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We will apply the successive approximation method for proving the Hyers-Ulam stability of a
nonlinear integral equation.

1. Introduction

We say a functional equation is stable if, for every approximate solution, there exists an
exact solution near it. In 1940, Ulam posed the following problem concerning the stability
of functional equations [1]: we are given a group G and a metric group G′ with metric ρ(·, ·).
Given ε > 0, does there exist a δ > 0 such that if f : G → G′ satisfies

ρ
(
f
(
xy

)
, f(x)f

(
y
))

< δ, (1.1)

for all x, y ∈ G, then a homomorphism h : G → G′ exists with ρ(f(x), h(x)) < ε for all x ∈ G?
The problem for the case of the approximately additive mappings was solved by Hyers [2]
when G and G′ are Banach space. Since then, the stability problems of functional equations
have been extensively investigated by several mathematicians (cf. [3–5]). Recently, Y. Li and
L. Hua proved the stability of Banach’s fixed point theorem [6]. The interested reader can also
find further details in the book of Kuczma (see [7, chapter XVII]). Examples of some recent
developments, discussions, and critiques of that idea of stability can be found, for example,
in [8–12].
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In this paper, we study the Hyers-Ulam stability for the nonlinear Volterra integral
equation of second kind. Jung was the author who investigated the Hyers-Ulam stability of
Volterra integral equation on any compact interval. In 2007, he proved the following [13].

Given a ∈ R and r > 0, let I(a; r) denote a closed interval {x ∈ R | a − r ≤ x ≤ a + r}
and let f : I(a; r) × C → C be a continuous function which satisfies a Lipschitz condition
|f(x, y) − f(x, z)| ≤ L|y − z| for all x ∈ I(a; r) and y, z ∈ C, where L is a constant with
0 < Lr < 1. If a continuous function y : I(a; r) → C satisfies

∣
∣
∣
∣y(x) − b −

∫x

a

f(x, t, u(t))dt
∣
∣
∣
∣ ≤ ε, (1.2)

for all x ∈ I(a; r) and for some ε ≥ 0, where b is a complex number, then there exists a unique
continuous function u : I(a; r) → C such that

y(x) = b +
∫x

a

f(x, t, u(t))dt,
∣∣u(x) − y(x)

∣∣ ≤ ε

1 − Lr
, (1.3)

for all x ∈ I(a; r).
The purpose of this paper is to discuss the Hyers-Ulam stability of the following

nonhomogeneous nonlinear Volterra integral equation:

u(x) = f(x) + ϕ

(∫x

a

F(x, t, u(t))dt
)

≡ Tu, (1.4)

where x ∈ I = [a, b],−∞ < a < b < ∞. We will use the successive approximation method, to
prove that (1.4) has theHyers-Ulam stability under some appropriate conditions. Themethod
of this paper is distinctive. This new technique is simpler and clearer than methods which are
used in some papers, (cf. [13, 14]). On the other hand, Hyers-Ulam stability constant obtained
in our paper is different to the other works, [13].

2. Basic Concepts

Consider the nonhomogeneous nonlinear Volterra integral equation (1.4). We assume that
f(x) is continuous on the interval [a, b] and F(x, t, u(t)) is continuous with respect to the
three variables x, t, and u on the domain D = {(x, t, u) : x ∈ [a, b], t ∈ [a, b], u(t) ∈ [c, d]};
and F(x, t, u(t)) is Lipschitz with respect to u. In this paper, we consider the complete metric
space (X := C[a, b], ‖ · ‖∞) and assume that ϕ is a bounded linear transformation on X.

Note that, the linear mapping ϕ : X → X is called bounded, if there existsM > 0 such
that ‖ϕx‖ ≤ M‖x‖, for all x ∈ X. In this case, we define ‖ϕ‖ = sup{(‖ϕx‖/‖x‖);x /= 0, x ∈ X}.
Thus ϕ is bounded if and only if ‖ϕ‖ < ∞, [15].

