
Hindawi Publishing Corporation
Fixed Point Theory and Applications
Volume 2010, Article ID 579725, 21 pages
doi:10.1155/2010/579725

Research Article
Strong Convergence Theorems of Viscosity
Iterative Methods for a Countable Family of Strict
Pseudo-contractions in Banach Spaces

Rabian Wangkeeree and Uthai Kamraksa

Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

Correspondence should be addressed to Rabian Wangkeeree, rabianw@nu.ac.th

Received 23 June 2010; Accepted 13 August 2010

Academic Editor: A. T. M. Lau

Copyright q 2010 R. Wangkeeree and U. Kamraksa. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

For a countable family {Tn}∞n=1 of strictly pseudo-contractions, a strong convergence of viscosity
iteration is shown in order to find a common fixed point of {Tn}∞n=1 in either a p-uniformly convex
Banach space which admits a weakly continuous duality mapping or a p-uniformly convex Banach
space with uniformly Gâteaux differentiable norm. As applications, at the end of the paper we
apply our results to the problem of finding a zero of accretive operators. The main result extends
various results existing in the current literature.

1. Introduction

LetE be a real Banach space andC a nonempty closed convex subset of E. Amapping f : C →
C is called k-contraction if there exists a constant 0 < k < 1 such that ‖f(x)− f(y)‖ ≤ k‖x−y‖
for all x, y ∈ C. We use

∏
C to denote the collection of all contractions on C. That is,

∏
C = {f :

f is a contraction on C}. A mapping T : C → C is said to be λ-strictly pseudo-contractive
mapping (see, e.g., [1]) if there exists a constant 0 ≤ λ < 1, such that

∥
∥Tx − Ty

∥
∥2 ≤ ∥

∥x − y
∥
∥2 + λ

∥
∥(I − T)x − (I − T)y

∥
∥2

, (1.1)

for all x, y ∈ C. Note that the class of λ-strict pseudo-contractions strictly includes the class of
nonexpansive mappings which are mapping T on C such that ‖Tx − Ty‖ ≤ ‖x − y‖, for all x,
y ∈ C. That is, T is nonexpansive if and only if T is a 0-strict pseudo-contraction. A mapping
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T : C → C is said to be λ-strictly pseudo-contractive mapping with respect to p if, for all x,
y ∈ C, there exists a constant 0 ≤ λ < 1 such that

∥
∥Tx − Ty

∥
∥p ≤ ∥

∥x − y
∥
∥p + λ

∥
∥(I − T)x − (I − T)y

∥
∥p

. (1.2)

A countable family of mapping {Tn : C → C}∞i=1 is called a family of uniformly λ-strict
pseudo-contractions with respect to p, if there exists a constant λ ∈ [0, 1) such that

∥
∥Tnx − Tny

∥
∥p ≤ ∥

∥x − y
∥
∥p + λ

∥
∥(I − Tn)x − (I − Tn)y

∥
∥p

, ∀x, y ∈ C, ∀n ≥ 1. (1.3)

We denote by F(T) the set of fixed points of T , that is, F(T) = {x ∈ C : Tx = x}.
In order to find a fixed point of nonexpansive mapping T , Halpern [2] was the first

to introduce the following iteration scheme which was referred to as Halpern iteration in a
Hilbert space: u, x1 ∈ C, {αn} ⊂ [0, 1],

xn+1 = αnx + (1 − αn)Txn, n ≥ 1. (1.4)

He pointed out that the control conditions (C1) limn→∞ αn = 0 and (C2)
∑∞

n=1 = ∞ are
necessary for the convergence of the iteration scheme (1.4) to a fixed point of T . Furthermore,
the modified version of Halpern iteration was investigated widely by many mathematicians.
Recently, for the sequence of nonexpansive mappings {Tn}∞n=1 with some special conditions,
Aoyama et al. [3] introduced a Halpern type iterative sequence for finding a common fixed
point of a countable family of nonexpansive mappings {Tn : C → C} satisfying some
conditions. Let x1 = x ∈ C and

xn+1 = αnx + (1 − αn)Tnxn (1.5)

for all n ∈ N, where C is a nonempty closed convex subset of a uniformly convex Banach
space E whose norm is uniformly Gâteaux differentiable, and {αn} is a sequence in [0, 1].
They proved that {xn} defined by (1.5) converges strongly to a common fixed point of {Tn}.
Very recently, Song and Zheng [4] also studied the strong convergence theorem of Halpern
iteration (1.5) for a countable family of nonexpansive mappings {Tn : C → C} satisfying
some conditions in either a reflexive and strictly convex Banach space with a uniformly
Gâteaux differentiable norm or a reflexive Banach space E with a weakly continuous duality
mapping. Other investigations of approximating common fixed points for a countable family
of nonexpansive mappings can be found in [3, 5–10] and many results not cited here.

On the other hand, in the last twenty years or so, there are many papers in the
literature dealing with the iteration approximating fixed points of Lipschitz strongly pseudo-
contractive mappings by using the Mann and Ishikawa iteration process. Results which had
been known only for Hilbert spaces and Lipschitz mappings have been extended to more
general Banach spaces and a more general class of mappings (see, e.g., [1, 11–13] and the
references therein).
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In 2007, Marino and Xu [12] proved that the Mann iterative sequence converges
weakly to a fixed point of λ-strict pseudo-contractions in Hilbert spaces, which extend Reich’s
theorem [14, Theorem 2] from nonexpansive mappings to λ-strict pseudo-contractions in
Hilbert spaces.

Recently, Zhou [13] obtained some weak and strong convergence theorems for λ-
strict pseudo-contractions in Hilbert spaces by using Mann iteration and modified Ishikawa
iteration which extend Marino and Xu’s convergence theorems [12].

More recently, Hu andWang [11] obtained that theMann iterative sequence converges
weakly to a fixed point of λ-strict pseudo-contractions with respect to p in p-uniformly convex
Banach spaces. To be more precise, they obtained the following theorem.

Theorem HW

Let E be a real p-uniformly convex Banach space which satisfies one of the following:

(i) E has a Fréchet differentiable norm;

(ii) E satisfies Opial’s property.

