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A new applicable Leray-Schauder alternative is presented for weakly-strongly sequentially
continuous maps. This result is then used to establish a general existence principle for
operator equations.

1. Introduction

This paper presents new fixed point results for weakly sequentially upper semicontinu-
ous maps defined on locally convex Hausdorff topological spaces which are angelic when
furnished with the weak topology. Moreover, we establish an applicable Leray-Schauder
alternative (Theorem 2.12) for a certain subclass of these maps. Our alternative combines
the advantages of the strong topology (i.e., the sets are open in the strong topology) with
the advantages of the weak topology (i.e., the maps are weakly-strongly sequentially con-
tinuous and weakly compact). In Section 3, we illustrate how easily Theorem 2.12 can be
applied in practice.

Finally, we recall the following definition from the literature [9].

Definition 1.1. A Hausdorff topological space X is said to be angelic if for every relatively
countably compact set C ⊆ X , the following hold:

(i) C is relatively compact,
(ii) for each x ∈ C, there exists a sequence {xn}n≥1 ⊆ C such that xn→ x.

Remark 1.2. All metrizable locally convex spaces equipped with the weak topology are
angelic (see the Eberlein-Šmulian theorem).

2. Fixed point theory

We begin with some fixed point results which will be needed to obtain our applicable
nonlinear alternative of Leray-Schauder type (see Theorem 2.12).

Theorem 2.1. Let E be a locally convex linear Hausdorff topological space which is angelic
when furnished with the weak topology, and let C be a weakly compact, convex subset of E.
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2 Leray-Schauder alternative

Then any weakly sequentially upper semicontinuous map F : C → K(C) has a fixed point
(here K(C) denotes the family of nonempty, convex, weakly compact subsets of C).

Remark 2.2. Recall F : C→ K(C) is weakly sequentially upper semicontinuous if for any
weakly closed set A of C, F−1(A) is sequentially closed for the weak topology on C.

Notice that the proof of Theorem 2.1 is immediate from Himmelberg’s fixed point
theorem [10] and the next result.

Theorem 2.3. Let E be a locally convex linear Hausdorff topological space which is angelic
when furnished with the weak topology, and let D be a weakly compact subset of E. If F :
D→ 2E (here 2E denote the family of nonempty subsets of E) is a weakly sequentially upper
semicontinuous map, then F :D→ K(E) is a weakly upper semicontinuous map.

Proof. Let A be a weakly closed subset of E. We first show that F−1(A) is sequentially
closed in D (with respect to the strong topology). (Recall that a subset M is sequentially
closed in E (with respect to the strong topology) if whenever xn ∈M for n∈N= {1,2, . . .}
and xn→ x (strong topology), then x ∈M.)

Let yn ∈ F−1(A) and yn → y (strong topology). Then yn⇀ y (i.e., yn → y in (E,w)).
Now since F : D → 2E is weakly sequentially upper semicontinuous (i.e., F−1(A) is se-
quentially closed in (E,w)), we have y ∈ F−1(A). Consequently if A is a weakly closed
subset of D, then F−1(A) is sequentially closed in E (of course also weakly sequentially
closed).

Now since D is weakly compact, we have that F−1(A)w is weakly compact. Let x ∈
F−1(A)w. Now since E is angelic when furnished with the weak topology, there exists a
sequence xn ∈ F−1(A) with xn⇀ x. Also since F−1(A) is weakly sequentially closed, we
have x ∈ F−1(A). Thus F−1(A)w = F−1(A), so F−1(A) is weakly closed. Thus F :D→ 2E is
a weakly upper semicontinuous map. �

Our next result replaces the weak compactness of the spaceC with a weak compactness
assumption on the operator F. We present a number of results (see also [2, 5, 6, 11, 12]).

Theorem 2.4. Let E be a locally convex linear Hausdorff topological space which is angelic
when furnished with the weak topology, and suppose the Krein-Šmulian property holds, and
let C be a closed, convex subset of E. Then any weakly compact, weakly sequentially upper
semicontinuous map F : C→ K(C) has a fixed point.

Remark 2.5. The Krein-Šmulian property states that the closed convex hull of a weakly
compact set is weakly compact.

Remark 2.6. If E is a Banach space, then we know [7, page 434] that the Krein-Šmulian
property holds. For other examples, see [8, page 553] and [9, page 82].

