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We extend a common fixed point theorem of Radenovic and Rhoades for four non-self-mappings
in cone metric spaces.

1. Introduction and Preliminaries

Recently, Huang and Zhang [1] generalized the concept of a metric space, replacing the set of
real numbers by ordered Banach space and obtained some fixed point theorems for mappings
satisfying different contractive conditions. Subsequently, the study of fixed point theorems in
such spaces is followed by some other mathematicians; see [2–8]. The aim of this paper is
to prove a common fixed point theorem for four non-self-mappings on cone metric spaces
in which the cone need not be normal. This result generalizes the result of Radenović and
Rhoades [5].

Consistent with Huang and Zhang [1], the following definitions and results will be
needed in the sequel.

Let E be a real Banach space. A subset P of E is called a cone if and only if

(a) P is closed, nonempty and P /= {θ};

(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax + by ∈ P ;

(c) P ∩ (−P) = {θ}.
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Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and
only if y−x ∈ P . A cone P is called normal if there is a numberK > 0 such that for all x, y ∈ E,

θ ≤ x ≤ y implies ‖x‖ ≤ K‖y‖. (1.1)

The least positive number satisfying the above inequality is called the normal constant
of P , while x � y stands for y − x ∈ intP (interior of P).

Definition 1.1 (see [1]). Let X be a nonempty set. Suppose that the mapping d : X × X → E
satisfies

(d1) θ ≤ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X;

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.
The concept of a cone metric space is more general than that of a metric space.

Definition 1.2 (see [1]). Let (X, d) be a cone metric space. One says that {xn} is
(e) a Cauchy sequence if for every c ∈ E with θ � c, there is an N such that for all

n,m > N, d(xn, xm) � c;

(f) a Convergent sequence if for every c ∈ E with θ � c, there is an N such that for all
n > N, d(xn, x) � c for some fixed x ∈ X.

A cone metric space X is said to be complete if every Cauchy sequence in X is
convergent in X. It is known that {xn} converges to x ∈ X if and only if d(xn, x) → θ as
n → ∞. It is a Cauchy sequence if and only if d(xn, xm) → θ(n,m → ∞).

Remark 1.3 (see [9]). Let E be an ordered Banach (normed) space. Then c is an interior point
of P if and only if [−c, c] is a neighborhood of θ.

Corollary 1.4 (see [10]). (1) If a ≤ b and b � c, then a � c.
Indeed, c − a = (c − b) + (b − a) ≥ c − b implies [−(c − a), c − a] ⊇ [−(c − b), c − b].

(2) If a � b and b � c, then a � c.
Indeed, c − a = (c − b) + (b − a) ≥ c − b implies [−(c − a), c − a] ⊇ [−(c − b), c − b].

(3) If θ ≤ u � c for each c ∈ intP , then u = θ.

Remark 1.5 (see [5, 11]). If c ∈ intP , θ ≤ an, and an → θ, then there exists an n0 such that for
all n > n0 we have an � c.

Remark 1.6 (see [6, 10]). If E is a real Banach space with cone P and if a ≤ kawhere a ∈ P and
0 < k < 1, then a = θ.

We find it convenient to introduce the following definition.

Definition 1.7 (see [5]). Let (X, d) be a complete cone metric space and C a nonempty closed
subset of X, and f, g : C → X satisfying

d
(
fx, fy

) ≤ λu, (1.2)
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where

u ∈
{
d
(
gx, gy

)

2
, d

(
fx, gx

)
, d

(
fy, gy

)
,
d
(
fx, gy

)
+ d

(
fy, gx

)

q

}

, (1.3)

for all x, y ∈ C, 0 < λ < 1/2, q ≥ 2 − λ, then f is called a generalized g-contractive mapping of
C into X.

Definition 1.8 (see [2]). Let f and g be self-maps on a setX (i.e., f, g : X → X). Ifw = fx = gx
for some x in X, then x is called a coincidence point of f and g, and w is called a point of
coincidence of f and g. Self-maps f and g are said to be weakly compatible if they commute
at their coincidence point; that is, if fx = gx for some x ∈ X, then fgx = gfx.