Let C a nonempty closed convex subset of E. Let T : C → C be a λ-strict pseudo-contractions
with respect to p, λ ∈ [0, min{1, 2−(p−2)cp}) and F(T)/= ∅. Assume that a real sequence {αn} in
(0, 1) satisfy the following conditions:

0 < ε ≤ αn ≤ 1 − ε < 1 − 2p−2λ
cp

, ∀n ≥ 1. (1.6)

Then Mann iterative sequence {xn} defined by

x1 = x ∈ C,

xn+1 = αnxn + (1 − αn)Txn, n ≥ 1,
(1.7)

converges weakly to a fixed point of T .
Very recently, Hu [15] obtained strong convergence theorems on a mixed iteration

scheme by the viscosity approximation methods for λ-strict pseudo-contractions in p-
uniformly convex Banach spaces with uniformly Gâteaux differentiable norm. To be more
precise, Hu [15] obtained the following theorem.

Theorem H. Let E be a real p-uniformly convex Banach space with uniformly Gâteaux differentiable
norm, and C a nonempty closed convex subset of E which has the fixed point property for
nonexpansive mappings. Let T : C → C be a λ-strict pseudo-contractions with respect to p,
λ ∈ [0, min{1, 2−(p−2)cp}) and F(T)/= ∅. Let f : C → C be a k-contraction with k ∈ (0, 1). Assume
that real sequences {αn}, {βn} and {γn} in (0, 1) satisfy the following conditions:

(i) αn + βn + γn = 1 for all n ∈ N,

(ii) limn→∞ αn = 0 and
∑∞

n=0 αn = +∞,

(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < ξ, where ξ = 1 − 2p−2λc−1p .
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Let {xn} be the sequence generated by the following:

x1 = x ∈ C,

xn+1 = αnf(xn) + βnxn + γnTxn, n ≥ 1.
(1.8)

Then the sequence {xn} converges strongly to a fixed point of T .

In this paper, motivated by Hu and Wang [11], Hu [15], Aoyama et al. [3] and
Song and Zheng [4], we introduce a viscosity iterative approximation method for finding
a common fixed point of a countable family of strictly pseudo-contractions which is a
unique solution of some variational inequality. We prove the strong convergence theorems
of such iterative scheme in either p-uniformly convex Banach space which admits a weakly
continuous duality mapping or p-uniformly convex Banach space with uniformly Gâteaux
differentiable norm. As applications, at the end of the paper, we apply our results to the
problem of finding a zero of an accretive operator. The results presented in this paper improve
and extend the corresponding results announced by Hu and Wang [11], Hu [15], Aoyama et
al. [3] Song and Zheng [4], and many others.

2. Preliminaries

Throughout this paper, let E be a real Banach space and E∗ its dual space. We write xn ⇀ x
(resp., xn⇀

∗x ) to indicate that the sequence {xn} weakly (resp., weak∗) converges to x; as
usual xn → x will symbolize strong convergence. Let S(E) = {x ∈ E : ‖x‖ = 1} denote the
unit sphere of a Banach space E. A Banach space E is said to have

(i) a Gâteaux differentiable norm (we also say that E is smooth), if the limit

lim
t→ 0

∥
∥x + ty

∥
∥ − ‖x‖
t

(2.1)

exists for each x, y ∈ S(E),

(ii) a uniformly Gâteaux differentiable norm, if for each y in S(E), the limit (2.1) is
uniformly attained for x ∈ S(E),

(iii) a Fréchet differentiable norm, if for each x ∈ S(E), the limit (2.1) is attained uniformly
for y ∈ S(E),

(iv) a uniformly Fréchet differentiable norm (we also say that E is uniformly smooth), if the
limit (2.1) is attained uniformly for (x, y) ∈ S(E) × S(E).

The modulus of convexity of E is the function δE : [0, 2] → [0, 1] defined by

δE(ε) = inf
{

1 −
∥
∥
∥
∥
x + y

2

∥
∥
∥
∥ : ‖x‖ = 1,

∥
∥y

∥
∥ = 1,

∥
∥x − y

∥
∥ ≥ ε

}

, 0 ≤ ε ≤ 2. (2.2)

E is uniformly convex if and only if, for all 0 < ε ≤ 2 such that δE(ε) > 0. E is said to be
p-uniformly convex, if there exists a constant a > 0 such that δE(ε) ≥ aεp.
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The following facts are well known which can be found in [16, 17]:

(i) the normalized duality mapping J in a Banach space E with a uniformly Gâteaux
differentiable norm is single-valued and strong-weak∗ uniformly continuous on
any bounded subset of E;

(ii) each uniformly convex Banach space E is reflexive and strictly convex and has fixed
point property for nonexpansive self-mappings;

(iii) every uniformly smooth Banach space E is a reflexive Banach space with
a uniformly Gâteaux differentiable norm and has fixed point property for
nonexpansive self-mappings.

Now we collect some useful lemmas for proving the convergence result of this paper.

Lemma 2.1 (see [11]). Let E be a real p-uniformly convex Banach space and C a nonempty closed
convex subset of E. let T : C → C be a λ-strict pseudo-contraction with respect to p, and {ξn} a real
sequence in [0, 1]. If Tn : C → C is defined by Tnx := (1 − ξn)x + ξnTx, for all x ∈ C, then for all x,
y ∈ C, the inequality holds

∥
∥Tnx − Tny

∥
∥p ≤ ∥

∥x − y
∥
∥p − (

wp(ξn)cp − ξnλ
)∥
∥(I − T)x − (I − T)y

∥
∥p

, (2.3)

where cp is a constant in [18, Theorem 1]. In addition, if 0 ≤ λ < min{1, 2−(p−2)cp}, ξ = 1 − 2p−2λc−1p ,
and ξn ∈ [0, ξ], then ‖Tnx − Tny‖ ≤ ‖x − y‖, for all x, y ∈ C.

Lemma 2.2 (see [19, 20]). Let C be a nonempty closed convex subset of a Banach space E which
has uniformly Gâteaux differentiable norm, T : C → C a nonexpansive mapping with F(T)/= ∅ and
f : C → C a k-contraction. Assume that every nonempty closed convex bounded subset of C has
the fixed points property for nonexpansive mappings. Then there exists a continuous path: t → xt,
t ∈ (0, 1) satisfying xt = tf(xt) + (1 − t)Txt, which converges to a fixed point of T as t → 0+.

Lemma 2.3 (see [21]). Let {xn} and {yn} be bounded sequences in Banach space E such that

xn+1 = αnxn + (1 − αn)yn, n ≥ 0, (2.4)

where {αn} is a sequence in (0, 1) such that 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1. Assume

lim sup
n→∞

(∥
∥yn+1 − yn

∥
∥ − ‖xn+1 − xn‖

) ≤ 0. (2.5)

Then limn→∞‖yn − xn‖ = 0.

