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We present some fixed point results for nondecreasing and weakly increasing operators in a
partially ordered metric space using implicit relations. Also we give an existence theorem for
common solution of two integral equations.

1. Introduction

Existence of fixed points in partially ordered sets has been considered recently in [1], and
some generalizations of the result of [1] are given in [2–6]. Also, in [1] some applications
to matrix equations are presented, in [3, 4] some applications to periodic boundary value
problem and to some particular problems are, respectively, given. Later, in [6] O’Regan and
Petruşel gave some existence results for Fredholm and Volterra type integral equations. In
some of the above works, the fixed point results are given for nondecreasing mappings.

We can order the purposes of the paper as follows.
First, we give a slight generalization of some of the results of the above papers using

an implicit relation in the following way.
In [1, 3], the authors used the following contractive condition in their result, there

exists k ∈ [0, 1) such that

d
(
fx, fy

)
≤ kd

(
x, y

)
for y � x. (1.1)

Afterwards, in [2], the authors used the nonlinear contractive condition, that is,

d
(
fx, fy

)
≤ ψ

(
d
(
x, y

))
for y � x, (1.2)
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where ψ : [0,∞) → [0,∞) is anondecreasing function with limn→∞ψ
n(t) = 0 for t > 0, instead

of (1.1). Also in [2], the authors proved a fixed point theorem using generalized nonlinear
contractive condition, that is,

d
(
fx, fy

)
≤ ψ

(
max

{
d
(
x, y

)
, d

(
x, fx

)
, d

(
y, fy

)
,
1
2
[
d
(
x, fy

)
+ d

(
y, fx

)]
})

(1.3)

for y � x, where ψ is as above. In the Section 3, we generalized the above contractive
conditions using the implicit relation technique in such a way that

T
(
d
(
Fx, Fy

)
, d

(
x, y

)
, d(x, Fx), d

(
y, Fy

)
, d

(
x, Fy

)
, d

(
y, Fx

))
≤ 0 (1.4)

for y � x, where T : R
6
+ → R is a function as given in Section 2. We can obtain various

contractive conditions from (1.4). For example, if we choose

T(t1, . . . , t6) = t1 − ψ

(
max

{
t2, t3, t4,

1
2
[t5 + t6]

})
(1.5)

in (1.4), then, we have (1.3). Similarly we can have the contractive conditions in [7–9] from
(1.4).

In some of the above mentioned theorems, the fixed point results are given for
nondecreasing mappings. Also in these theorems the following condition is used:

there exists x0 ∈ X such that x0 � fx0. (1.6)

In Section 4, we give some examples such that two weakly increasing mappings need not be
nondecreasing. Therefore, we give a common fixed point theorem for two weakly increasing
operators in partially ordered metric spaces using implicit relation technique. Also we did
not use the condition (1.6) in this theorem. At the end, to see the applicability of our result,
we give an existence theorem for common solution of two integral equations using a result
of the Section 4.

2. Implicit Relation

Implicit relations onmetric spaces have been used inmany articles. See for examples, [10–15].
Let R+ denote the nonnegative real numbers, and let T be the set of all continuous

functions T : R6
+ → R satisfying the following conditions:

T1 : T(t1, . . . , t6) is nonincreasing in variables t2, . . . , t6;

T2 : there exists a right continuous function f : R+ → R+, f(0) = 0, f(t) < t for t > 0,
such that for u ≥ 0,

T(u, v, u, v, 0, u + v) ≤ 0 (2.1)
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or

T(u, v, 0, 0, v, v) ≤ 0 (2.2)

implies u ≤ f(v);

T3 : T(u, 0, u, 0, 0, u) > 0, for all u > 0.

Example 2.1. T(t1, . . . , t6) = t1−αmax{t2, t3, t4}−(1−α)[at5+bt6],where 0 ≤ α < 1, 0 ≤ a < 1/2,
0 ≤ b < 1/2.