2. Main Result

The following theorem is Radenović and Rhoades [5] generalization of Imdad and Kumar’s
[12] result in cone metric spaces.

Theorem 2.1. Let (X, d) be a complete cone metric space and C a nonempty closed subset of X such
that for each x ∈ C and y /∈C there exists a point z ∈ ∂C (the boundary of C) such that

d(x, z) + d
(
z, y

)
= d

(
x, y

)
. (2.1)

Suppose that f, g : C → X are such that f is a generalized g-contractive mapping of C into X, and

(i) ∂C ⊆ gC, fC ∩ C ⊆ gC,

(ii) gx ⊆ ∂C ⇒ fx ∈ C,

(iii) gC is closed in X.

Then the pair (f, g) has a coincidence point. Moreover, if pair (f, g) is weakly compatible, then
f and g have a unique common fixed point.

The purpose of this paper is to extend the above theorem for four non-self-mappings
in cone metric spaces. We begin with the following definition.

Definition 2.2. Let (X, d) be a complete cone metric space and C a nonempty closed subset of
X, and F,G, S, T : C → X satisfying

d
(
Fx,Gy

) ≤ λu, (2.2)

where

u ∈
{
d
(
Tx, Sy

)

2
, d(Tx, Fx), d

(
Sy,Gy

)
,
d
(
Tx,Gy

)
+ d

(
Sy, Fx

)

q

}

, (2.3)

for all x, y ∈ C, 0 < λ < 1/2, q ≥ 2 − λ, then (F,G) is called a generalized (T, S)-contractive
mappings pair of C into X.
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Notice that by setting G = F = f and T = S = g in (2.2), one deduces the slightly
generalized form of (1.3).

We state and prove our main result as follows.

Theorem 2.3. Let (X, d) be a complete cone metric space and C a nonempty closed subset of X such
that for each x ∈ C and y /∈C there exists a point z ∈ ∂C (the boundary of C) such that

d(x, z) + d
(
z, y

)
= d

(
x, y

)
. (2.4)

Suppose that F,G, S, T : C → X are such that (F,G) is a generalized (T, S)-contractive mappings
pair of C into X, and

(I) ∂C ⊆ SC ∩ TC, FC ∩ C ⊆ SC,GC ∩ C ⊆ TC,

(II) Tx ⊆ ∂C ⇒ Fx ∈ C, Sx ⊆ ∂C ⇒ Gx ∈ C,

(III) SC and TC (or FC and GC) are closed in X.
Then

(IV) (F, T) has a point of coincidence,

(V) (G,S) has a point of coincidence.

Moreover, if (F, T) and (G,S) are weakly compatible pairs, then F, G, S, and T have a unique
common fixed point.

Proof. Firstly, we proceed to construct two sequences {xn} and {yn} in the following way.
Let x ∈ ∂C be arbitrary. Then (due to ∂C ⊆ TC) there exists a point x0 ∈ C such that

x = Tx0. Since Tx ⊆ ∂C ⇒ Fx ∈ C, one concludes that Fx0 ∈ FC ∩ C ⊆ SC. Thus, there exists
x1 ∈ C such that y1 = Sx1 = Fx0 ∈ C. Since y1 = Fx0 there exists a point y2 = Gx1 such that

d
(
y1, y2

)
= d(Fx0, Gx1). (2.5)

Suppose that y2 ∈ C. Then y2 ∈ GC ∩ C ⊆ TC which implies that there exists a point
x2 ∈ C such that y2 = Tx2. Otherwise, if y2 /∈C, then there exists a point p ∈ ∂C such that

d
(
Sx1, p

)
+ d

(
p, y2

)
= d

(
Sx1, y2

)
. (2.6)

Since p ∈ ∂C ⊆ TC there exists a point x2 ∈ C with p = Tx2, so that

d(Sx1, Tx2) + d
(
Tx2, y2

)
= d

(
Sx1, y2

)
. (2.7)

Let y3 = Fx2 be such that d(y2, y3) = d(Gx1, Fx2). Thus, repeating the foregoing
arguments, one obtains two sequences {xn} and {yn} such that

