assume that x ∈ ∂M ⇒
Tx ∈ M. Then there exists a unique fixed point of T inM.

Proof. The proof of this corollary follows by taking f = IX , the identity mapping of X in
Theorem 3.1.

Remark 3.4. Our results generalize the results of Radenović and Rhoades [10] and Janković
et al. [6] and extend the results of Ćirić and Ume [20] to cone metric space for single valued
mappings.
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Prirodno-Matematičkog Fakulteta. Serija za Matematiku, vol. 19, no. 2, pp. 233–240, 1989.
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