Proof. There exists a weakly compact subset A of C with F(C) ⊆ A ⊆ C. The Krein-
Šmulian property guarantees that co(A) is weakly compact. Notice also that F : co(A)→
K(co(A)), so Theorem 2.1 guarantees that there exists x ∈ co(A) with x ∈ F(x). �

Theorem 2.7. Let E be a locally convex linear Hausdorff topological space which is angelic
when furnished with the weak topology, and let C be a closed convex subset of E with x0 ∈ C.
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Suppose F : C→ K(C) is a weakly sequentially upper semicontinuous map with the following
property holding:

A⊆ C, A= co
({
x0
}∪F(A)

)
implies A is weakly compact. (2.1)

Then F has a fixed point.

Proof. Consider � the family of all closed convex subsetsΩ of C with x0 ∈Ω and F(x)⊆
Ω for all x ∈Ω. Note that � �= ∅ since C ∈�. Let C0 = ∩Ω∈�Ω. The argument in [11]
guarantees that

C0 = co
({
x0
}∪F

(
C0
))
. (2.2)

Now (2.1) guarantees that C0 is weakly compact and notice that (2.2) implies F(C0) ⊆
C0. Also F : C0 → K(C0) is weakly sequentially upper semicontinuous so Theorem 2.1
guarantees the existence of an x0 ∈ C0 with x0 ∈ Fx0. �

Theorem 2.8. Let E be a locally convex linear Hausdorff topological space which is angelic
when furnished with the weak topology, and let C be a closed convex subset of E with x0 ∈ C.
Suppose F : C→ K(C) is a weakly sequentially upper semicontinuous map with the following
properties holding:

A⊆ C, A= co
({
x0
}∪F(A)

)
implies Aw is weakly compact, (2.3)

F−1
(
Aw
)
is weakly closed for any weakly compact subset A of C. (2.4)

Then F has a fixed point.

Proof. Let

D0 =
{
x0
}
, Dn = co

({
x0
}∪F

(
Dn−1

))
for n∈ {1,2, . . .},

D =∪∞n=0Dn.
(2.5)

The argument in [2, page 918] guarantees that

D = co
({
x0
}∪F(D)

)
, (2.6)

so (2.3) implies that Dw is weakly compact. Consider the map F� :Dw → K(Dw) given by

F�(x)= F(x)∩Dw. (2.7)

We need of course to check that F�(x) �= ∅ for each x ∈ Dw. Notice that (2.6) implies
that F(D) ⊆ D ⊆ Dw so D ⊆ F−1(Dw). Also F−1(Dw) is a weakly closed from (2.4) so
Dw ⊆ F−1(Dw), that is, F�(x) �= ∅ for each x ∈Dw.

Also notice that F� :Dw → K(Dw) is weakly sequentially upper semicontinuous (note
that (F�)−1(A) = F−1(A)∩Dw for any subset A of Dw). Theorem 2.1 implies that there
exists x ∈Dw with x ∈ F�(x)⊆ F(x). �

Theorem 2.9. Let E be a locally convex linear Hausdorff topological space which is angelic
when furnished with the weak topology and suppose that the Krein-Šmulian property holds,
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and let C be a closed convex subset of E with x0 ∈ C. Suppose F : C→ K(C) is a weakly se-
quentially upper semicontinuous map with (2.4) satisfied and also assume that the following
properties hold:

A⊆ C, A= co
({
x0
}∪F(A)

)
with Aw =Qw and

Q ⊆ A countable, implies Aw is weakly compact
(2.8)

and

for any relatively weakly compact subset A of E,

there exists a countable set B ⊆ A with Bw = Aw.
(2.9)

Then F has a fixed point.

Proof. Let Dn and D be as in Theorem 2.8 and notice that (2.6) holds. We claim Dn is rel-
atively weakly compact for each n∈ {0,1,2, . . .}. The case n= 0 is immediate. SupposeDk

is relatively weakly compact for some k ∈ {0,1, . . .}. Then Theorem 2.3 guarantees that F :
Dw

k → K(E) is weakly upper semicontinuous so [4] guarantees that F(Dw
k ) is weakly com-

pact. Now since the Krein-Šmulian property holds, then Dk+1 is relatively weakly com-
pact. ThusDn is relatively weakly compact for each n∈ {0,1,2, . . .}. Now (2.9) implies that
there exists Cn; Cn countable with Cn ⊆Dn and Cw

n =Dw
n . Let C =∪∞n=0Cn. The argument

in [2, page 922] guarantees that Cw = Dw. This (together) with (2.8) and (2.6) implies
that Dw is weakly compact. Let F� :Dw → K(Dw) be given by F�(x)= F(x)∩Dw. Notice
also that F� :Dw → K(Dw) is weakly sequentially upper semicontinuous so Theorem 2.1
implies that there exists x ∈Dw with x ∈ F�(x)⊆ F(x). �

In applications, it is difficult and sometimes impossible to construct a set C so that F
takes C back into C. As a result, it makes sense to discuss map F : C→ K(E). We present
three Leray-Schauder alternatives. Our first result is for weakly sequentially upper semi-
continuous maps, whereas our second and third results are for completely continuous
maps (to be defined later).