Definition 2.4 (see [3]). Let {Tn} be a family of mappings from a subset C of a Banach space E
into E with

⋂∞
n=1 F(Tn)/= ∅. We say that {Tn} satisfies the AKTT-condition if for each bounded

subset B of C,

∞∑

n=1

sup
z∈B

‖Tn+1z − Tnz‖ < ∞. (2.6)
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Remark 2.5. The example of the sequence of mappings {Tn} satisfying AKTT-condition is
supported by Lemma 4.1.

Lemma 2.6 (see [3, Lemma 3.2]). Suppose that {Tn} satisfies AKTT-condition. Then, for each y ∈
C, {Tny} converses strongly to a point in C. Moreover, let the mapping T be defined by

Ty = lim
n→∞

Tny, ∀y ∈ C. (2.7)

Then for each bounded subset B of C, limn→∞ supz∈B‖Tz − Tnz‖ = 0.

Lemma 2.7 (see [22]). Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤
(
1 − γn

)
αn + δn, (2.8)

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
(a)

∑∞
n=1 γn = ∞;

(b) lim supn→∞ δn/γn ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞ αn = 0.

By a gauge function ϕ we mean a continuous strictly increasing function ϕ : [0,∞) →
[0,∞) such that ϕ(0) = 0 and ϕ(t) → ∞ as t → ∞. Let E∗ be the dual space of E. The duality
mapping Jϕ : E → 2E

∗
associated to a gauge function ϕ is defined by

Jϕ(x) =
{
f∗ ∈ E∗ :

〈
x, f∗〉 = ‖x‖ϕ(‖x‖),∥∥f∗∥∥ = ϕ(‖x‖)}, ∀x ∈ E. (2.9)

In particular, the duality mapping with the gauge function ϕ(t) = t, denoted by J , is
referred to as the normalized duality mapping. Clearly, there holds the relation Jϕ(x) =
(ϕ(‖x‖)/‖x‖)J(x) for all x /= 0 (see [23]). Browder [23] initiated the study of certain classes of
nonlinear operators bymeans of the duality mapping Jϕ. Following Browder [23], we say that
a Banach space E has a weakly continuous duality mapping if there exists a gauge ϕ for
which the duality mapping Jϕ(x) is single-valued and continuous from the weak topology
to the weak∗ topology, that is, for any {xn} with xn ⇀ x, the sequence {Jϕ(xn)} converges
weakly∗ to Jϕ(x). It is known that lp has a weakly continuous duality mapping with a gauge
function ϕ(t) = tp−1 for all 1 < p < ∞. Set

Φ(t) =
∫ t

0
ϕ(τ)dτ, ∀t ≥ 0, (2.10)

then

Jϕ(x) = ∂Φ(‖x‖), ∀x ∈ E, (2.11)

where ∂ denotes the subdifferential in the sense of convex analysis (recall that the
subdifferential of the convex function φ : E → R at x ∈ E is the set ∂φ(x) = {x∗ ∈ E∗; φ(y) ≥
φ(x) + 〈x∗, y − x〉, for all y ∈ E}).
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The following lemma is an immediate consequence of the subdifferential inequality.
The first part of the next lemma is an immediate consequence of the subdifferential inequality
and the proof of the second part can be found in [24].

Lemma 2.8 (see [24]). Assume that a Banach space E has a weakly continuous duality mapping Jϕ
with gauge ϕ.

(i) For all x, y ∈ E, the following inequality holds:

Φ
(∥
∥x + y

∥
∥
) ≤ Φ(‖x‖) + 〈

y, Jϕ
(
x + y

)〉
. (2.12)

In particular, in a smooth Banach space E, for all x, y ∈ E,

∥
∥x + y

∥
∥2 ≤ ‖x‖2 + 2

〈
y, J

(
x + y

)〉
. (2.13)

(ii) Assume that a sequence {xn} in E converges weakly to a point x ∈ E.
Then the following identity holds:

lim sup
n→∞

Φ
(∥
∥xn − y

∥
∥
)
= lim sup

n→∞
Φ(‖xn − x‖) + Φ

(∥
∥y − x

∥
∥
)
, ∀x, y ∈ E. (2.14)

3. Main Results

For T : C → C a nonexpansive mapping, t ∈ (0, 1) and f ∈ ∏
C, tf + (1 − t)T : C → C defines

a contraction mapping. Thus, by the Banach contraction mapping principle, there exists a
unique fixed point xf

t satisfying

x
f
t = tf(xt) + (1 − t)Txf

t . (3.1)

For simplicity we will write xt for x
f
t provided no confusion occurs. Next, we will prove the

following lemma.

Lemma 3.1. Let E be a reflexive Banach space which admits a weakly continuous duality mapping Jϕ
with gauge ϕ. Let C be a nonempty closed convex subset of E, T : C → C a nonexpansive mapping
with F(T)/= ∅ and f ∈ ∏

C. Then the net {xt} defined by (3.1) converges strongly as t → 0 to a fixed
point x̃ of T which solves the variational inequality:

〈(
I − f

)
x̃, Jϕ(x̃ − z)

〉 ≤ 0, z ∈ F(T). (3.2)

Proof. We first show that the uniqueness of a solution of the variational inequality (3.2).
Suppose both x̃ ∈ F(T) and x∗ ∈ F(T) are solutions to (3.2), then

〈(
I − f

)
x̃, Jϕ(x̃ − x∗)

〉 ≤ 0,
〈(
I − f

)
x∗, Jϕ(x∗ − x̃)

〉 ≤ 0.
(3.3)
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Adding (3.3), we obtain

〈(
I − f

)
x̃ − (

I − f
)
x∗, Jϕ(x̃ − x∗)

〉 ≤ 0. (3.4)

Noticing that for any x, y ∈ E,

〈(
I − f

)
x − (

I − f
)
y, Jϕ

(
x − y

)〉
=
〈
x − y, Jϕ

(
x − y

)〉 − 〈
f(x) − f

(
y
)
, Jϕ

(
x − y

)〉

≥ ∥
∥x − y

∥
∥ϕ

(∥
∥x − y

∥
∥
) − ∥

∥f(x) − f
(
y
)∥
∥ϕ

(∥
∥x − y

∥
∥
)

≥ Φ
(∥
∥x − y

∥
∥
) − αΦ

(∥
∥x − y

∥
∥
)

= (1 − α)Φ
(∥
∥x − y

∥
∥
) ≥ 0.