Let u > 0 and T(u, v, u, v, 0, u + v) = u − αmax{u, v} − (1 − α)b(u + v) ≤ 0. If u ≥ v,
then (1 − b)u ≤ bv which implies b ≥ 1/2, a contradiction. Thus u < v and u ≤ ((α + (1 −
α)b)/(1− (1−α)b))v = βv. Similarly, let u > 0 and T(u, v, 0, 0, v, v) = u−αv − (1−α)(a+ b)v =
u− (α+(1−α)(a+b))v ≤ 0, then u ≤ (α+(1−α)(a+b))v = γv. If u = 0, then u ≤ γv. Thus T2 is
satisfied with f(t) = max{β, γ}t. Also T(u, 0, u, 0, 0, u) = u−αu− (1−α)bu = (1−α)(1−b)u > 0,
for all u > 0. Therefore, T ∈ T.

Example 2.2. T(t1, . . . , t6) = t1 − kmax{t2, t3, t4, (1/2)(t5 + t6)}, where k ∈ (0, 1).
Let u > 0 and T(u, v, u, v, 0, u + v) = u − kmax{u, v} ≤ 0. If u ≥ v, then u ≤ ku, which

is a contradiction. Thus u < v and u ≤ kv. Similarly, let u > 0 and T(u, v, 0, 0, v, v) = u − kv ≤
0, then we have u ≤ kv. If u = 0, then u ≤ kv. Thus T2 is satisfied with f(t) = kt. Also
T(u, 0, u, 0, 0, u) = u − ku > 0, for all u > 0. Therefore, T ∈ T.

Example 2.3. T(t1, . . . , t6) = t1 − φ(max{t2, t3, t4, (1/2)(t5 + t6)}), where φ : R+ → R+ is right
continuous and φ(0) = 0, φ(t) < t for t > 0.

Let u > 0 and T(u, v, u, v, 0, u + v) = u − φ(max{u, v}) ≤ 0. If u ≥ v, then u − φ(u) ≤ 0,
which is a contradiction. Thus u < v and u ≤ φ(v). Similarly, let u > 0 and T(u, v, 0, 0, v, v) =
u − φ(v) ≤ 0, then we have u ≤ φ(v). If u = 0, then u ≤ φ(v). Thus T2 is satisfied with f = φ.
Also T(u, 0, u, 0, 0, u) = u − φ(u) > 0, for all u > 0. Therefore, T ∈ T.

Example 2.4. T(t1, . . . , t6) = t21 − t1(at2 + bt3 + ct4) − dt5t6, where a > 0, b, c, d ≥ 0, a + b + c < 1
and a + d < 1.

Let u > 0 and T(u, v, u, v, 0, u + v) = u2 − u(av + bu + cv) ≤ 0. Then u ≤ ((a + c)/(1 −
b))v = h1v. Similarly, let u > 0 and T(u, v, 0, 0, v, v) = u2 − auv − dv2 ≤ 0, then we have u ≤
((a+

√
4d + a2)/2)v = h2v. If u = 0, then u ≤ h2v. Thus T2 is satisfied with f(t) = max{h1, h2}t.

Also T(u, 0, u, 0, 0, u) = (1 − b)u2 > 0, for all u > 0. Therefore, T ∈ T.

3. Fixed Point Theorem for Nondecreasing Mappings

We need the following lemma for the proof of our theorems.

Lemma 3.1 (see [16]). Let f : R+ → R+ be a right continuous function such that f(t) < t for every
t > 0, then limn→∞f

n(t) = 0, where fn denotes the n-times repeated composition of f with itself.
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Theorem 3.2. Let (X,�) be a partially ordered set and suppose that there is a metric d onX such that
(X, d) is a complete metric space. Suppose F : X → X is a nondecreasing mapping such that for all
x, y ∈ X with y � x,

T
(
d
(
Fx, Fy

)
, d

(
x, y

)
, d(x, Fx), d

(
y, Fy

)
, d

(
x, Fy

)
, d

(
y, Fx

))
≤ 0, (3.1)

where T ∈ T. Also

F is continuous, (3.2)

or

if {xn} ⊂ X is a nondecreasing sequence with xn −→ x in X,

then xn � x ∀n
(3.3)

hold. If there exists an x0 ∈ X with x0 � F(x0), then F has a fixed point.