(a) y2n = Gx2n−1, y2n+1 = Fx2n,

(b) y2n ∈ C ⇒ y2n = Tx2n or y2n /∈C ⇒ Tx2n ∈ ∂C,

d(Sx2n−1, Tx2n) + d
(
Tx2n, y2n

)
= d

(
Sx2n−1, y2n

)
. (2.8)
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(c) y2n+1 ∈ C ⇒ y2n+1 = Sx2n+1 or y2n+1 /∈C ⇒ Sx2n+1 ∈ ∂C,

d(Tx2n, Sx2n+1) + d
(
Sx2n+1, y2n+1

)
= d

(
Tx2n, y2n+1

)
. (2.9)

We denote that

P0 =
{
Tx2i ∈ {Tx2n} : Tx2i = y2i

}
,

P1 =
{
Tx2i ∈ {Tx2n} : Tx2i /=y2i

}
,

Q0 =
{
Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 = y2i+1

}
,

Q1 =
{
Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 /=y2i+1

}
.

(2.10)

Note that (Tx2n, Sx2n+1)/∈ P1 × Q1, as if Tx2n ∈ P1, then y2n /= Tx2n, and one infers that
Tx2n ∈ ∂C which implies that y2n+1 = Fx2n ∈ C. Hence y2n+1 = Sx2n+1 ∈ Q0. Similarly, one can
argue that (Sx2n−1, Tx2n)/∈Q1 × P1.

Now, we distinguish the following three cases.

Case 1. If (Tx2n, Sx2n+1) ∈ P0 ×Q0, then from (2.2)

d(Tx2n, Sx2n+1) = d(Fx2n, Gx2n−1) ≤ λu2n−1, (2.11)

where

u2n−1 ∈
{
d(Sx2n−1, Tx2n)

2
, d(Sx2n−1, Gx2n−1), d(Tx2n, Fx2n),

d(Tx2n, Gx2n−1)+d(Sx2n−1, Fx2n)
q

}

=

{
d
(
y2n−1, y2n

)

2
, d

(
y2n−1, y2n

)
, d

(
y2n, y2n+1

)
,
d
(
y2n−1, y2n+1

)

q

}

.

(2.12)

Clearly, there are infinite many n such that at least one of the following four cases
holds:

(1)

d(Tx2n, Sx2n+1) ≤ λ
d
(
y2n−1, y2n

)

2
≤ λd(Sx2n−1, Tx2n), (2.13)

(2)

d(Tx2n, Sx2n+1) ≤ λd
(
y2n−1, y2n

)
= λd(Sx2n−1, Tx2n), (2.14)
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(3)

d(Tx2n, Sx2n+1) ≤ λd
(
y2n, y2n+1

)
=⇒ d(Tx2n, Sx2n+1) = θ ≤ λd(Sx2n−1, Tx2n), (2.15)

(4)

d(Tx2n, Sx2n+1) ≤ λ
d
(
y2n−1, y2n+1

)

q

≤ λ
d
(
y2n−1, y2n

)
+ d

(
y2n, y2n+1

)

q

= λ
d(Sx2n−1, Tx2n) + d(Tx2n, Sx2n+1)

q
,

(2.16)

which implies (1 − λ/q)d(Tx2n, Sx2n+1) ≤ (λ/q)d(Sx2n−1, Tx2n), that is,

d(Tx2n, Sx2n+1) ≤ λ

q − λ
d(Sx2n−1, Tx2n) ≤ λd(Sx2n−1, Tx2n). (2.17)

From (1), (2), (3), and (4) it follows that

d(Tx2n, Sx2n+1) ≤ λd(Sx2n−1, Tx2n). (2.18)

Similarly, if (Sx2n+1, Tx2n+2) ∈ Q0 × P0, we have

d(Sx2n+1, Tx2n+2) = d(Fx2n, Gx2n+1) ≤ λd(Tx2n, Sx2n+1). (2.19)

If (Sx2n−1, Tx2n) ∈ Q0 × P0, we have

d(Sx2n−1, Tx2n) = d(Fx2n−2, Gx2n−1) ≤ λd(Tx2n−2, Sx2n−1). (2.20)