(3.5)

From (3.4), we conclude that Φ(‖x̃ − x∗‖) = 0. This implies that x̃ = x∗ and the uniqueness is
proved. Below we use x̃ to denote the unique solution of (3.2). Next, we will prove that {xt}
is bounded. Take a p ∈ F(T); then we have

∥
∥xt − p

∥
∥ =

∥
∥tf(xt) + (1 − t)Txt − p

∥
∥

=
∥
∥(1 − t)Txt − (1 − t)p + t

(
f(xt) − p

)∥
∥

≤ (1 − t)
∥
∥xt − p

∥
∥ + t

(
α
∥
∥xt − p

∥
∥ +

∥
∥f

(
p
) − p

∥
∥
)
.

(3.6)

It follows that

∥
∥xt − p

∥
∥ ≤ 1

1 − α

∥
∥f

(
p
) − p

∥
∥. (3.7)

Hence {xt} is bounded, so are {f(xt)} and {T(xt)}. The definition of {xt} implies that

‖xt − Txt‖ = t
∥
∥f(xt) − Txt

∥
∥ −→ 0, as t −→ 0. (3.8)

If follows from reflexivity of E and the boundedness of sequence {xt} that there exists {xtn}
which is a subsequence of {xt} converging weakly to w ∈ C as n → ∞. Since Jϕ is weakly
sequentially continuous, we have by Lemma 2.8 that

lim sup
n→∞

Φ(‖xtn − x‖) = lim sup
n→∞

Φ(‖xtn −w‖) + Φ(‖x −w‖), ∀x ∈ E. (3.9)

Let

H(x) = lim sup
n→∞

Φ(‖xtn − x‖), ∀x ∈ E. (3.10)

It follows that

H(x) = H(w) + Φ(‖x −w‖), ∀x ∈ E. (3.11)
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Since

‖xtn − Txtn‖ = tn
∥
∥f(xtn) − Txtn

∥
∥ −→ 0, as n −→ ∞, (3.12)

we obtain

H(Tw) = lim sup
n→∞

Φ(‖xtn − Tw‖) = lim sup
n→∞

Φ(‖Txtn − Tw‖)

≤ lim sup
n→∞

Φ(‖xtn −w‖) = H(w).
(3.13)

On the other hand, however,

H(Tw) = H(w) + Φ(‖T(w) −w‖). (3.14)

It follows from (3.13) and (3.14) that

Φ(‖T(w) −w‖) = H(Tw) −H(w) ≤ 0. (3.15)

This implies that Tw = w. Next we show that xtn → w as n → ∞. In fact, since Φ(t) =
∫ t
0 ϕ(τ)dτ, for all t ≥ 0, and ϕ : [0,∞) → [0,∞) is a gauge function, then for 1 ≥ k ≥ 0,
ϕ(kx) ≤ ϕ(x) and

Φ(kt) =
∫kt

0
ϕ(τ)dτ = k

∫ t

0
ϕ(kx)dx ≤ k

∫ t

0
ϕ(x)dx = kΦ(t). (3.16)

Following Lemma 2.8, we have

Φ(‖xtn −w‖) = Φ
(∥
∥(1 − tn)Txtn − (1 − tn)w + tn

(
f(xtn) −w

)∥
∥
)

= Φ(‖(1 − tn)Txtn − (1 − tn)w‖) + tn
〈
f(xtn) −w, J(xtn −w)

〉

≤ Φ((1 − tn)‖xtn −w‖) + tn
〈
f(xtn) − f(w), J(xtn −w)

〉

+ tn
〈
f(w) −w, J(xtn −w)

〉

≤ (1 − tn)Φ(‖xtn −w‖) + tn
∥
∥f(xtn) − f(w)

∥
∥‖J(xtn −w)‖

+ tn
〈
f(w) −w, J(xtn −w)

〉

≤ (1 − tn)Φ(‖xtn −w‖) + tnα‖xtn −w‖∥∥Jϕ(xtn −w)
∥
∥

+ tn
〈
f(w) −w, J(xtn −w)

〉

= (1 − tn)Φ(‖xtn −w‖) + tnαΦ(‖xtn −w‖)
+ tn

〈
f(w) −w, J(xtn −w)

〉

= (1 − tn(1 − α))Φ(‖xtn −w‖) + tn
〈
f(w) −w, J(xtn −w)

〉
.

(3.17)
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This implies that

Φ(‖xtn −w‖) ≤ 1
1 − α

〈
f(w) −w, J(xtn −w)

〉
. (3.18)

Now observing that xtn ⇀ w implies Jϕ(xtn − w) ⇀ 0, we conclude from the last inequality
that

Φ(‖xtn −w‖) −→ 0, as n −→ ∞. (3.19)

Hence xtn → w as n → ∞. Next we prove that w solves the variational inequality (3.2). For
any z ∈ F(T), we observe that

〈
(I − T)xt − (I − T)z, Jϕ(xt − z)

〉
=
〈
xt − z, Jϕ(xt − z)

〉
+
〈
Txt − Tz, Jϕ(xt − z)

〉

= Φ(‖xt − z‖) − 〈
Tz − Txt, Jϕ(xt − z)

〉

≥ Φ(‖xt − z‖) − ‖Tz − Txt‖
∥
∥Jϕ(xt − z)

∥
∥

≥ Φ(‖xt − z‖) − ‖z − xt‖
∥
∥Jϕ(xt − z)

∥
∥

= Φ(‖xt − z‖) −Φ(‖xt − z‖) = 0.

(3.20)

Since

xt = tf(xt) + (1 − t)Txt, (3.21)

we can derive that

(
I − f

)
(xt) = −1

t
(I − T)xt + (I − T)xt. (3.22)

Thus

〈(
I − f

)
(xt), Jϕ(xt − z)

〉
= −1

t

〈
(I − T)xt − (I − T)z, Jϕ(xt − z)

〉
+
〈
(I − T)xt, Jϕ(xt − z)

〉

≤ 〈
(I − T)xt, Jϕ(xt − z)

〉
.