Proof. If Fx0 = x0, then the proof is finished; so suppose x0 /=Fx0. Now let xn = Fxn−1 for
n ∈ {1, 2, . . .}. Notice that, since x0 � Fx0 and F is nondecreasing, we have

x0 � x1 � x2 � · · · � xn � xn+1 � · · · . (3.4)

Now since xn−1 � xn, we can use the inequality (3.1) for these points, then we have

T(d(Fxn, Fxn−1), d(xn, xn−1), d(xn, Fxn), d(xn−1, Fxn−1), d(xn, Fxn−1), d(xn−1, Fxn)) ≤ 0
(3.5)

and so

T(d(xn+1, xn), d(xn, xn−1), d(xn, xn+1), d(xn−1, xn), 0, d(xn−1, xn+1)) ≤ 0. (3.6)

Now using T1, we have

T(d(xn+1, xn), d(xn, xn−1), d(xn, xn+1), d(xn−1, xn), 0, d(xn−1, xn) + d(xn, xn+1)) ≤ 0, (3.7)

and from T2 there exists a right continuous function f : R+ → R+, f(0) = 0, f(t) < t, for
t > 0, such that for all n ∈ {1, 2, . . .},

d(xn+1, xn) ≤ f(d(xn, xn−1)). (3.8)

If we continue this procedure, we can have

d(xn+1, xn) ≤ fn(d(x1, x0)), (3.9)
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and so from Lemma 3.1,

lim
n→∞

d(xn+1, xn) = 0. (3.10)

Next we show that {xn} is a Cauchy sequence. Suppose it is not true. Then we can find a δ > 0
and two sequence of integers {m(k)}, {n(k)}, m(k) > n(k) ≥ k with

rk = d
(
xn(k), xm(k)

)
≥ δ for k ∈ {1, 2, . . .}. (3.11)

We may also assume

d
(
xm(k)−1, xn(k)

)
< δ (3.12)

by choosing m(k) to be the smallest number exceeding n(k) for which (3.11) holds. Now
(3.9), (3.11), and (3.12) imply

δ ≤ rk ≤ d
(
xm(k), xm(k)−1

)
+ d

(
xm(k)−1, xn(k)

)
≤ fm(k)−1(d(x0, x1)) + δ (3.13)

and so

lim
k→∞

rk = δ. (3.14)

Also since

δ ≤ rk ≤ d
(
xn(k), xn(k)+1

)
+ d

(
xm(k), xm(k)+1

)
+ d

(
xn(k)+1, xm(k)+1

)
, (3.15)

we have from (3.9) that

δ ≤ rk ≤ fn(k)(d(x0, x1)) + fm(k)(d(x0, x1)) + d
(
xm(k)+1, xn(k)+1

)
. (3.16)

On the other hand, since xn(k) � xm(k), we can use the condition (3.1) for these points.
Therefore, we have

T
(
d
(
Fxm(k), Fxn(k)

)
, d

(
xm(k), xn(k)

)
, d

(
xm(k), Fxm(k)

)
,

d
(
xn(k), Fxn(k)

)
, d

(
xm(k), Fxn(k)

)
, d

(
xn(k), Fxm(k)

))
≤ 0

(3.17)

and so

T
(
d
(
Fxm(k), Fxn(k)

)
, rk, f

m(k)(d(x0, x1)), fn(k)(d(x0, x1)),

rk + fn(k)(d(x0, x1)), rk + fm(k)(d(x0, x1))
)
≤ 0.

(3.18)
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Now letting k → ∞ and using (3.14), we have, by continuity of T, that

T

(
lim
k→∞

d
(
xm(k)+1, xn(k)+1

)
, δ, 0, 0, δ, δ

)
≤ 0. (3.19)

From T2, we have limk→∞d(xm(k)+1, xn(k)+1) ≤ f(δ). Therefore, letting k → ∞ in (3.16), we
have δ ≤ f(δ). This is a contradiction since f(t) < t for t > 0. Thus {xn} is a Cauchy sequence
in X, so there exists an x ∈ X with limn→∞xn = x.