Case 2. If (Tx2n, Sx2n+1) ∈ P0 ×Q1, then Sx2n+1 ∈ Q1 and

d(Tx2n, Sx2n+1) + d
(
Sx2n+1, y2n+1

)
= d

(
Tx2n, y2n+1

)
(2.21)

which in turn yields

d(Tx2n, Sx2n+1) ≤ d
(
Tx2n, y2n+1

)
= d

(
y2n, y2n+1

)
(2.22)

and hence

d(Tx2n, Sx2n+1) ≤ d
(
y2n, y2n+1

)
= d(Fx2n, Gx2n−1). (2.23)

Now, proceeding as in Case 1, we have that (2.18) holds.
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If (Sx2n+1, Tx2n+2) ∈ Q1 × P0, then Tx2n ∈ P0. We show that

d(Sx2n+1, Tx2n+2) ≤ λd(Tx2n, Sx2n−1). (2.24)

Using (2.21), we get

d(Sx2n+1, Tx2n+2) ≤ d
(
Sx2n+1, y2n+1

)
+ d

(
y2n+1, Tx2n+2

)

= d
(
Tx2n, y2n+1

) − d(Tx2n, Sx2n+1) + d
(
y2n+1, Tx2n+2

)
.

(2.25)

By noting that Tx2n+2, Tx2n ∈ P0, one can conclude that

d
(
y2n+1, Tx2n+2

)
= d

(
y2n+1, y2n+2

)
= d(Fx2n, Gx2n+1) ≤ λd(Tx2n, Sx2n+1),

d
(
Tx2n, y2n+1

)
= d

(
y2n, y2n+1

)
= d(Fx2n, Gx2n−1) ≤ λd(Sx2n−1, Tx2n),

(2.26)

in view of Case 1.
Thus,

d(Sx2n+1, Tx2n+2) ≤ λd(Sx2n−1, Tx2n) − (1 − λ)d(Tx2n, Sx2n+1) ≤ λd(Sx2n−1, Tx2n), (2.27)

and we proved (2.24).

Case 3. If (Tx2n, Sx2n+1) ∈ P1 ×Q0, then Sx2n−1 ∈ Q0. We show that

d(Tx2n, Sx2n+1) ≤ λd(Sx2n−1, Tx2n−2). (2.28)

Since Tx2n ∈ P1, then

d(Sx2n−1, Tx2n) + d
(
Tx2n, y2n

)
= d

(
Sx2n−1, y2n

)
. (2.29)

From this, we get

d(Tx2n, Sx2n+1) ≤ d
(
Tx2n, y2n

)
+ d

(
y2n, Sx2n+1

)

= d
(
Sx2n−1, y2n

) − d(Sx2n−1, Tx2n) + d
(
y2n, Sx2n+1

)
.

(2.30)

By noting that Sx2n+1, Sx2n−1 ∈ Q0, one can conclude that

d
(
y2n, Sx2n+1

)
= d

(
y2n, y2n+1

)
= d(Fx2n, Gx2n−1) ≤ λd(Sx2n−1, Tx2n),

d
(
Sx2n−1, y2n

)
= d

(
y2n−1, y2n

)
= d(Fx2n−2, Gx2n−1) ≤ λd(Sx2n−1, Tx2n−2),

(2.31)

in view of Case 1.
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Thus,

d(Tx2n, Sx2n+1) ≤ λd(Sx2n−1, Tx2n−2) − (1 − λ)d(Sx2n−1, Tx2n) ≤ λd(Sx2n−1, Tx2n−2), (2.32)

and we proved (2.28).
Similarly, if (Sx2n+1, Tx2n+2) ∈ Q0 × P1, then Tx2n+2 ∈ P1, and

d(Sx2n+1, Tx2n+2) + d
(
Tx2n+2, y2n+2

)
= d

(
Sx2n+1, y2n+2

)
. (2.33)

From this, we have

d(Sx2n+1, Tx2n+2) ≤ d
(
Sx2n+1, y2n+2

)
+ d

(
y2n+2, Tx2n+2

)

≤ d
(
Sx2n+1, y2n+2

)
+ d

(
Sx2n+1, y2n+2

) − d(Sx2n+1, Tx2n+2)

= 2d
(
Sx2n+1, y2n+2

) − d(Sx2n+1, Tx2n+2) =⇒ d(Sx2n+1, Tx2n+2)

≤ d
(
Sx2n+1, y2n+2

)
.