(3.23)

Noticing that

xtn − Txtn −→ w − T(w) = w −w = 0. (3.24)

Now replacing t in (3.23) with tn and letting n → ∞, we have

〈(
I − f

)
w, Jϕ(w − z)

〉 ≤ 0. (3.25)
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So, w ∈ F(T) is a solution of the variational inequality (3.2), and hence w = x̃ by the
uniqueness. In a summary, we have shown that each cluster point of {xt} (at t → 0) equals
x̃. Therefore, xt → x̃ as t → 0. This completes the proof.

Theorem 3.2. Let E be a real p-uniformly convex Banach space with a weakly continuous duality
mapping Jϕ, and C a nonempty closed convex subset of E. Let {Tn : C → C} be a family of uniformly
λ-strict pseudo-contractions with respect to p, λ ∈ [0, min{1, 2−(p−2)cp}) and

⋂∞
n=1 F(Tn)/= ∅. Let

f : C → C be a k-contraction with k ∈ (0, 1). Assume that real sequences {αn}, {βn} and {γn} in
(0, 1) satisfy the following conditions:

(i) αn + βn + γn = 1 for all n ∈ N;

(ii) limn→∞ αn = 0 and
∑∞

n=0 αn = +∞;

(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < ξ, where ξ = 1 − 2p−2λc−1p .

Let {xn} be the sequence generated by the following:

x1 = x ∈ C,

xn+1 = αnf(xn) + βnxn + γnTnxn, n ≥ 1.
(3.26)

Suppose that {Tn} satisfies the AKTT-condition. Let T be a mapping of C into itself defined by Tz =
limn→∞ Tnz for all z ∈ C and suppose that F(T) =

⋂∞
n=1 F(Tn). Then the sequence {xn} converges

strongly to x̃ which solves the variational inequality:

〈(
I − f

)
x̃, Jϕ(x̃ − z)

〉 ≤ 0, z ∈ F(T). (3.27)

Proof. Rewrite the iterative sequence (3.26) as follows:

xn+1 = αnf(xn) + β′nxn + γ ′nSnxn, n ≥ 1, (3.28)

where β′n = βn − (γn/ξ)(1 − ξ), γ ′n = γn/ξ and Sn := (1 − ξ)I + ξTn, I is the identity mapping.
By Lemma 2.1, Sn is nonexpansive such that F(Sn) = F(Tn) for all n ∈ N. Taking any q ∈
⋂∞

n=1 F(Tn), from (3.28), it implies that

∥
∥xn+1 − q

∥
∥ ≤ αn

∥
∥f(xn) − q

∥
∥ + β′n

∥
∥xn − q

∥
∥ + γ ′n

∥
∥Snxn − q

∥
∥

≤ αnk
∥
∥xn − q

∥
∥ + αn

∥
∥f

(
q
) − q

∥
∥ + (1 − αn)

∥
∥xn − q

∥
∥

= αn(1 − k)
1

1 − k

∥
∥f

(
q
) − q

∥
∥ + (1 − αn(1 − k))

∥
∥xn − q

∥
∥

≤ max
{
∥
∥x1 − q

∥
∥,

1
1 − k

∥
∥f

(
q
) − q

∥
∥
}

.

(3.29)
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Therefore, the sequence {xn} is bounded, and so are the sequences {f(xn)}, {Snxn}. Since
Snxn = (1 − ξn)xn + ξnTnxn and lim inf ξn > 0, we know that {Tnxn} is bounded. We note that
for any bounded subset B of C,

sup
z∈B

‖Sn+1z − Snz‖ = sup
z∈B

[‖((1 − ξn+1)z + ξn+1Tn+1z) − ((1 − ξn)z + ξnTnz)‖]

≤ |ξn+1 − ξn|sup
z∈B

‖z‖ + ξn+1sup
z∈B

‖Tn+1z − Tnz‖ + |ξn+1 − ξn|sup
z∈B

‖Tnz‖

= |ξn+1 − ξn|sup
z∈B

(‖z‖ + ‖Tz‖) + ξn+1sup
z∈B

‖Tn+1z − Tnz‖.

(3.30)

From
∑∞

n=1 |ξn+1 − ξn| < ∞ and {Tn} satisfing AKTT-condition, we obtain that

∞∑

n=1

sup
z∈B

‖Sn+1z − Snz‖ < ∞, (3.31)

that is, the sequence {Sn} satisfies AKTT-condition. Applying Lemma 2.6, we can take the
mapping S : C → C defined by

Sz = lim
n→∞

Snz, ∀z ∈ C. (3.32)

Moreover, we have S is nonexpansive and

Sz = lim
n→∞

Snz = lim
n→∞

((1 − ξn)z + ξnTnz) = (1 − ξ)z + ξTz. (3.33)

It is easy to see that F(S) = F(T). Hence F(S) =
⋂∞

n=1 F(Tn) =
⋂∞

n=1 F(Sn). The iterative
sequence (3.28) can be expressed as follows:

xn+1 = β′nxn +
(
1 − β′n

)
yn, (3.34)

where

yn =
αn

1 − β′n
f(xn) +

γ ′n
1 − β′n

Snxn. (3.35)
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We estimate from (3.35)

∥
∥yn+1 − yn

∥
∥ =

∥
∥
∥
∥
∥

αn+1

1 − β′n+1
f(xn+1) +

γ ′n+1
1 − β′n+1

Sn+1xn+1 − αn

1 − β′n
f(xn) +

γ ′n
1 − β′n

Snxn

∥
∥
∥
∥
∥

≤ αn+1

1 − β′n+1
k‖xn+1 − xn‖ +

γ ′n+1
1 − β′n+1

‖Sn+1xn+1 − Snxn‖

+

∣
∣
∣
∣
∣

αn+1

1 − β′n+1
− αn

1 − β′n

∣
∣
∣
∣
∣

∥
∥f(xn) − Snxn

∥
∥

≤ αn+1

1 − β′n+1
k‖xn+1 − xn‖ +

γ ′n+1
1 − β′n+1

[‖Sn+1xn+1 − Sn+1xn‖ + ‖Sn+1xn − Snxn‖]

+

∣
∣
∣
∣
∣

αn+1

1 − β′n+1
− αn

1 − β′n

∣
∣
∣
∣
∣

∥
∥f(xn) − Snxn

∥
∥

≤ αn+1

1 − β′n+1
k‖xn+1 − xn‖ +

γ ′n+1
1 − β′n+1

[

‖xn+1 − xn‖ + sup
z∈{xn}

‖Sn+1z − Snz‖
]

+

∣
∣
∣
∣
∣

αn+1

1 − β′n+1
− αn

1 − β′n

∣
∣
∣
∣
∣

∥
∥f(xn) − Snxn

∥
∥.