If (3.2) holds, then clearly x = Fx. Now suppose (3.3) holds. Suppose d(x, Fx) > 0.
Now since limn→∞xn = x, then from (3.3), xn � x for all n. Using the inequality (3.1), we
have

T(d(Fx, Fxn), d(x, xn), d(x, Fx), d(xn, Fxn), d(x, Fxn), d(xn, Fx)) ≤ 0, (3.20)

so letting n → ∞ from the last inequality, we have

T(d(Fx, x), 0, d(x, Fx), 0, 0, d(x, Fx)) ≤ 0, (3.21)

which is a contradiction to T3. Thus d(x, Fx) = 0 and so x = Fx.

Remark 3.3. Note that if we take that

T4: there exists a nondecreasing function f : R+ → R+ with limn→∞f
n(t) = 0 for each

t > 0, such that for u ≥ 0,

T(u, v, u, v, 0, u + v) ≤ 0 (3.22)

or

T(u, v, 0, 0, v, v) ≤ 0 (3.23)

implies u ≤ f(v),

Instead of T2 in Theorem 3.2, again we can have the same result.

If we combine Theorem 3.2 with Example 2.1, we obtain the following result.

Corollary 3.4. Let (X,�) be a partially ordered set and suppose that there is a metric d on X such
that (X, d) is a complete metric space. Suppose F : X → X is a nondecreasing mapping such that for
all x, y ∈ X with y � x,

d
(
Fx, Fy

)
≤ αmax

{
d
(
x, y

)
, d(x, Fx), d

(
y, Fy

)}
+ (1 − α)

[
ad

(
x, Fy

)
+ bd

(
y, Fx

)]
, (3.24)

where 0 ≤ α < 1, 0 ≤ a < 1/2, 0 ≤ b < 1/2. Also

F is continuous (3.25)
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or

if {xn} ⊂ X is a nondecreasing sequence with xn −→ x in X,

then xn � x ∀n
(3.26)

hold. If there exists an x0 ∈ X with x0 � F(x0), then F has a fixed point.

Remark 3.5. Theorem 2.2 of [2] follows from Example 2.3, Remark 3.3, and Theorem 3.2.

Remark 3.6. We can have some new results from other examples and Theorem 3.2.

Remark 3.7. In Theorem 1 [1], it is proved that if

every pair of elements has a lower bound and an upper bound, (3.27)

then for every x ∈ X,

lim
n→∞

Fn(x) = y, (3.28)

where y is the fixed point of F such that

y = lim
n→∞

Fn(x0) (3.29)

and hence F has a unique fixed point. If condition (3.27) fails, it is possible to find examples
of functions F with more than one fixed point. There exist some examples to illustrate this
fact in [3].

4. Fixed Point Theorem for Weakly Increasing Mappings

Now we give a fixed point theorem for two weakly increasing mappings in ordered metric
spaces using an implicit relation. Before this, we will define an implicit relation for the
contractive condition of the theorem.

LetT′ be the set of all continuous functions T : R6
+ → R satisfying T1 and the following

conditions:

T ′
2: there exists a right continuous function f : R+ → R+, f(0) = 0, f(t) < t for t > 0,
such that for u ≥ 0,

T(u, v, u, v, 0, u + v) ≤ 0 (4.1)

or

T(u, v, v, u, u + v, 0) ≤ 0 (4.2)

or

T(u, v, 0, 0, v, v) ≤ 0 (4.3)



8 Fixed Point Theory and Applications

implies u ≤ f(v);

T ′
3: T(u, 0, u, 0, 0, u) > 0 and T(u, 0, 0, u, u, 0) > 0, for all u > 0.

We can easily show that, all functions in the Examples in Section 2 are in T′.

Definition 4.1 (see [17, 18]). Let (X,�) be a partially ordered set. Two mappings F,G : X → X
are said to be weakly increasing if Fx � GFx and Gx � FGx for all x ∈ X.

Note that, two weakly increasing mappings need not be nondecreasing.

Example 4.2. Let X = R+ endowed with usual ordering. Let F,G : X → X defined by

Fx =

⎧
⎨

⎩

x if 0 ≤ x ≤ 1

0 if 1 < x < ∞,
Gx =

⎧
⎨

⎩

√
x if 0 ≤ x ≤ 1

0 if 1 < x < ∞,
(4.4)

then it is obvious that Fx ≤ GFx and Gx ≤ FGx for all x ∈ X. Thus F and G are weakly
increasing mappings. Note that both F and G are not nondecreasing.