(2.34)

By noting that Sx2n+1 ∈ Q0, one can conclude that

d(Sx2n+1, Tx2n+2) ≤ d
(
Sx2n+1, y2n+2

)
= d(Fx2n, Gx2n+1) ≤ λd(Tx2n, Sx2n+1), (2.35)

in view of Case 1.
Thus, in all Cases 1–3, there exists w2n ∈ {d(Sx2n−1, Tx2n), d(Tx2n−2, Sx2n−1)} such that

d(Tx2n, Sx2n+1) ≤ λw2n, (2.36)

and there exists w2n+1 ∈ {d(Sx2n−1, Tx2n), d(Tx2n, Sx2n+1)} such that

d(Sx2n+1, Tx2n+2) ≤ λw2n+1. (2.37)

Following the procedure of Assad and Kirk [13], it can easily be shown by induction
that, for n ≥ 1, there exists w2 ∈ {d(Tx0, Sx1), d(Sx1, Tx2)} such that

d(Tx2n, Sx2n+1) ≤ λn−1/2w2, d(Sx2n+1, Tx2n+2) ≤ λnw2. (2.38)

From (2.38) and by the triangle inequality, for n > m, we have

d(Tx2n, Sx2m+1) ≤ d(Tx2n, Sx2n−1) + d(Sx2n−1, Tx2n−2) + · · · + d(Tx2m+2, Sx2m+1)

≤
(
λm + λm+1/2 + · · · + λn−1

)
w2 ≤ λm

1 −
√
λ
w2 −→ θ, as m −→ ∞.

(2.39)

From Remark 1.5 and Corollary 1.4(1), d(Tx2n, Sx2m+1) � c.
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Thus, the sequence {Tx0, Sx1, Tx2, Sx3, . . . , Sx2n−1, Tx2n, Sx2n−1, . . .} is a Cauchy
sequence. Then, as noted in [14], there exists at least one subsequence {Tx2nk} or {Sx2nk+1}
which is contained in P0 or Q0, respectively, and finds its limit z ∈ C. Furthermore,
subsequences {Tx2nk} and {Sx2nk+1} both converge to z ∈ C asC is a closed subset of complete
cone metric space (X, d). We assume that there exists a subsequence {Tx2nk} ⊆ P0 for each
k ∈ N, then Tx2nk = y2nk = Gx2nk−1 ∈ C∩GC ⊆ TC. Since TC as well as SC are closed inX, and
{Tx2nk} is Cauchy in TC, it converges to a point z ∈ TC. Letw ∈ T−1z, then Tw = z. Similarly,
{Sx2nk+1} a subsequence of Cauchy sequence {Tx0, Sx1, Tx2, Sx3, . . . , Sx2n−1, Tx2n, Sx2n−1, . . .}
also converges to z as SC is closed. Using (2.2), one can write

d(Fw, z) ≤ d(Fw,Gx2nk−1) + d(Gx2nk−1, z) ≤ λu2nk−1 + d(Gx2nk−1, z), (2.40)

where

u2nk−1 ∈
{
d(Tw, Sx2nk−1)

2
, d(Tw, Fw), d(Sx2nk−1, Gx2nk−1),

d(Tw,Gx2nk−1) + d(Fw, Sx2nk−1)
q

}

=
{
d(z, Sx2nk−1)

2
, d(z, Fw), d(Sx2nk−1, Gx2nk−1),

d(z,Gx2nk−1) + d(Fw, Sx2nk−1)
q

}
.