Definition 2.1 (cf. [5, 13]). One says that (1.4) has the Hyers-Ulam stability if there exists a
constant K ≥ 0 with the following property: for every ε > 0, y ∈ X, if

∣∣∣∣y(x) − f(x) − ϕ

(∫x

a

F
(
x, t, y(t)

)
dt

)∣∣∣∣ ≤ ε, (2.1)
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then there exists some u ∈ X satisfying u(x) = f(x) + ϕ(
∫x
a F(x, t, u(t))dt) such that

∣
∣u(x) − y(x)

∣
∣ ≤ Kε. (2.2)

We call such K a Hyers-Ulam stability constant for (1.4).

3. Existence of the Solution of Nonlinear Integral Equations

Consider the iterative scheme

un+1(x) = f(x) + ϕ

(∫x

a

F(x, t, un(t))dt
)

≡ Tun, n = 1, 2, . . . . (3.1)

Since F(x, t, u(t)) is assumed Lipschitz, we can write

|un+1(x) − un(x)| =
∣∣∣∣ϕ

(∫x

a

F(x, t, un(t))dt
)
− ϕ

(∫x

a

F(x, t, un−1(t))dt
)∣∣∣∣

=
∣∣∣∣ϕ

(∫x

a

F(x, t, un(t))dt −
∫x

a

F(x, t, un−1(t))dt
)∣∣∣∣

≤ ∥∥ϕ
∥∥
∫x

a

|F(x, t, un(t)) − F(x, t, un−1(t))|dt

≤ ∥∥ϕ
∥∥L

∫x

a

|un(t) − un−1(t)|dt.

(3.2)

Hence,

|un+1(x) − un(x)| ≤
∥∥ϕ

∥∥L
∫x

a

|un(t1) − un−1(t1)|dt1

≤ (∥∥ϕ
∥
∥L

)2
∫x

a

∫ t1

a

|un−1(t2) − un−2(t2)|dt2 dt1

...

≤ (∥∥ϕ
∥∥L

)n−1
∫x

a

∫ t1

a

· · ·
∫ tn−2

a

|u2(tn−1) − u1(tn−1)|dtn−1 · · ·dt2 dt1

≤ (∥∥ϕ
∥∥L

)n−1
d(Tu1, u1)

∫x

a

∫ t1

a

· · ·
∫ tn−2

a

dtn−1 · · ·dt2 dt1,

(3.3)

in which d(f, g) = maxx∈[a,b]|f(x) − g(x)|, for all f, g ∈ C[a, b]. So, we can write

|un+1(x) − un(x)| ≤
(∥∥ϕ

∥∥L
)n−1 (x − a)n−1

(n − 1)!
d(Tu1, u1). (3.4)
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Therefore, since x is complete metric space, if u1 ∈ X, then

∞∑

n=1

[un+1(x) − un(x)] (3.5)

is absolutely and uniformly convergent by Weirstrass’s M-test theorem. On the other hand,
un(x) can be written as follows:

un(x) = u1(x) +
n−1∑

k=1

[uk+1(x) − uk(x)]. (3.6)

So there exists a unique solution u ∈ X such that limn→∞un(x) = u. Now by taking the limit
of both sides of (3.1), we have

u = lim
n→∞

un+1(x) = lim
n→∞

(
f(x) + ϕ

(∫x

a

F(x, t, un(t))dt
))

= f(x) + ϕ

(∫x

a

F

(
x, t, lim

n→∞
un(t)

)
dt

)

= f(x) + ϕ

(∫x

a

F(x, t, u(t))dt
)
.

(3.7)

So, there exists a unique solution u ∈ X such that Tu = u.

4. Main Results

In this section, we prove that the nonlinear integral equation in (1.4) has the Hyers-Ulam
stability.