Example 4.3. LetX = [1,∞)×[1,∞) be endowed with the coordinate ordering, that is, (x, y) �
(z,w) ⇔ x ≤ z and y ≤ w. Let F,G : X → X be defined by F(x, y) = (2x, 3y) and G(x, y) =
(x2, y2), then F(x, y) = (2x, 3y) � GF(x, y) = G(2x, 3y) = (4x2, 9y2) and G(x, y) = (x2, y2) �
FG(x, y) = F(x2, y2) = (2x2, 3y2). Thus F and G are weakly increasing mappings.

Example 4.4. Let X = R
2 be endowed with the lexicographical ordering, that is, (x, y) �

(z,w) ⇔ (x < z) or (if x = z, then y ≤ w). Let F,G : X → X be defined by

F
(
x, y

)
=
(
max

{
x, y

}
,min

{
x, y

})
,

G
(
x, y

)
=
(
max

{
x, y

}
,
x + y

2

)
,

(4.5)

then

F
(
x, y

)
=
(
max

{
x, y

}
,min

{
x, y

})

� GF
(
x, y

)

= G
(
max

{
x, y

}
,min

{
x, y

})

=

(

max
{
max

{
x, y

}
,min

{
x, y

}}
,
max

{
x, y

}
+min

{
x, y

}

2

)

=
(
max

{
x, y

}
,
x + y

2

)
,
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G
(
x, y

)
=
(
max

{
x, y

}
,
x + y

2

)

� FG
(
x, y

)

= F

(
max

{
x, y

}
,
x + y

2

)

=
(
max

{
max

{
x, y

}
,
x + y

2

}
,min

{
max

{
x, y

}
,
x + y

2

})

=
(
max

{
x, y

}
,
x + y

2

)
.

(4.6)

Thus F and G are weakly increasing mappings. Note that (1, 4) � (2, 3) but F(1, 4) =
(4, 1)(3, 2) = F(2, 3), then F is not nondecreasing. Similarly, G is not nondecreasing.

Theorem 4.5. Let (X,�) be a partially ordered set and suppose that there is a metric d onX such that
(X, d) is a complete metric space. Suppose F,G : X → X are two weakly increasing mappings such
that for all comparable x, y ∈ X,

T
(
d
(
Fx,Gy

)
, d

(
x, y

)
, d(x, Fx), d

(
y,Gy

)
, d

(
x,Gy

)
, d

(
y, Fx

))
≤ 0, (4.7)

where T ∈ T′. Also

F is continuous (4.8)

or

G is continuous (4.9)

or

if {xn} ⊂ X is a nondecreasing sequence with xn −→ x in X,

then xn � x ∀n
(4.10)

hold, then F and G have a common fixed point.

Remark 4.6. Note that, in this theorem we remove the condition “there exists an x0 ∈ X with
x0 � F(x0)” of Theorem 3.2. Again we can consider the result of Remark 3.7 for this theorem.

Proof of Theorem 4.5. First of all we show that if F or G has a fixed point, then it is a common
fixed point of F and G. Indeed, let z be a fixed point of F. Now assume d(z,Gz) > 0. If we
use the inequality (4.7), for x = y = z, we have

T(d(z,Gz), 0, 0, d(z,Gz), d(z,Gz), 0) ≤ 0, (4.11)
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which is a contradiction to T ′
3. Thus d(z,Gz) = 0 and so z is a common fixed point of F andG.