(2.41)

Let θ � c. Clearly at least one of the following four cases holds for infinitely many n:

(1)

d(Fw, z) ≤ λ
d(z, Sx2nk−1)

2
+ d(Gx2nk−1, z) � λ

c

2λ
+
c

2
= c; (2.42)

(2)

d(Fw, z) ≤ λd(z, Fw) + d(Gx2nk−1, z) =⇒ d(Fw, z)

≤ 1
1 − λ

d(Gx2nk−1, z) �
1

1 − λ
(1 − λ)c = c;

(2.43)

(3)

d(Fw, z) ≤ λd(Sx2nk−1, Gx2nk−1) + d(Gx2nk−1, z)

≤ λ(d(Sx2nk−1, z) + d(z,Gx2nk−1)) + d(Gx2nk−1, z)

≤ (λ + 1)d(Gx2nk−1, z) + λd(Sx2nk−1, z)

� (λ + 1)
c

2(λ + 1)
+ λ

c

2λ
= c;

(2.44)
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(4)

d(Fw, z) ≤ λ
d(z,Gx2nk−1) + d(Fw, Sx2nk−1)

q
+ d(Gx2nk−1, z)

≤ λ
d(z,Gx2nk−1) + d(Fw, z) + d(z, Sx2nk−1)

q
+ d(Gx2nk−1, z) =⇒ d(Fw, z)

≤ q + λ

q − λ
d(Gx2nk−1, z) +

λ

q − λ
d(z, Sx2nk−1)

� q + λ

q − λ

c

2
((
q + λ

)
/
(
q − λ

)) +
λ

q − λ

c

2
(
λ/

(
q − λ

)) = c.

(2.45)

In all cases we obtain d(Fw, z) � c for each c ∈ intP . Using Corollary 1.4(3) it follows
that d(Fw, z) = θ or Fw = z. Thus, Fw = z = Tw, that is, z is a coincidence point of F, T .

Further, since Cauchy sequence {Tx0, Sx1, Tx2, Sx3, . . . , Sx2n−1, Tx2n, Sx2n−1, . . .} con-
verges to z ∈ C and z = Fw, z ∈ FC ∩ C ⊆ SC, there exists v ∈ C such that Sv = z. Again
using (2.2), we get

d(Sv,Gv) = d(z,Gv) = d(Fw,Gv) ≤ λu, (2.46)

where

u ∈
{
d(Tw, Sv)

2
, d(Tw, Fw), d(Sv,Gv),

d(Tw,Gv) + d(Fw, Sv)
q

}

=
{
θ, θ, d(Sv,Gv),

d(z,Gv) + θ

q

}

=
{
θ, d(Sv,Gv),

d(Sv,Gv)
q

}
.

(2.47)

Hence, we get the following cases:

d(Sv,Gv) ≤ λθ = θ, d(Sv,Gv) ≤ λd(Sv,Gv), d(Sv,Gv) ≤ λ

q
d(Sv,Gv). (2.48)

Since λ/q ≤ λ/(2 − λ) = λ/(1 + (1 − λ)) < λ, using Remark 1.6 and Corollary 1.4(3), it
follows that Sv = Gv; therefore, Sv = z = Gv, that is, z is a coincidence point of (G,S).

In case FC and GC are closed in X, z ∈ FC ∩ C ⊆ SC or z ∈ GC ∩ C ⊆ TC. The
analogous arguments establish (IV) and (V). If we assume that there exists a subsequence
{Sx2nk+1} ⊆ Q0 with TC as well SC being closed in X, then noting that {Sx2nk+1} is a Cauchy
sequence in SC, foregoing arguments establish (IV) and (V).

Suppose now that (F, T) and (G,S) are weakly compatible pairs, then

z = Fw = Tw =⇒ Fz = FTw = TFw = Tz, z = Gv = Sv =⇒ Gz = GSv = SGv = Sz.
(2.49)
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Then, from (2.2),

d(Fz, z) = d(Fz,Gv) ≤ λu, (2.50)

where

u ∈
{
d(Sv, Tz)

2
, d(Tz, Fz), d(Sv,Gv),

d(Tz,Gv) + d(Sv, Fz)
q

}

=
{
d(z, Fz)

2
, d(Fz, Fz), d(z, z),

d(Fz, z) + d(z, Fz)
q

}

=
{
d(z, Fz)

2
, θ,

2d(z, Fz)
q

}
.

