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In the appendix to the book by F. F. Bonsal, Lectures on Some Fixed Point Theorems of
Functional Analysis (Tata Institute, Bombay, 1962) a proof by Singbal of the Schauder-
Tychonoff fixed point theorem, based on a locally convex variant of Schauder mapping
method, is included. The aim of this note is to show that this method can be adapted
to yield a proof of Kakutani fixed point theorem in the locally convex case. For the sake
of completeness we include also the proof of Schauder-Tychonoff theorem based on this
method. As applications, one proves a theorem of von Neumann and a minimax result in
game theory.
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duction in any medium, provided the original work is properly cited.

1. Introduction

Let Bn be the unit ball of the Euclidean space Rn. Brouwer’s fixed point theorem asserts
that any continuous mapping f : Bn → Bn has a fixed point, that is, there exists x ∈ Bn

such that f (x) = x. The result holds for any nonempty convex bounded closed subset
K of Rn, or of any finite dimensional normed space (see [8, Theorems 18.9 and 18.9′]).
Schauder [16] extended this result to the case when K is a convex compact subset of an
arbitrary normed space X . Using some special functions, called Schauder mappings, the
proof of Schauder’s theorem can be reduced to Brouwer fixed point theorem (see. e.g. [8,
page 197] or [12, page 180]). A further extension of this theorem was given by Tychonoff

[18], who proved its validity when K is a compact convex subset of a Hausdorff locally
convex space X . The proof given in the treatise of Dunford and Schwartz [4] is based
on three lemmas and, with some minor modifications, the same proof appears in [5]
and [9]. The extension of Schauder mapping method to locally convex case was given by
Singbal who used it to prove the Schauder-Tychonoff theorem. This proof is included as
an appendix to Bonsal’s book [3] (see also [17, page 33]).

Kakutani [10] proved an extension of Brouwer’s fixed point theorem to upper semi-
continuous set-valued mappings defined on compact convex subsets of Rn, which was
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extended to Banach spaces by Bohnenblust and Karlin [2], and to locally convex spaces
by Glicksberg [7]. Nikaido [15] gave a new proof of Kakutani’s theorem (in the case Rn)
based on the method of Schauder’s mappings. This proof is extended to Banach spaces
in [11].

The aim of this Note is to show that Schauder mapping method can be adapted to
yield a proof of Kakutani fixed point theorem in locally convex spaces. For the sake of
completeness we include also a proof of Schauder-Tychonoff theorem which is essentially
Singbal’s proof, with the difference that we use the fact that a net in a compact set admits a
convergent subnet instead of the equivalent fact that it has a cluster point, as did Singbal.
A similar proof appears also in [1, page 61], but it is based on the existence of a partition
of unity instead of the Schauder mapping.

A locally convex space is a topological vector space (X ,τ) admitting a neighborhood
basis at 0 formed by convex sets. It follows that every point in X admits a neighborhood
basis formed of convex sets and there is a neighborhood basis at 0 formed by open convex
symmetric sets. Let P be a family of seminorms on a vector space X and let �(P) := {F ⊂
P : F nonempty and finite}. For F ∈�(P) and r > 0, let

B′F(x,r)=
{
x′ ∈ X :∀p ∈ F, p

(
x′ − x

)
< r
}
,

BF(x,r)=
{
x′ ∈ X :∀p ∈ F, p

(
x′ − x

)≤ r
}
.

(1.1)

If F = {p}, then we use the notation B′p(x,r) and Bp(x,r) to designate the open, respec-
tively closed, p-ball. The family of sets

�′(x)= {B′F(x,r) : F ∈�(P) and r > 0
}

(1.2)

forms a neighborhood basis of a locally convex topology τP on X .
The family of sets

�(x)= {BF(x,r) : F ∈�(P) and r > 0
}

(1.3)

is also a neighborhood basis at x for τP . If B is a convex symmetric absorbing subset of a
vector space X , then the Minkowski functional pB : X → [0,∞) defined by

pB(x)= inf{λ > 0 : x ∈ λB}, x ∈ X , (1.4)

is a seminorm on X and

{
x ∈ X : pB(x) < 1

}⊂ B ⊂ {x ∈ X : pB(x)≤ 1
}
. (1.5)

If X is a topological vector space and B is an open convex symmetric neighborhood of 0,
then the seminorm pB is continuous,

B = {x ∈ X : pB(x) < 1
}
, clB = {x ∈ X : pB(x)≤ 1

}
. (1.6)

If � is a neighborhood basis at 0 of a locally convex space (X ,τ), formed by open
convex symmetric neighborhoods of 0, then P = {pB : B ∈ �} is a directed family of
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seminorms generating the topology τ in the way described above. Therefore, there are
two equivalent ways of defining a locally convex space—as a topological vector space
(X ,τ) such that 0 admits a neighborhood basis formed by convex sets, or as a pair (X ,P)
where P is a family of seminorms on X generating a locally convex topology on X . We
consider only real vector spaces.