(3.36)

Hence

∥
∥yn+1 − yn

∥
∥ − ‖xn+1 − xn‖ ≤ αn+1

1 − β′n+1
k‖xn+1 − xn‖ +

γ ′n+1
1 − β′n+1

sup
z∈{xn}

‖Sn+1z − Snz‖

+

∣
∣
∣
∣
∣

αn+1

1 − β′n+1
− αn

1 − β′n

∣
∣
∣
∣
∣

∥
∥f(xn) − Snxn

∥
∥.

(3.37)

Since limn→∞ αn = 0, and limn→∞ supz∈{xn}‖Sn+1z − Snz‖ = 0, we have from (3.37) that

lim sup
n→∞

(∥
∥yn+1 − yn

∥
∥ − ‖xn+1 − xn‖

) ≤ 0. (3.38)

Hence, by Lemma 2.3, we obtain

lim
n→∞

∥
∥yn − xn

∥
∥ = 0. (3.39)

From (3.35), we get

lim
n→∞

∥
∥yn − Snxn

∥
∥ = lim

n→∞
αn

1 − β′n

∥
∥f(xn) − Snxn

∥
∥ = 0, (3.40)
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and so it follows from (3.39) and (3.40) that

lim
n→∞

‖xn − Snxn‖ = 0. (3.41)

It follows from Lemma 2.6 and (3.41), we have

‖xn − Sxn‖ ≤ ‖xn − Snxn‖ + ‖Snxn − Sxn‖
≤ ‖xn − Snxn‖ + sup{‖Snz − Sz‖ : z ∈ {xn}} −→ 0, as n −→ ∞.

(3.42)

Since S is a nonexpansive mapping, we have from Lemma 3.1 that the net {xt} generated by

xt = tf(xt) + (1 − t)Sx (3.43)

converges strongly to x̃ ∈ F(S), as t → 0+. Next, we prove that

lim sup
n→∞

〈
f(x̃) − x̃, Jϕ(xn − x̃)

〉 ≤ 0. (3.44)

Let {xnk} be a subsequence of {xn} such that

lim
k→∞

〈
f(x̃) − x̃, Jϕ(xnk − x̃)

〉
= lim sup

n→∞

〈
f(x̃) − x̃, Jϕ(xn − x̃)

〉
. (3.45)

If follows from reflexivity of E and the boundedness of sequence {xnk} that there exists {xnki
}

which is a subsequence of {xnk} converging weakly to w ∈ C as i → ∞. Since Jϕ is weakly
continuous, we have by Lemma 2.8 that

lim sup
i→∞

Φ
(∥
∥
∥xnki

− x
∥
∥
∥
)
= lim sup

i→∞
Φ
(∥
∥
∥xnki

−w
∥
∥
∥
)
+ Φ(‖x −w‖), ∀x ∈ E. (3.46)

Let

H(x) = lim sup
i→∞

Φ
(∥
∥
∥xnki

− x
∥
∥
∥
)
, ∀x ∈ E. (3.47)

It follows that

H(x) = H(w) + Φ(‖x −w‖), ∀x ∈ E. (3.48)

From (3.42), we obtain

H(Sw) = lim sup
i→∞

Φ
(∥
∥
∥xnki

− Sw
∥
∥
∥
)
= lim sup

i→∞
Φ
(∥
∥
∥Sxnki

− Sw
∥
∥
∥
)

≤ lim sup
i→∞

Φ
(∥
∥
∥xnki

−w
∥
∥
∥
)
= H(w).

(3.49)
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On the other hand, however,

H(Sw) = H(w) + Φ(‖S(w) −w‖). (3.50)

It follows from (3.49) and (3.50) that

Φ(‖S(w) −w‖) = H(Sw) −H(w) ≤ 0. (3.51)

This implies that Sw = w, that is, w ∈ F(S) = F(T). Since the duality map Jϕ is single-valued
and weakly continuous, we get that

lim sup
n→∞

〈
f(x̃) − x̃, Jϕ(xn − x̃)

〉
= lim

k→∞
〈
f(x̃) − x̃, Jϕ(xnk − x̃)

〉

= lim
i→∞

〈
f(x̃) − x̃, Jϕ

(
xnki

− x̃
)〉

=
〈(
I − f

)
x̃, Jϕ(x̃ −w)

〉 ≤ 0

(3.52)

as required. Finally, we show that xn → x̃ as n → ∞.

Φ(‖xn+1 − x̃‖) = Φ
(∥
∥αn

(
f(xn) − f(x̃)

)
+ β′n(xn − x̃) + γ ′n(Snxn − x̃) + αn

(
f(x̃) − x̃

)∥
∥
)

≤ Φ
(∥
∥αn

(
f(xn) − f(x̃)

)
+ β′n(xn − x̃) + γ ′n(Snxn − x̃)

∥
∥
)

+ αn

〈
f(x̃) − x̃, Jϕ(xn+1 − x̃)

〉

≤ Φ
(
αnk‖xn − x̃‖ + β′n‖xn − x̃‖ + γ ′n‖xn − x̃‖)

+ αn

〈
f(x̃) − x̃, Jϕ(xn+1 − x̃)

〉

= Φ((1 − αn(1 − k))‖xn − x̃‖) + αn

〈
f(x̃) − x̃, Jϕ(xn+1 − x̃)

〉

≤ (1 − αn(1 − k))Φ(‖xn − x̃‖) + αn

〈
f(x̃) − x̃, Jϕ(xn+1 − x̃)

〉
.

(3.53)

It follows that from condition (i) and (3.44) that

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞, lim sup
n→∞

〈
f(x̃) − x̃, Jϕ(xn+1 − x̃)

〉 ≤ 0. (3.54)

Apply Lemma 2.7 to (3.53) to conclude Φ(‖xn+1 − x̃‖) → 0 as n → ∞; that is, xn → x̃ as
n → ∞. This completes the proof.

If {Tn : C → C} is a family of nonexpansive mappings, then we obtain the following
results.

Corollary 3.3. Let E be a real p-uniformly convex Banach space with a weakly continuous duality
mapping Jϕ, and C a nonempty closed convex subset of E. Let {Tn : C → C} be a family of
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nonexpansive mappings such that
⋂∞

n=1 F(Tn)/= ∅. Let f : C → C be a k-contraction with k ∈ (0, 1).
Assume that real sequences {αn}, {βn} and {γn} in (0, 1) satisfy the following conditions:

(i) αn + βn + γn = 1 for all n ∈ N;

(ii) limn→∞ αn = 0 and
∑∞

n=0 αn = +∞;

(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.