(2.51)

Hence, we get the following cases:

d(Fz, z) ≤ λ
d(z, Fz)

2
, d(Fz, z) ≤ λθ = θ and d(Fz, z) ≤ 2λd(z, Fz)

q
, (2.52)

Since 2λ/q ≤ 2λ/(2 − λ) = 2λ/(1 + (1 − λ)) < 2λ < 1, using Remark 1.6 and
Corollary 1.4(3), it follows that Fz = z. Thus, Fz = z = Tz.

Similarly, we can prove that Gz = z = Sz. Therefore z = Fz = Gz = Sz = Tz, that is, z
is a common fixed point of F, G, S, and T .

Uniqueness of the common fixed point follows easily from (2.2).
The following example shows that in general F, G, S, and T satisfying the hypotheses

of Theorem 2.3 need not have a common coincidence justifying two separate conclusions (IV)
and (V).

Example 2.4. Let E = C1([0, 1], R), P = {ϕ ∈ E : ϕ(t) ≥ 0, t ∈ [0, 1]}, X = [0,+∞), C = [0, 2],
and d : X×X → E defined by d(x, y) = |x−y|ϕ, where ϕ ∈ P is a fixed function, for example,
ϕ(t) = et. Then (X, d) is a complete cone metric space with a nonnormal cone having the
nonempty interior. Define F, G, S, and T : C → X as

Fx = x +
4
5
, Gx = x2 +

4
5
, Tx = 5x, Sx = 5x2, x ∈ C. (2.53)

Since ∂C = {0, 2}. Clearly, for each x ∈ C and y /∈C there exists a point z = 2 ∈ ∂C such
that d(x, z) + d(z, y) = d(x, y). Further, SC ∩ TC = [0, 20] ∩ [0, 10] = [0, 10] ⊃ {0, 2} = ∂C,
FC ∩ C = [4/5, 14/5] ∩ [0, 2] = [4/5, 2] ⊂ SC, GC ∩ C = [4/5, 24/5] ∩ [0, 2] = [4/5, 2] ⊂ TC,
and SC, TC, FC, and GC are closed in X.
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Also,

T0 = 0 ∈ ∂C =⇒ F0 =
4
5
∈ C, S0 = 0 ∈ ∂C =⇒ G0 =

4
5
∈ C,

T

(
2
5

)
= 2 ∈ ∂C =⇒ F

(
2
5

)
=

6
5
∈ C, S

⎛

⎝

√
2
5

⎞

⎠ = 2 ∈ ∂C =⇒ G

⎛

⎝

√
2
5

⎞

⎠ =
6
5
∈ C.

(2.54)

Moreover, for each x, y ∈ C,

d
(
Fx,Gy

)
=
∣
∣
∣x − y2

∣
∣
∣ϕ =

2
5

(
1
2
d
(
Tx, Sy

)
)
, (2.55)

that is, (2.2) is satisfied with λ = 2/5.
Evidently, 1 = T(1/5) = F(1/5)/= 1/5 and 1 = S(1/

√
5) = G(1/

√
5)/= 1/

√
5. Notice

that two separate coincidence points are not common fixed points as FT(1/5)/= TF(1/5)
and SG(1/

√
5)/=GS(1/

√
5), which shows necessity of weakly compatible property in

Theorem 2.3.

Next, we furnish an illustrate example in support of our result. In doing so, we are
essentially inspired by Imdad and Kumar [12].

Example 2.5. Let E = C1([0, 1], R), P = {ϕ ∈ E : ϕ(t) ≥ 0, t ∈ [0, 1]}, X = [1,+∞), C = [1, 3],
and d : X×X → E defined by d(x, y) = |x−y|ϕ, where ϕ ∈ P is a fixed function, for example,
ϕ(t) = et. Then (X, d) is a complete cone metric space with a nonnormal cone having the
nonempty interior. Define F, G, S, and T : C → X as

Fx =

⎧
⎨

⎩

x2 if 1 ≤ x ≤ 2,

2 if 2 < x ≤ 3,
Tx =

⎧
⎨

⎩

4x4 − 3 if 1 ≤ x ≤ 2,

13 if 2 < x ≤ 3,

Gx =

⎧
⎨

⎩

x3 if 1 ≤ x ≤ 2,

2 if 2 < x ≤ 3,
Sx =

⎧
⎨

⎩

4x6 − 3 if 1 ≤ x ≤ 2,

13 if 2 < x ≤ 3.