A directed set is a partially ordered set (I ,≤) such that for every i1, i2 ∈ I there exists
i ∈ I with i ≥ i1, and i ≥ i2. A net in a set Z is a mapping ψ : I → Z. If (J ,≤) is another
directed set and there exists a non-decreasing mapping γ : J → I such that for every i∈ I
there exists j ∈ J with γ( j)≥ i, then we say that ψ ◦ γ : J → Z is a subnet of the net ψ. One
uses also the notation (zi : i∈ I), where zi = ψ(i), to designate the net ψ and (zγ( j) : j ∈ J)
for a subnet. It is known that a subset K of a topological space T is compact if and only if
every net in K admits a subnet converging to an element of K (see [6]).

If �(x) is a neighborhood basis of a point x of a topological space (X ,τ), then it be-
comes a directed set with respect to the order B1 ≤ B2⇔ B2 ⊂ B1. If xB ∈ X , B ∈�, then
(xB : B ∈�(x)) is a net in X . We denote by �(x) the family of all neighborhoods of a
point x ∈ X , and by cl(Z) the closure of a subset Z of X .

We will use the following facts.

Proposition 1.1. Let (X ,τ) be a topological vector space and � a neighborhood basis of 0.
(a) The topology τ is Hausdorff separated if and only if

⋂
{B : B ∈�} = {0}. (1.7)

(b) The closure of any subset A of X can be calculated by the formula

clA=
⋂
{A+B : B ∈�}. (1.8)

(c) Suppose that the topology of X is Hausdorff. Then for every finite subset {a1, . . . ,an}
of X there exists m ∈ N, m ≤ n, such that the set co{a1, . . . ,an} is linearly homeo-
morphic to a compact convex subset of Rm.

Proof. Properties (a) and (b) are well known (see, e.g. [13]). To prove (c), let Y =
sp{a1, . . . ,an} and m= dimY . It follows that Y is linearly homeomorphic to Rm, that is,
there exists a linear homeomorphism Φ : Y → Rm. Since Z = co{a1, . . . ,an} is a compact
subset of Y , its image Φ(Z) will be a convex compact subset of Rm. �

Based on this proposition one obtains the following extended form of Brouwer fixed
point theorem.

Corollary 1.2. If Z is a finite dimensional compact convex subset of a Hausdorff topologi-
cal vector space X , then any continuous mapping f : Z → Z has a fixed point.

Recall that a subset Z of a vector space X is called finite dimensional provided
dim(sp(Z)) <∞.
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2. The fixed point theorems

Before passing to the proofs of Schauder-Tychonoff and Kakutani fixed point theorems,
we will present the construction of the Schauder projection mapping and its basic
properties.

Let p be a seminorm on a vector space X and C a nonempty convex subset of X . For
ε > 0 suppose that there exists a (p,ε)-net z1, . . . ,zn ∈ C for C, that is, C ⊂∪n

i=1B′p(zi,ε).
For i∈ {1,2, . . . ,n} define the real valued functions gi = gip,ε, w =wp,ε and wi =wi

p,ε by

gi(x)=max
{
ε− p

(
x− zi

)
,0
}
, w(x)=

n∑

i=1
gi(x),

wi(x)= gi(x)/w(x), x ∈ C.

(2.1)

Let also ϕ= ϕp,ε : C→ C be defined by

ϕ(x)=
n∑

i=1
wi(x)zi, x ∈ C. (2.2)

The mapping ϕp,ε is called the Schauder mapping.

Lemma 2.1. Let p be a continuous seminorm on a topological vector space (X ,τ), C a convex
subset ofX and ε > 0. The mappings defined by (2.1) and (2.2) have the following properties.