Theorem 2.10. Let E be a locally convex linear Hausdorff topological space which is angelic
when furnished with the weak topology and suppose the Krein-Šmulian property holds, and
let C be a closed convex subset of E, U a weakly open subset of C, 0 ∈ U , and Uw weakly
compact (here Uw denotes the weak closure of U in C). Suppose F :Uw → K(C) is a weakly
sequentially upper semicontinuous map which satisfies the following property:

x /∈ λFx for every x ∈ ∂U , λ∈ (0,1); (2.10)

here ∂U denotes the weak boundary of U in C. Then F has a fixed point in Uw.

Proof. Suppose F does not have a fixed point in ∂U (otherwise we are finished), so x /∈
λFx for every x ∈ ∂U and λ∈ [0,1]. Consider

A= {x ∈Uw : x ∈ tF(x) for some t ∈ [0,1]
}
. (2.11)
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NowA �= ∅ since 0∈U and Theorem 2.3 guarantees that F :Uw → K(C) is weakly upper
semicontinuous. Thus A is weakly closed, and in fact weakly compact since Uw is weakly
compact.

Also A∩ ∂U = ∅ so there exists (since (E,w), the space E endowed with the weak
topology, is completely regular) a weakly continuous map µ :Uw → [0,1] with µ(∂U)= 0
and µ(A)= 1. Let

J(x)=

µ(x)F(x), x ∈Uw,

{0}, x ∈ C\Uw.
(2.12)

Clearly, J : C → K(C) is a weakly compact, weakly sequentially upper semicontinuous
map. Theorem 2.4 guarantees that there exists x ∈ C with x ∈ J(x). Notice that x ∈ U
since 0∈U . As a result x ∈ µ(x)F(x), so x ∈ A. Thus µ(x)= 1 and so x ∈ F(x). �

Remark 2.11. Notice that the assumption that Uw is weakly compact can be removed in
Theorem 2.10 if F :Uw → K(C) is weakly upper semicontinuous.

In applications, it is extremely difficult to construct the weakly open set U in Theorem
2.10. This motivated us to construct a Furi-Pera-type theorem in [3]. In this paper, we
present a new approach tomaps which arise naturally in applications. Of course we would
like also to remove the weak compactness of the domain space in Theorem 2.10 and re-
place it with the map being weakly compact. Our next theorem establishes such a result
for a certain subclass of weakly sequential maps. The theorem combines the advantages of
the strong topology (the sets are open in the strong topology) with the advantages of the
weak topology (the maps are weakly-strongly sequentially continuous and weakly com-
pact). As a result, we get a new applicable (see Section 3) fixed point theorem. We present
the result for single-valued maps.

Theorem 2.12. Let E be a locally convex linear Hausdorff topological space which is angelic
when furnished with the weak topology. Let C be a closed convex subset of E, U a convex
subset of C, and U an open (strong topology) subset of E with 0 ∈ U . Suppose F : U → C
is a weakly-strongly sequentially continuous map (i.e., F :U → C is completely continuous,
i.e., if xn,x ∈ U with xn⇀ x, then Fxn → Fx, i.e., for any closed set A of C, we have that
F−1(A) is weakly sequentially closed); here U denotes the closure of U in C. In addition,
suppose either U is weakly compact or F :U → C is weakly compact with the Krein-Šmulian
property holding. Also assume that

x �= λFx for x ∈ ∂CU , λ∈ (0,1); (2.13)

here ∂CU denotes the boundary (strong topology) of U in C. Then F has a fixed point in U .

Remark 2.13. Note that intCU =U (interior in the strong topology) since U is open in C
so as a result, ∂CU = ∂EU ; here ∂EU denotes the boundary of U in E.