Similarly, if z is a fixed point of G, then it is also a fixed point of F. Now let x0 be an arbitrary
point of X. If x0 = Fx0, the proof is finished, so assume x0 /=Fx0. We can define a sequence
{xn} in X as follows:

x2n+1 = Fx2n, x2n+2 = Gx2n+1 for n ∈ {0, 1, . . .}. (4.12)

Without loss of generality, we can suppose that the successive terms of {xn} are different.
Otherwise, we are again finished. Note that since F and G are weakly increasing, we have

x1 = Fx0 � GFx0 = Gx1 = x2,

x2 = Gx1 � FGx1 = Fx2 = x3

(4.13)

and continuing this process, we have

x1 � x2 � · · · � xn � xn+1 � · · · . (4.14)

Now since x2n−1 and x2n are comparable then, we can use the inequality (4.7) for these points
then we have

T(d(Fx2n, Gx2n−1), d(x2n, x2n−1), d(x2n, Fx2n), d(x2n−1, Gx2n−1),

d(x2n, Gx2n−1), d(x2n−1, Fx2n)) ≤ 0
(4.15)

and so

T(d(x2n+1, x2n), d(x2n, x2n−1), d(x2n, x2n+1), d(x2n−1, x2n), 0, d(x2n−1, x2n+1)) ≤ 0. (4.16)

Now using T1, we have

T(d(x2n+1, x2n), d(x2n, x2n−1), d(x2n, x2n+1), d(x2n−1, x2n), 0, d(x2n−1, x2n) + d(x2n, x2n+1)) ≤ 0,
(4.17)

and form T ′
2 there exists a right continuous function f : R+ → R+, f(0) = 0, f(t) < t, for t > 0,

we have for all n ∈ {1, 2, . . .}

d(x2n+1, x2n) ≤ f(d(x2n, x2n−1)). (4.18)

Similarly, since x2n and x2n+1 are comparable, then we can use the inequality (4.7) for these
points then we have

T(d(Fx2n, Gx2n+1), d(x2n, x2n+1), d(x2n, Fx2n), d(x2n+1, Gx2n+1),

d(x2n, Gx2n+1), d(x2n+1, Fx2n)) ≤ 0
(4.19)
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and so

T(d(x2n+1, x2n+2), d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2), d(x2n, x2n+2), 0) ≤ 0. (4.20)

Now again using T1, we have

T(d(x2n+1, x2n+2), d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2),

d(x2n, x2n+1) + d(x2n+1, x2n+2), 0) ≤ 0,
(4.21)

and form T ′
2, we have for all n ∈ {1, 2, . . .},

d(x2n+1, x2n+2) ≤ f(d(x2n, x2n+1)). (4.22)

Therefore, from (4.18) and (4.22), we can have, for all n ∈ {2, 3, . . .}

d(xn+1, xn) ≤ f(d(xn, xn−1)) (4.23)

and so

d(xn+1, xn) ≤ fn−1(d(x2, x1)). (4.24)

Thus from Lemma 3.1, we have, since d(x2, x1) > 0,

lim
n→∞

d(xn+1, xn) = 0. (4.25)

Next we show that {xn} is a Cauchy sequence. For this it is sufficient to show that {x2n} is a
Cauchy sequence. Suppose it is not true. Then we can find an δ > 0 such that for each even
integer 2k, there exist even integers 2m(k) > 2n(k) > 2k such that

d
(
x2n(k), x2m(k)

)
≥ δ for k ∈ {1, 2, . . .}. (4.26)

We may also assumethat

d
(
x2m(k)−2, x2n(k)

)
< δ (4.27)

by choosing 2m(k) to be the smallest number exceeding 2n(k) for which (4.26) holds. Now
(4.24), (4.26), and (4.27) imply

0 < δ ≤ d
(
x2n(k), x2m(k)

)

≤ d
(
x2n(k), x2m(k)−2

)
+ d

(
x2m(k)−2, x2m(k)−1

)
+ d

(
x2m(k)−1, x2m(k)

)

≤ δ + f2m(k)−3(d(x2, x1)) + f2m(k)−2(d(x2, x1))

(4.28)
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and so

lim
k→∞

d
(
x2n(k), x2m(k)

)
= δ. (4.29)

Also, by the triangular inequality,

∣
∣d
(
x2n(k), x2m(k)−1

)
− d

(
x2n(k), x2m(k)

)∣∣ ≤ d
(
x2m(k)−1, x2m(k)

)
≤ f2m(k)−2(d(x2, x1)),

∣
∣d
(
x2n(k)+1, x2m(k)−1

)
− d

(
x2n(k), x2m(k)

)∣∣ ≤ d
(
x2m(k)−1, x2m(k)

)
+ d

(
x2n(k), x2n(k)+1

)

≤ f2m(k)−2(d(x2, x1)) + f2n(k)−1(d(x2, x1)).