(a) The functions gi are continuous and nonnegative on C.
(b) The function w is continuous and∀x ∈ C, w(x) > 0.
(c) The functions wi are well defined, continuous, nonnegative, and

∑n
i=1wi(x) = 1,

x ∈ C.
(d) The mapping ϕ is continuous on C and

∀x ∈ C, p
(
ϕ(x)− x

)
< ε. (2.3)

Proof. (a) The continuity of gi follows from the continuity of p and the equality gi(x)=
2−1(ε− p(x− zi) + |ε− p(x− zi)|).

(b) The continuity of w is obvious. Since for every x ∈ C there exists j ∈ {1,2, . . . ,n}
such that p(x− z j) < ε, it follows w(x)≥ g j(x)= ε− p(x− z j) > 0.

(c) Follows from (a) and (b).
(d) By (b) and (c) the functions wi are well defined and continuous, and ϕ(x)∈ C for

every x ∈ C, as a convex combination of the elements z1, . . . ,zn ∈ C. To prove inequality
(2.3) observe that, for x ∈ C, ϕ(x)− x =∑n

i=1wi(x)(zi − x), so that, by (c) and the fact
that p(zi− x) < ε whenever wi(x) > 0, we have

p
(
ϕ(x)− x

)≤
n∑

i=1
wi(x)p

(
zi− x

)
< ε. (2.4)

�

Remark 2.2. It follows that for every x ∈ C, ϕ(x) is a convex combination of the elements
z1, . . . ,zn, so that ϕ is a mapping from the set C to co{z1, . . . ,zn}.

Now we can state and prove Schauder-Tychonoff theorem.
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Theorem 2.3. If C is a convex compact subset of a Hausdorff locally convex space (X ,τ),
then any continuous mapping f : C→ C has a fixed point in C.

Proof. Let � be a basis of 0-neighborhoods formed by open convex symmetric subsets of
X . The Minkowski functional pB corresponding to a set B ∈� is a continuous seminorm
on X and

B = {x ∈ X : pB(x) < 1
}
. (2.5)

By the compactness of the set C there exist z1B, . . . ,z
n(B)
B ∈ C such that

C ⊂
{
z1B, . . . ,z

n(B)
B

}
+B. (2.6)

Denote by ϕB the Schauder mapping corresponding to pB, ε = 1 and z1B, . . . ,z
n(B)
B , and let

CB = co{z1B, . . . ,zn(B)B }. It follows that fB = ϕB ◦ f is a continuous mapping of the finite
dimensional convex compact set CB into itself, so that, by Brouwer’s fixed point theorem
(Corollary 1.2), it has a fixed point, that is, there exists xB ∈ CB such that fB(xB)= xB.

Using again the compactness of the set C, the net (xB : B ∈�) admits a subnet (xγ(α) :
α∈ Λ) converging to an element x ∈ C. Here Λ is a directed set and γ : Λ→� the non-
decreasing mapping defining the subnet. We show that x is a fixed point of f , that is
f (x)= x. Since the topology of the space X is separated Hausdorff this is equivalent to

∀V ∈�(0), x− f (x)∈V. (2.7)

For V ∈ �(0) let B ∈� be such that B + B ⊂ V . By the definition of the subnet there
exists α0 ∈Λ such that γ(α0)⊂ B. Then for all α≥ α0, γ(α)⊂ γ(α0)⊂ B, so that, by (2.3)
(with ε = 1), the fact that ϕγ(α)( f (xγ(α)))= xγ(α) and (2.5), we get

pγ(α)
(
ϕγ(α)

(
f
(
xγ(α)

))− f
(
xγ(α)

))
< 1

=⇒ ϕγ(α)
(
f
(
xγ(α)

))− f
(
xγ(α)

)∈ γ(α)⊂ B =⇒ xγ(α)− f
(
xγ(α)

)∈ B.
(2.8)

Passing to limit for α≥ α0 and taking into account the continuity of f , one obtains

x− f (x)∈ clB ⊂ B+B ⊂V , (2.9)

that is, (2.7) holds. �

Let (X ,P) be a locally convex space. A subset Z of X is called bounded if sup p(Z) <∞
for every p ∈ P. The space X is called quasi-complete if every closed bounded subset of X
is complete. In a quasi-complete locally convex space the closed convex hull of a compact
set is compact (see [13, Section 20.6(3)]).