Proof. Let µ be the Minkowski functional on U and let r : E→U be given by

r(x)= x

max
{
1,µ(x)

} for x ∈ E. (2.14)
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Note that r : E→ U is continuous. Also since F : U → C is weakly-strongly sequentially
continuous, we have immediately that rF :U →U is weakly sequentially continuous. No-
tice also that rF : U → U is a weakly compact map if F : U → C is weakly compact; note

that F(U)w is weakly compact so the weak compactness of rF follows from

r
(
F
(
U
)w)⊆ co

(
{0}∪F

(
U
)w)

(2.15)

and the Krein-Šmulian property.
We apply Theorem 2.1 if U is weakly compact and Theorem 2.4 if F :U → C is weakly

compact. Thus there exists x ∈ U with x = rF(x). Thus x = r(y) with y = F(x) and x ∈
U = U ∪ ∂U (note that intCU = U since U is also open in C). Now either y ∈ U or
y /∈U . If y ∈U , then r(y)= y so x = y = F(x), and we are finished. If y /∈U , then r(y)=
y/µ(y) with µ(y) > 1. Then x = λy (i.e., x = λF(x)) with 0 < λ = 1/µ(y) < 1; note that
x ∈ ∂CU since µ(x)= µ(λy)= 1 (note that ∂CU = ∂EU since intCU =U). This of course
contradicts (2.13). �

Remark 2.14. The argument above breaks down in the multivalued case (i.e., when F :
U → K(C)) since rF : U → 2U but the values may not be convex. We will consider the
multivalued case at a later stage using a different argument.

Theorem 2.15. Let E be a locally convex linear Hausdorff topological space which is angelic
when furnished with the weak topology. Let C be a closed convex subset of E, U a convex
subset of C, and U an open (strong topology) subset of E with 0 ∈ U . Suppose F : U → C
is a weakly-strongly sequentially continuous map and assume that (2.13) and the following
condition hold:

D ⊆U , D ⊆ co
({0}∪F(D)

)
implies Dw is weakly compact (2.16)

Then F has a fixed point in U .

Proof. Let µ and r be as in Theorem 2.12 and note that rF :U →U is a weakly sequentially
continuous map.

Let A⊆U with A= co({0}∪ rF(A)). Now since rF(A)⊆ co({0}∪F(A)), we have

A⊆ co
({0}∪ co

({0}∪F(A)
))= co

({0}∪F(A)
)
, (2.17)

so (2.16) guarantees that Aw(= A) is weakly compact. Theorem 2.7 guarantees that there
exists x ∈U with x = rF(x). Essentially, the same reasoning as in Theorem 2.12 completes
the proof. �

3. Application

In this section, we show how easily Theorem 2.12 can be applied in practice. We remark
here that when one uses the standard Leray-Schauder (strong topology) alternative [1] in
the literature, most of the work involves checking that the map is compact. This work is
removed if one uses Theorem 2.12 (see Theorem 3.1).
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Consider the Dirichlet boundary value problem

y′′ + f (t, y, y′)= 0 a.e. on [0,1],

y(0)= y(1)= 0,
(3.1)

where f : [0,1]×R2→R is an Lp-Carathéodory function with p > 1. By this we mean

(i) t �→ f (t,u,v) is measurable for all (u,v)∈R2,
(ii) (u,v) �→ f (t,u,v) is continuous for a.e. t ∈ [0,1],
(iii) for any r > 0, there exists hr ∈ Lp[0,1] with | f (t,u,v)| ≤ hr(t) for a.e. t ∈ [0,1]

and all |u| ≤ r and |v| ≤ r.

By a solution to (3.1) we mean a function y ∈W2,p[0,1] (i.e., y′ ∈ AC[0,1] and y′ ∈
Lp[0,1]), which satisfies the differential equation a.e. and y(0)= y(1)= 0.

Define the operators

H1,H2 : Lp[0,1]−→ C[0,1]⊆ Lp[0,1] (3.2)

by

H1u(t)=
∫ 1

0
G(t,s)u(s)ds, H2u(t)=

∫ 1

0
Gt(t,s)u(s)ds, (3.3)

where

G(t,s)=

(t− 1)s, 0≤ s≤ t ≤ 1,

(s− 1)t, 0≤ t ≤ s≤ 1.
(3.4)

It is easy to see that solving (3.1) is equivalent to finding a solution u∈ Lp[0,1] to

u=− f
(
t,H1(u),H2(u)

)
. (3.5)

Note that if u is a solution of (3.5), then y(t) = ∫ 10 G(t,s)u(s)ds is a solution of (3.1),
whereas if w is a solution of (3.1), then v =w′′ is a solution of (3.5).