Let {xn} be the sequence generated by the following:

x1 = x ∈ C,

xn+1 = αnf(xn) + βnxn + γnTnxn, n ≥ 1.
(3.55)

Suppose that {Tn} satisfies the AKTT-condition. Let T be a mapping of C into itself defined by Tz =
limn→∞ Tnz for all z ∈ C and suppose that F(T) =

⋂∞
n=1 F(Tn). Then the sequence {xn} converges

strongly x̃ which solves the variational inequality:

〈(
I − f

)
x̃, Jϕ(x̃ − z)

〉 ≤ 0, z ∈ F(T). (3.56)

Corollary 3.4. Let E be a real p-uniformly convex Banach space with a weakly continuous duality
mapping Jϕ, and C a nonempty closed convex subset of E. Let T : C → C be a λ-strict pseudo-
contraction with respect to p, λ ∈ [0, min{1, 2−(p−2)cp}) and F(T)/= ∅. Let f : C → C be a k-
contraction with k ∈ (0, 1). Assume that real sequences {αn}, {βn} and {γn} in (0, 1) satisfy the
following conditions:

(i) αn + βn + γn = 1 for all n ∈ N;

(ii) limn→∞ αn = 0 and
∑∞

n=0 αn = +∞;

(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < ξ, where ξ = 1 − 2p−2λc−1p .

Let {xn} be the sequence generated by the following

x1 = x ∈ C,

xn+1 = αnf(xn) + βnxn + γnTxn, n ≥ 1.
(3.57)

Then the sequence {xn} converges strongly to x̃ which solves the following variational inequality:

〈(
I − f

)
x̃, Jϕ(x̃ − z)

〉 ≤ 0, z ∈ F(T). (3.58)

Theorem 3.5. Let E be a real p-uniformly convex Banach space with uniformly Gâteaux differentiable
norm, andC a nonempty closed convex subset of E which has the fixed point property for nonexpansive
mappings. Let {Tn : C → C} be a family of uniformlyλ-strict pseudo-contractions with respect to
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p, λ ∈ [0, min{1, 2−(p−2)cp}) and
⋂∞

n=1 F(Tn)/= ∅. Let f : C → C be a k-contraction with k ∈ (0, 1).
Assume that real sequences {αn}, {βn} and {γn} in (0, 1) satisfy the following conditions:

(i) αn + βn + γn = 1 for all n ∈ N;

(ii) limn→∞ αn = 0 and
∑∞

n=0 αn = +∞;

(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < ξ, where ξ = 1 − 2p−2λc−1p .

Let {xn} be the sequence generated by the following:

x1 = x ∈ C,

xn+1 = αnf(xn) + βnxn + γnTnxn, n ≥ 1.
(3.59)

Suppose that {Tn} satisfies the AKTT-condition. Let T be a mapping of C into itself defined by Tz =
limn→∞ Tnz for all z ∈ C and suppose that F(T) =

⋂∞
n=1 F(Tn). Then the sequence {xn} converges

strongly to a common fixed point x̃ of {Tn}.

Proof. It follows from the same argumentation as Theorem 3.2 that {xn} is bounded and
limn→∞‖xn − Sxn‖ = 0, where S is a nonexpansive mapping defined by (3.32). From
Lemma 2.2 that the net {xt} generated by xt = tf(xt) + (1 − t)Sxt converges strongly to
x̃ ∈ F(S) = F(T), as t → 0+. Obviously,

xt − xn = (1 − t)(Sxt − xn) + t
(
f(xt) − xn

)
. (3.60)

In view of Lemma 2.8, we calculate

‖xt − xn‖2 ≤ (1 − t)2‖Sxt − xn‖2 + 2t
〈
f(xt) − xn, J(xt − xn)

〉

≤
(
1 − 2t + t2

)
(‖xt − xn‖ + ‖Sxn − xn‖)2

+ 2t
〈
f(xt) − xt, J(xt − xn)

〉
+ 2t‖xt − xn‖2

(3.61)

and therefore

〈
f(xt) − xt, J(xn − xt)

〉 ≤ t

2
‖xt − xn‖2 + (1 + t)2‖xn − Sxn‖

2t
(2‖xt − xn‖ + ‖xn − Sxn‖).

(3.62)

Since {xn}, {xt} and {Sxn} are bounded and limn→∞(‖xn − Sxn‖/2t) = 0, we obtain

lim sup
n→∞

〈
f(xt) − xt, J(xn − xt)

〉 ≤ t

2
M, (3.63)

where M = supn≥1, t∈(0,1){‖xt − xn‖2}. We also know that

〈
f(x̃) − x̃, J(xn − x̃)

〉
=
〈
f(xt) − xt, J(xn − xt)

〉
+
〈
f(x̃) − f(xt) + xt − x̃, J(xn − xt)

〉

+
〈
f(x̃) − x̃, J(xn − x̃) − J(xn − xt)

〉
.

(3.64)
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From the fact that xt → x̃ ∈ F(T), as t → 0, {xn} is bounded and the duality mapping J is
norm-to-weak∗ uniformly continuous on bounded subset of E, it follows that as t → 0,

〈
f(x̃) − x̃, J(xn − x̃) − J(xn − xt)

〉 −→ 0, ∀n ∈ N,

〈
f(x̃) − f(xt) + xt − x̃, J(xn − xt)

〉 −→ 0, ∀n ∈ N.
(3.65)

Combining (3.63), (3.64) and two results mentioned above, we get

lim sup
n→∞

〈
f(x̃) − x̃, J(xn − x̃)

〉 ≤ 0. (3.66)

From (3.28) and Lemma 2.8, we get

‖xn+1 − x̃‖2 ≤ ∥
∥αn

(
f(xn) − f(x̃)

)
+ β′n(xn − x̃) + γ ′n(Snxn − x̃)

∥
∥2

+ 2αn

〈
f(x̃) − x̃, J(xn+1 − x̃)

〉

≤ (1 − αn(1 − k))‖xn − x̃‖2 + 2αn

〈
f(x̃) − x̃, J(xn+1 − x̃)

〉
.

(3.67)

Hence applying in Lemma 2.7 to (3.67), we conclude that limn→∞‖xn − x̃‖ = 0.