The following result is a variant of the Schauder-Tychonoff fixed point theorem (see
[8, Theorem 18.10′] for the Banach space case). In [9] and [14] one proves first this
variant of Schauder’s fixed point theorem in the Banach space case, by using uniform
approximations of completely continuous nonlinear operators by operators with finite
range. According to [14], an operator is called completely continuous if it is continuous
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and sends bounded sets onto relatively compact sets. Obviously that the operator f in the
next theorem is completely continuous.

Theorem 2.4. Let (X ,P) be a quasi-complete Hausdorff locally convex space and C a closed
bounded convex subset of X . If f : C → C is a continuous mapping such that cl f (C) is a
compact subset of C, then f has a fixed point in C.

Proof. The closed convex hull K = cl-co f (C) of the set f (C) is a compact convex subset
of C. Since f (K) ⊂ f (C) ⊂ K , then, by Theorem 2.3, the mapping f has a fixed point
in K . �

The technique of Schauder mappings can be used to prove the Kakutani fixed point
theorem for set-valued mappings in the locally convex case.

By a set-valued mapping between two sets X , Y we understand a mapping F : X → 2Y

such that F(x) �= ∅ for all x ∈ X . We use the notation F : X ⇒ Y . If X , Y are topological
spaces, then a set-valued mapping F : X ⇒ Y is called upper semi-continuous (usc) pro-
vided for every x ∈ X and every open set V in Y such that F(x)⊂V there exists an open
neighborhood U of x such that F(U)⊂ V , where F(U)=⋃{F(x′) : x′ ∈ U}. The graph
of F is the setGF = {(x, y)∈ X ×Y : y ∈ F(x)}. The set-valued mapping F is called closed
if its graph GF is a closed subset of X ×Y . Obviously that if F has closed graph, then F(x)
is closed in Y for every x ∈ X .

For proofs of the following proposition in the caseX =Rn andY =Rm or in the case of
normed spaces X , Y , see [15] and [11], respectively. In the case when X , Y are topological
spaces, one can proceed similarly, by working with nets instead of sequences. For the
sake of completeness we include the proof, but first recall some facts about separation
properties in topological spaces (see [6, Chapter VI, Section 1]). A topological space X is
called T1 provided for every x ∈ X the set {x} is closed in X , and T2, or Hausdorff, if any
two distinct points in X have disjoint neighborhoods. If X , Y are topological spaces, Y is
Hausdorff and f ,g : X → Y are continuous, then the set {x ∈ X : f (x)= g(x)} is closed in
X . A topological spaceX is called regular if it is T1 and for any x ∈ X and any closed subset
A ⊂ X not containing x, there exist two disjoint open sets G1, G2 ⊂ X such that x ∈ G1

and A⊂G2. This is equivalent to the fact that every point in X has a neighborhood basis
formed of closed sets. It is obvious that a Hausdorff locally convex space is regular.

Proposition 2.5. Let X , Y be topological spaces and F : X ⇒ Y a set-valued mapping.
(a) If Y is regular, F is usc and for every x ∈ X the set F(x) is nonempty and closed, then

F has closed graph.
(b) Conversely, if the space Y is compact Hausdorff and F is with closed graph, then F

is usc.

Proof. (a) Suppose that the nets (xi : i∈ I) and yi ∈ F(xi), i∈ I , are such that xi→ x and
yi → y, for some x ∈ X and y ∈ Y with y /∈ F(x). Since F(x) is closed and Y is regular,
there exists a closed neighborhoodW of y such that W ∩F(x)=∅. Then V = Y \W is
an open set containing F(x) so that, by the upper semi-continuity of F, there exists an
open neighborhood U of x such that F(U) ⊂ V . If i0 ∈ I is such that for i ≥ i0, xi ∈ U ,
then yi ∈ F(xi)⊂V = X \W , for all i≥ i0. It follows yi /∈W , ∀i≥ i0, in contradiction to
yi→ y.
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(b) Let x ∈ X and V an open subset of Y such that F(x)⊂V . Put

U := {x′ ∈ X : F
(
x′
)⊂V

}
. (2.10)

By the definition of U , F(U) ⊂ V , so it suffices to show that the set U is open or,
equivalently, that the setW := X \U is closed.