Define an operator F : Lp[0,1]→ Lp[0,1] by

Fu(t)=− f
(
t,H1

(
u(t)

)
,H2

(
u(t)

))
. (3.6)

Consequently, solving (3.1) is equivalent to finding a fixed point u∈ Lp[0,1] to

u= Fu. (3.7)

Theorem 3.1. Let f : [0,1]×R2 → R be an Lp-Carathéodory function with p > 1 and
suppose there is a constantM0, independent of λ, with

‖y′′‖Lp =
(∫ 1

0

∣∣y′′(t)∣∣pdt
)1/p

�=M0 (3.8)
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for any solution y to the problem

y′′ + λ f (t, y, y′)= 0 a.e. on [0,1],

y(0)= y(1)= 0
(3.9)

for any λ∈ (0,1). Then (3.1) has at least one solution.

Proof. We will apply Theorem 2.12 with

E = C = Lp[0,1], U = {u∈ Lp[0,1] : ‖u‖Lp < M0
}
. (3.10)

Notice thatU = {u∈ Lp[0,1] : ‖u‖Lp ≤M0} is closed and convex, so weakly closed.More-
over, U is weakly compact (recall that in a reflexive Banach space a subset is weakly com-
pact if and only if it is closed in the weak topology and bounded in the norm topol-
ogy). Also (3.8) guarantees that (2.13) holds. It remains to show that F :U → Lp[0,1] is a
weakly-strongly sequentially continuous map. Let yn, y ∈U with yn⇀ y in Lp[0,1] (i.e.,∫ 1
0 yng dt→

∫ 1
0 yg dt for all g ∈ Lq[0,1] with 1/p+1/q = 1). We must show that Fyn→ Fy

in Lp[0,1]. Notice that
∫ 1

0

∣∣Fyn(t)−Fy(t)
∣∣pdt ≤

∫ 1

0

∣∣ f (t,H1
(
yn
)
,H2

(
yn
))− f

(
t,H1(y),H2(y)

)∣∣pdt. (3.11)

If we show that∫ 1

0

∣∣ f (t,H1
(
yn
)
,H2

(
yn
))− f

(
t,H1(y),H2(y)

)∣∣pdt −→ 0 as yn⇀ y, (3.12)

then we are finished.
First we show, for each t ∈ [0,1], that

yn⇀ y implies Hi
(
yn(t)

)−→Hi
(
y(t)

)
for i= 1,2. (3.13)

We prove (3.13) when i= 1 (the case i= 2 is similar). Fix t ∈ [0,1]. Then

∣∣H1
(
yn(t)

)−H1
(
y(t)

)∣∣=
∣∣∣∣
∫ 1

0
G(t,s)

[
yn(s)− y(s)

]
ds
∣∣∣∣−→ 0 (3.14)

as yn⇀ y since G(t,·) ∈ Lq[0,1] for fixed t ∈ [0,1]. Now (3.13) (together) with the fact
that f is an Lp-Carathéodory function gives

yn⇀ y =⇒ f
(
t,H1

(
yn
)
,H2

(
yn
))−→ f

(
t,H1(y),H2(y)

)
a.e. on [0,1]. (3.15)

Also for u∈U and t ∈ [0,1], we have

∣∣H1
(
u(t)

)∣∣=
∣∣∣∣
∫ 1

0
G(t,s)u(s)ds

∣∣∣∣
≤
(∫ 1

0
|u|pds

)1/p
sup
t∈[0,1]

(∫ 1

0

∣∣G(t,s)∣∣qds)1/q

≤M0 sup
t∈[0,1]

(∫ 1

0

∣∣G(t,s)∣∣qds)1/q.
(3.16)



Ravi P. Agarwal et al. 9

Thus there exists an r > 0 with
∣∣Hi

(
u(t)

)∣∣≤ r ∀t ∈ [0,1], u∈U , i= 1,2. (3.17)

Now (3.12) follows immediately from (3.15), (3.17), and the Lebesgue dominated con-
vergence theorem.

We may now apply Theorem 2.12 to deduce that F has a fixed point in U . �

The argument in Theorem 3.1 establishes the following existence principle for the op-
erator equation

u= Tu, (3.18)

where T : Lp[0,1]→ Lp[0,1] with p > 1.

Theorem 3.2. Suppose there is a constantM0, independent of λ, with

‖y‖Lp �=M0 (3.19)

for any solution y to the problem

y = λTy (3.20)

for any λ ∈ (0,1). In addition, assume that T : U → Lp[0,1] is a weakly-strongly sequen-
tially continuous map; here U = {u∈ Lp[0,1] : ‖u‖Lp ≤M0}. Then (3.18) has at least one
solution in U .

Remark 3.3. Of course there is an analog of Theorem 3.2 for the operator equation (3.18)
where T : E → E with E a reflexive Banach space (e.g., E could be the Sobolev space
Wk,p([0,1],Rn) with k ≥ 0 and 1 < p <∞).
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