Corollary 3.6. LetE be a real p-uniformly convex Banach space with uniformly Gâteaux differentiable
norm, andC a nonempty closed convex subset of E which has the fixed point property for nonexpansive
mappings. Let {Tn : C → C} be a family of nonexpansive mappings such that

⋂∞
n=1 F(Tn)/= ∅. Let

f : C → C be a k-contraction with k ∈ (0, 1). Assume that real sequences {αn}, {βn} and {γn} in
(0, 1) satisfy the following conditions:

(i) αn + βn + γn = 1 for all n ∈ N;

(ii) limn→∞ αn = 0 and
∑∞

n=0 αn = +∞;

(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.

Let {xn} be the sequence generated by the following:

x1 = x ∈ C,

xn+1 = αnf(xn) + βnxn + γnTnxn, n ≥ 1.
(3.68)

Suppose that {Tn} satisfies the AKTT-condition. Let T be a mapping of C into itself defined by Tz =
limn→∞ Tnz for all z ∈ C and suppose that F(T) =

⋂∞
n=1 F(Tn). Then the sequence {xn} converges

strongly to a common fixed point x̃ of {Tn}.

Corollary 3.7. LetE be a real p-uniformly convex Banach space with uniformly Gâteaux differentiable
norm, and C a nonempty closed convex subset of E which has the fixed point property for
nonexpansive mappings. Let T : C → C be a λ-strict pseudo-contractions with respect to
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p, λ ∈ [0,min{1, 2−(p−2)cp}) and F(T)/= ∅. Let f : C → C be a k-contraction with k ∈ (0, 1).
Assume that real sequences {αn}, {βn} and {γn} in (0, 1) satisfy the following conditions:

(i) αn + βn + γn = 1 for all n ∈ N;

(ii) limn→∞ αn = 0 and
∑∞

n=0 αn = +∞;

(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < ξ, where ξ = 1 − 2p−2λc−1p .

Let {xn} be the sequence generated by the following:

x1 = x ∈ C,

xn+1 = αnf(xn) + βnxn + γnTxn, n ≥ 1.
(3.69)

Then the sequence {xn} converges strongly to a common fixed point x̃ of {Tn}.

4. Some Applications for Accretive Operators

We consider the problem of finding a zero of an accretive operator. An operator Ψ ⊂ E × E is
said to be accretive if for each (x1, y1) and (x2, y2) ∈ Ψ, there exists j ∈ J(x1−x2) such that 〈y1−
y2, j〉 ≥ 0. An accretive operator Ψ is said to satisfy the range condition if D(Ψ) ⊂ R(I + λΨ)
for all λ > 0, where D(Ψ) is the domain of Ψ, I is the identity mapping on E, R(I + λΨ) is the
range of I + λΨ, andD(Ψ) is the closure ofD(Ψ). If Ψ is an accretive operator which satisfies
the range condition, then we can define, for each λ > 0, a mapping Jλ : R(I + λΨ) → D(Ψ)
by Jλ = (I + λΨ)−1, which is called the resolvent of Ψ. We know that Jλ is nonexpansive
and F(Jλ) = Ψ−1(0) for all λ > 0. We also know the following [25]: For each λ, μ > 0 and
x ∈ R(I + λΨ) ∩ R(I + μΨ), it holds that

∥
∥Jλx − Jμx

∥
∥ ≤

∣
∣λ − μ

∣
∣

λ
‖x − Jλx‖. (4.1)

By the proof of Theorem 4.3 in [3], we have the following lemma.

Lemma 4.1. Let E be a Banach space and C a nonempty closed convex subset of E. Let Ψ ⊆ E × E be
an accretive operator such that Ψ−10/= ∅ and D(Ψ) ⊂ C ⊂ ⋂

λ>0 R(I + λΨ). Suppose that {λn} is a
sequence of (0,∞) such that inf{λn : n ∈ N} > 0 and

∑∞
n=1 |λn+1 − λn| < ∞. Then

(i) The sequence {Jλn} satisfies the AKTT-condition.

(ii) limn→∞ Jλnz = Jλz for all z ∈ C and F(Jλ) =
⋂∞

n=1 F(Jλn) where λn → λ as n → ∞.

By Corollary 3.3, we obtain the following result.

Theorem 4.2. Let E be a real p-uniformly convex Banach space with a weakly continuous duality
mapping Jϕ, and C a nonempty closed convex subset of E. Let Ψ is an m-accretive operator in E such
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that Ψ−10/= ∅. Let f : C → C be a k-contraction with k ∈ (0, 1). Assume that real sequences {αn},
{βn} and {γn} in (0, 1) satisfy the following conditions:

(i) αn + βn + γn = 1 for all n ∈ N;

(ii) limn→∞ αn = 0 and
∑∞

n=0 αn = +∞;

(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1;

(iv) {λn} is a sequence of (0,∞) such that inf{λn : n ∈ N} > 0 and
∑∞

n=1 |λn+1 − λn| < ∞.

Let {xn} be the sequence generated by the following:

x1 = x ∈ C,

xn+1 = αnf(xn) + βnxn + γnJλnxn, n ≥ 1.
(4.2)

Then the sequence {xn} converges strongly x̃ which solves the following variational inequality:

〈(
I − f

)
x̃, Jϕ(x̃ − z)

〉 ≤ 0, z ∈ F(Jλ). (4.3)

By Corollary 3.6, we obtain the following result.

Theorem 4.3. Let E be a real p-uniformly convex Banach space with uniformly Gâteaux differentiable
norm, and C a nonempty closed convex subset of E. Let Ψ is an m-accretive operator in E such that
Ψ−10/= ∅. Let f : C → C be a k-contraction with k ∈ (0, 1). Assume that real sequences {αn}, {βn}
and {γn} in (0, 1) satisfy the following conditions:

(i) αn + βn + γn = 1 for all n ∈ N;

(ii) limn→∞ αn = 0 and
∑∞

n=0 αn = +∞;

(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1;

(iv) {λn} is a sequence of (0,∞) such that inf{λn : n ∈ N} > 0 and
∑∞

n=1 |λn+1 − λn| < ∞.

Let {xn} be the sequence generated by the following:

x1 = x ∈ C,

xn+1 = αnf(xn) + βnxn + γnJλnxn, n ≥ 1.
(4.4)

Then the sequence {xn} converges strongly x̃ in Ψ−10.
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