Suppose that there exists a net xi ∈W , i ∈ I , that converges to an element x ∈ U .
By the definition (2.10) of the set U , for every i ∈ I there exists yi ∈ F(xi) \V . By the
compactness of the space Y , the net (yi) contains a subnet (yγ( j) : j ∈ J) converging to an
element y ∈ Y . We have xγ( j)→ x, yγ( j) ∈ F(xγ( j)) and yγ( j)→ y, so that, by the closedness
of F, y ∈ F(x). By the choice of the elements yi, the elements yγ( j) belong to the closed set
Y \V , as well as their limit y, implying y ∈ F(x) \V , in contradiction to F(x)⊂V . �

We can state and prove the Kakutani theorem in the locally convex case. An element
x ∈ X is called a fixed point of a set-valued mapping F : X ⇒ Y if x ∈ F(x). If F is single-
valued then we get the usual notion of fixed point.

Theorem 2.6. Let C be a nonempty compact convex subset of a Hausdorff locally con-
vex space (X ,τ). Then any upper semi-continuous mapping F : C ⇒ C, such that F(x) is
nonempty closed and convex for every x ∈ C, has a fixed point in C.

Proof. Let � be a basis of 0-neighborhoods formed by open convex symmetric subsets of

X . For B ∈� choose z1B, . . . ,z
n(B)
B ∈ C such that

C ⊂
{
z1B, . . . ,z

n(B)
B

}
+B, (2.11)

and let yiB ∈ F(ziB), i= 1, . . . ,n(B). Denote by wi
B, i= 1, . . . ,n(B), the functions from (2.1)

corresponding to the Minkowski functional pB of the set B, ε = 1, and to the points

z1B, . . . ,z
n(B)
B , and let

fB(x)=
n(B)∑

i=1
wi
B(x)y

i
B, x ∈ C. (2.12)

By Schauder-Tychonoff theorem (Theorem 2.3) the continuousmapping fB : C→ C has a
fixed point, that is, there exists xB ∈ C such that fB(xB)= xB. The net (xB : B ∈�) admits
a subnet (xγ(α) : α∈ Λ), γ : Λ→�, converging to an element x ∈ C. We show that x is a
fixed point for F, that is, x ∈ F(x). Since F(x) is closed this is equivalent to

∀V ∈�(0), x ∈ F(x) +V. (2.13)

Let V ∈�(0) and let B ∈� such that B +B ⊂ V . Since the set F(x) +B is open and
contains F(x), by the upper semi-continuity of the mapping F there exists U ∈� such
that

F
(
C∩ (x+U)

)⊂ F(x) +B (2.14)
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Let D ∈� such that D+D ⊂U and let α0 ∈Λ be such that

γ
(
α0
)⊂D, ∀α≥ α0, xγ(α) ∈ x+D. (2.15)

Then, for all α≥ α0, γ(α)⊂ γ(α0)⊂D and

xγ(α) = fγ(α)
(
xγ(α)

)

=
∑{

wi
γ(α)

(
xγ(α)

)
yiγ(α) : 1≤ i≤ n

(
γ(α)

)
, wi

γ(α)

(
xγ(α)

)
> 0
}
.

(2.16)

But

wi
γ(α)

(
xγ(α)

)
> 0⇐⇒ pγ(α)

(
ziγ(α)− xγ(α)

)
< 1

⇐⇒ ziγ(α)− xγ(α) ∈ γ(α)⊂D,
(2.17)

so that

ziγ(α) ∈ xγ(α) +D ⊂ x+D+D ⊂ x+U , (2.18)

for every α≥ α0. Taking into account (2.14) it follows

yiγ(α) ∈ F
(
ziγ(α)

)⊂ F(x) +B, i= 1, . . . ,n
(
γ(α)

)
. (2.19)

By (2.16), xγ(α) is a convex combination of the elements yiγ(α), i= 1, . . . ,n(γ(α)), so that it
belongs to the convex set F(x) +B for all α≥ α0. Consequently

x ∈ cl
(
F(x) +B

)⊂ F(x) +B+B ⊂ F(x) +V , (2.20)

showing that (2.13) holds. �

3. Applications

In this section we will give some applications of Kakutani’s fixed point theorem to game
theory. First we show that Kakutani’s theorem has as consequence a result of J. von Neu-
mann [19] (see also [15]).

Theorem 3.1. Let (X ,P) and (Y ,Q) be Hausdorff locally convex spaces and A⊂ X , B ⊂ Y
nonempty compact convex sets. For M,N ⊂ A× B let Mx = {y ∈ B : (x, y) ∈M}, x ∈ A,
and Ny = {x ∈ A : (x, y)∈N}, y ∈ B.