(2.56)

Since ∂C = {1, 3}. Clearly, for each x ∈ C and y /∈C there exists a point z = 3 ∈ ∂C such
that d(x, z) + d(z, y) = d(x, y). Further, SC ∩ TC = [1, 253] ∩ [1, 61] = [1, 61] ⊃ {1, 3} = ∂C,
FC ∩ C = [1, 4] ∩ [1, 3] = [1, 3] ⊂ SC, and GC ∩ C = [1, 8] ∩ [1, 3] = [1, 3] ⊂ TC.

Also,

T1 = 1 ∈ ∂C =⇒ F1 = 1 ∈ C, S1 = 1 ∈ ∂C =⇒ G1 = 1 ∈ C,

T

⎛

⎝ 4

√
3
2

⎞

⎠ = 3 ∈ ∂C=⇒F

⎛

⎝ 4

√
3
2

⎞

⎠=

√
3
2
∈C, S

⎛

⎝ 6

√
3
2

⎞

⎠=3∈∂C=⇒G

⎛

⎝ 6

√
3
2

⎞

⎠=

√
3
2
∈ C.

(2.57)
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Moreover, if x ∈ [1, 2] and y ∈ [2, 3], then

d
(
Fx,Gy

)
=
∣
∣
∣x2 − 2

∣
∣
∣ϕ =

∣
∣x4 − 4

∣
∣

|x2 + 2| ϕ =
4
∣
∣x4 − 4

∣
∣/2

2|x2 + 2| ϕ =
1

2(x2 + 2)
d
(
Tx, Sy

)

2
. (2.58)

Next, if x, y ∈ (2, 3], then

d
(
Fx,Gy

)
= 0 = λ · d

(
Tx, Sy

)

2
. (2.59)

Finally, if x, y ∈ [1, 2], then

d
(
Fx,Gy

)
=
∣∣∣x2 − y3

∣∣∣ϕ =

∣
∣x4 − y6

∣
∣

∣∣x2 + y3
∣∣ϕ =

4
∣
∣x4 − y6

∣
∣/2

2
∣∣x2 + y3

∣∣ ϕ =
1

2
(
x2 + y3

)
d
(
Tx, Sy

)

2
. (2.60)

Therefore, condition (2.2) is satisfied if we choose λ = max{1/2(x2+2), 1/2(x2+y3)} ∈
(0, 1/2). Moreover 1 is a point of coincidence as T1 = F1 as well as S1 = G1 whereas both the
pairs (F, T) and (G,S) are weakly compatible as TF1 = 1 = FT1 and SG1 = 1 = GS1. Also,
SC, TC, FC, and GC are closed in X. Thus, all the conditions of Theorem 2.3 are satisfied and
1 is the unique common fixed point of F, G, S, and T . One may note that 1 is also a point of
coincidence for both the pairs (F, T) and (G,S).

Remark 2.6. (1) Setting G = F = f and T = S = g in Theorem 2.3, one deduces Theorem 2.1
due to [5].

(2) Setting G = F = f and T = S = IX in Theorem 2.3, we obtain the following result.

Corollary 2.7. Let (X, d) be a complete cone metric space and C a nonempty closed subset of X such
that for each x ∈ C and y /∈C there exists a point z ∈ ∂C (the boundary of C) such that

d(x, z) + d
(
z, y

)
= d

(
x, y

)
. (2.61)

Suppose that f : C → X satisfies the condition

d
(
fx, fy

) ≤ λu
(
x, y

)
, (2.62)

where

u
(
x, y

) ∈
{
d
(
x, y

)

2
, d

(
x, fx

)
, d

(
y, fy

)
,
d
(
x, fy

)
+ d

(
y, fx

)

q

}

(2.63)

for all x, y ∈ C, 0 < λ < 1/2, q ≥ 2 − λ, and f has the additional property that for each x ∈ ∂C,
fx ∈ C, f has a unique fixed point.
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