(4.30)

Therefore, we get

lim
k→∞

d
(
x2n(k), x2m(k)−1

)
= δ,

lim
k→∞

d
(
x2n(k)+1, x2m(k)−1

)
= δ.

(4.31)

Also we have

δ ≤ d
(
x2n(k), x2m(k)

)

≤ d
(
x2n(k), x2n(k)+1

)
+ d

(
x2n(k)+1, x2m(k)

)

≤ f2n(k)−2(d(x2, x1)) + d
(
Fx2n(k), Gx2m(k)−1

)
.

(4.32)

On the other hand, since x2n(k) and x2m(k)−1 are comparable, we can use the condition (4.7)
for these points. Therefore, we have

T
(
d
(
Fx2n(k), Gx2m(k)−1

)
, d

(
x2n(k), x2m(k)−1

)
, d

(
x2n(k), Fx2n(k)

)
,

d
(
x2m(k)−1, Gx2m(k)−1

)
, d

(
x2n(k), Gx2m(k)−1

)
, d

(
x2m(k)−1, Fx2n(k)

))
≤ 0

(4.33)

and so

T
(
d
(
x2n(k)+1, x2m(k)

)
, d

(
x2n(k), x2m(k)−1

)
, d

(
x2n(k), x2n(k)+1

)
,

d
(
x2m(k)−1, x2m(k)

)
, d

(
x2n(k), x2m(k)

)
, d

(
x2m(k)−1, x2n(k)+1

))
≤ 0.

(4.34)

Now, considering (4.29) and (4.31) and letting k → ∞ in the last inequality, we have, by
continuity of T , that

T

(
lim
k→∞

d
(
x2n(k)+1, x2m(k)

)
, δ, 0, 0, δ, δ

)
≤ 0. (4.35)
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From T ′
2, we have limk→∞d(x2n(k)+1, x2m(k)) ≤ f(δ). Therefore, letting k → ∞ in (4.32), we

have δ ≤ f(δ). This is a contradiction since f(t) < t for t > 0. Thus {x2n} is a Cauchy sequence
in X, so {xn} is a Cauchy sequence. Therefore, there exists an x ∈ X with limn→∞xn = x.

If (4.8) or (4.9) hold then clearly x = Fx = Gx. Now suppose (4.10) holds. Suppose
d(x, Fx) > 0. Now since limn→∞xn = x, then from (4.10), x2n−1 � x for all n. Using the
inequality (4.7), we have

T(d(Fx,Gx2n−1), d(x, x2n−1), d(x, Fx), d(x2n−1, Gx2n−1), d(x,Gx2n−1), d(x2n−1, Fx)) ≤ 0.
(4.36)

So letting n → ∞ from the last inequality, we have

T(d(Fx, x), 0, d(x, Fx), 0, 0, d(x, Fx)) ≤ 0 (4.37)

which is a contradiction to T ′
3. Thus d(x, Fx) = 0 and so x = Fx = Gx.

Remark 4.7. We can have some new results from Theorem 4.5 with some examples for T .

For example, we can have the following corollary.

Corollary 4.8. Let (X,�) be a partially ordered set and suppose that there is a metric d on X such
that (X, d) is a complete metric space. Suppose F,G : X → X are two weakly increasing mappings
such that for all comparable x, y ∈ X,

d
(
Fx,Gy

)
≤ φ

(
d
(
x, y

))
, (4.38)

where φ : R+ → R+ is a right continuous function such that φ(0) = 0, φ(t) < t for t > 0. Also

F or G is continuous (4.39)

or

if {xn} ⊂ X is a nondecreasing sequence with xn −→ x in X,

then xn � x ∀n
(4.40)

hold, then F and G have a common fixed point.

Proof. Let T(t1, . . . , t6) = t1 − φ(t2), then it is obvious that T ∈ T′. Therefore, the proof is
complete from Theorem 4.5.
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5. Application

Consider the integral equations

x(t) =
∫b

a

K1(t, s, x(s))ds + g(t), t ∈ [a, b],

x(t) =
∫b

a

K2(t, s, x(s))ds + g(t), t ∈ [a, b].