Theorem 4.1. The equation Tx = x, where T is defined by (1.4), has the Hyers-Ulam stability; that
is, for every ξ ∈ X and ε > 0 with

d(Tξ, ξ) ≤ ε, (4.1)

there exists a unique u ∈ X such that

Tu = u,

d(ξ, u) ≤ Kε,
(4.2)

for some K ≥ 0.

Proof. Let ξ ∈ X, ε > 0, and d(Tξ, ξ) ≤ ε. In the previous section we have proved that

u(t) ≡ lim
n→∞

Tnξ(t) (4.3)
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is an exact solution of the equation Tx = x. Clearly there is n with d(Tnξ, u) ≤ ε, because Tnξ
is uniformly convergent to u as n → ∞. Thus

d(ξ, u) ≤ d(ξ, Tnξ) + d(Tnξ, u)

≤ d(ξ, Tξ) + d
(
Tξ, T2ξ

)
+ d

(
T2ξ, T3ξ

)
+ · · · + d

(
Tn−1ξ, Tnξ

)
+ d(Tnξ, u)

≤ d(ξ, Tξ) +
k

1!
d(ξ, Tξ) +

k2

2!
d(ξ, Tξ) + · · · + kn−1

(n − 1)!
d(ξ, Tξ) + d(Tnξ, u)

≤ d(ξ, Tξ)

(

1 +
k

1!
+
k2

2!
+ · · · + kn−1

(n − 1)!

)

+ ε

≤ ε
(
ek
)
+ ε =

(
1 + ek

)
ε,

(4.4)

where k = ‖ϕ‖L(b − a). This completes the proof.

Corollary 4.2. For infinite interval, Theorem 4.1 is not true necessarily. For example, the exact
solution of the integral equation u(x) = 1 +

∫x
a u(t)dt ≡ T(u), x ∈ [0,∞), is u(x) = ex. By choosing

ε = 1 and ξ(x) = 0, T(ξ) = 1 is obtained, so d(Tξ, ξ) ≤ ε = 1, d(ξ, u) = ∞. Hence, there exists no
Hyers-Ulam stability constant K ≥ 0 such that the relation d(ξ, u) ≤ Kε is true.

Corollary 4.3. Theorem 4.1 holds for every finite interval [a, b], [a, b), (a, b], and (a, b),
when −∞ < a < b < ∞.

Corollary 4.4. If one applies the successive approximation method for solving (1.4) and ui(x) =
ui+1(x) for some i = 1, 2, . . ., then u(x) = ui(x), such that u(x) is the exact solution of (1.4).

Example 4.5. If we put F(x, t, u(t)) = K(x, t)u(t) and ϕ(x) = λx (λ is constant), (1.4) will be a
linear Volterra integral equation of second kind in the following form:

u(x) = f(x) + λ

∫x

a

k(x, t)u(t)dt. (4.5)

In this example, if |k(x, t)| < M on square R = {(x, y) : x ∈ [a, b], y ∈ [a, b]}, then
F(x, t, u(t)) = K(x, t)u(t) satisfies in the Lipschitz condition, where M is the Lipschitz
constant. Also ‖ϕ‖ = |λ|; therefore, if |λ| < ∞, the Volterra equation (4.5) has the Hyers-Ulam
stability.

5. Conclusions

Let I = [a, b] be a finite interval, and letX = C[a, b] and y = Ty be integral equations in which
T : X → X is a nonlinear integral map. In this paper, we showed that T has the Hyers-Ulam
stability; that is, if y◦ is an approximate solution of the integral equation and d(y◦, Ty◦) ≤ ε
for all t ∈ I and ε ≥ 0, then d(y∗, y◦) ≤ Kε, in which y∗ is the exact solution and K is positive
constant.
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6. Ideas

In this paper, we proved that (1.4) has the Hyers-Ulam stability. In (1.4), ϕ is a linear
transformation. It is an open problem that raises the following question: “What can we say
about the Hyers-Ulam stability of the general nonlinear Volterra integral equation (1.4)when
ϕ is not necessarily linear?”
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