(5.1)

The purpose of this section is to give an existence theorem for common solution of
(5.1) using Corollary 4.8. This section is related to those [19–22].

Let  be a partial order relation on R
n.

Theorem 5.1. Consider the integral equations (5.1).

(i) K1, K2 : [a, b] × [a, b] × R
n → R

n and g : Rn → R
n are continuous;

(ii) for each t, s ∈ [a, b],

K1(t, s, x(s))  K2

(

t, s,

∫b

a

K1(s, τ, x(τ))dτ + g(s)

)

,

K2(t, s, x(s))  K1

(

t, s,

∫b

a

K2(s, τ, x(τ))dτ + g(s)

)

;

(5.2)

(iii) there exist a continuous function p : [a, b] × [a, b] → R+ and a right continuous and
nondecreasing function φ : R+ → R+ such that φ(0) = 0 and φ(t) < t for t > 0, such that

|K1(t, s, u) −K2(t, s, v)| ≤ p(t, s)φ(|u − v|) (5.3)

for each t, s ∈ [a, b] and comparable u, v ∈ R
n;

(iv) supt∈[a,b]
∫b
ap(t, s)ds ≤ 1.

Then the integral equations (5.1) have a unique common solution x∗ in C([a, b],Rn).

Proof. Let X := C([a, b],Rn)with the usual supremum norm, that is, ‖x‖ = maxt∈[a,b]|x(t)|, for
x ∈ C([a, b],Rn). Consider on X the partial order defined by

x, y ∈ C([a, b],Rn), x � y iff x(t)  y(t) for any t ∈ [a, b]. (5.4)

Then (X,�) is a partially ordered set. Also (X, ‖ · ‖) is a complete metric space. Moreover,
for any increasing sequence {xn} in X converging to x∗ ∈ X, we have xn(t)  x∗(t) for any
t ∈ [a, b]. Also for every x, y ∈ X, there exists c(x, y) ∈ X which is comparable to x and y [6].
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Define F,G : X → X, by

Fx(t) =
∫b

a

K1(t, s, x(s))ds + g(t), t ∈ [a, b],

Gx(t) =
∫b

a

K2(t, s, x(s))ds + g(t), t ∈ [a, b].

(5.5)

Now from (ii), we have, for all t ∈ [a, b],

Fx(t) =
∫b

a

K1(t, s, x(s))ds + g(t)


∫b

a

K2

(

t, s,

∫b

a

K1(s, τ, x(τ))dτ + g(s)

)

ds + g(t)

=
∫b

a

K2(t, s, Fx(s))ds + g(t)

= GFx(t),

Gx(t) =
∫b

a

K2(t, s, x(s))ds + g(t)


∫b

a

K1

(

t, s,

∫b

a

K2(s, τ, x(τ))dτ + g(s)

)

ds + g(t)

=
∫b

a

K1(t, s, Gx(s))ds + g(t)

= FGx(t).

(5.6)

Thus, we have Fx � GFx and Gx � FGx for all x ∈ X. This shows that F and G are weakly
increasing. Also for each comparable x, y ∈ X, we have

∣∣Fx(t) −Gy(t)
∣∣ =

∣∣∣∣∣

∫b

a

K1(t, s, x(s))ds −
∫b

a

K2
(
t, s, y(s)

)
ds

∣∣∣∣∣

≤
∫b

a

∣∣K1(t, s, x(s)) −K2
(
t, s, y(s)

)∣∣ds

≤
∫b

a

p(t, s)φ
(∣∣x(s) − y(s)

∣∣)ds

≤ φ
(∥∥x − y

∥∥)
∫b

a

p(t, s)ds

≤ φ
(∥∥x − y

∥∥), for any t ∈ [a, b].

(5.7)
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Hence ‖Fx − Gy‖ ≤ φ(‖x − y‖) for each comparable x, y ∈ X. Therefore, all conditions of
Corollary 4.8 are satisfied. Thus the conclusion follows.
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