If the setsM, N are closed and for every (x, y)∈ A×B the setsMx and Ny are nonempty
closed and convex, thenM∩N �= ∅.

Proof. Define the set-valued mapping F : A×B ⇒ A×B by F(x, y) = Ny ×Mx, (x, y) ∈
A×B. If we show that F satisfies the hypotheses of Kakutani fixed point theorem, then
there exists (x0, y0) ∈ A× B such that (x0, y0) ∈ F(x0, y0) = Ny0 ×Mx0 . It follows x0 ∈
Ny0 ⇔ (x0, y0)∈N and y0 ∈Mx0 ⇔ (x0, y0)∈M, so that (x0, y0)∈M∩N .

Consider the locally convex space (X ×Y ,P×Q), where (p,q)(x, y)= p(x) + q(y), for
(p,q)∈ P×Q and (x, y)∈ X ×Y . The set C = A×B is a compact convex subset of X ×Y
and, by hypothesis, F(x, y)=Ny ×Mx is nonempty and convex for every (x, y)∈ A×B.
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By Proposition 2.5, if we show that F is with closed graph, then it will be usc and with
closed image sets F(x, y). Define the mappings ϕ,ψ : (A×B)2→ A×B by

ϕ(x, y,u,v)= (u, y), ψ(x, y,u,v)= (x,v), (3.1)

for (x, y,u,v)∈ (A×B)2. Then ϕ and ψ are continuous and the sets

ϕ−1(N)= {(x, y,u,v)∈ (A×B)2 : (u, y)∈N
}
,

ψ−1(M)= {(x, y,u,v)∈ (A×B)2 : (x,v)∈N
} (3.2)

are closed. The equivalences

(u,v)∈ F(x, y)⇐⇒ u∈Ny ⇐⇒ (u, y)∈N

v ∈Mx ⇐⇒ (x,v)∈M,
(3.3)

imply

GF =
{
(x, y,u,v)∈ (A×B)2 : (u,v)∈ F(x, y)

}

= {(x, y,u,v)∈ (A×B)2 : (u, y)∈N , (x,v)∈M
}

= ϕ−1(N)∩ψ−1(M),

(3.4)

showing that GF is closed. �

Remark 3.2. Note that Kakutani’s fixed point theorem is a particular case of von Neu-
mann’s theorem. Indeed, taking A = B = C, M = GF and N = {(x,x) : x ∈ C}, then
(x, y)∈M∩N is equivalent to y = x ∈ F(x), that is, x is a fixed point of F.

Another application of the Kakutani fixed point theorem is to game theory.
A game is a triple (A,B,K), where A, B are nonempty sets, whose elements are called

strategies, and K : A× B → R is the gain function. There are two players, α and β, and
K(x, y) represents the gain of the player α when he chooses the strategy x ∈ A and the
player β chooses the strategy y ∈ B. The quantity −K(x, y) represents the gain of the
player β in the same situation. The target of the player α is to maximize his gain when the
player β chooses a strategy that is the worst for α, that is, to choose x0 ∈ A such that

inf
y∈B

K
(
x0, y

)=max
x∈A

inf
y∈B

K(x, y). (3.5)

Similarly, the player β chooses y0 ∈ B such that

sup
x∈A

K
(
x, y0

)=min
y ∈ B

sup
x∈A

K(x, y). (3.6)

It follows

sup
x∈A

inf
y ∈ B

K(x, y)= inf
y∈B

K
(
x0, y

)≤ K
(
x0, y0

)≤ sup
x∈A

K
(
x, y0

)≤ inf
y ∈ B

sup
x∈A

K(x, y). (3.7)
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Note that in general

sup
x∈A

inf
y ∈ B

K(x, y)≤ inf
y ∈ B

sup
x∈A

K(x, y). (3.8)

If the equality holds in (3.8), then, by (3.7),

sup
x∈A

inf
y ∈ B

K(x, y)= K
(
x0, y0

)= inf
y ∈ B

sup
x∈A

K(x, y). (3.9)

The common value in (3.9) is called the value of the game, (x0, y0) ∈ A×B a solution
of the game and x0 and y0 winning strategies. It follows that to prove the existence of a
solution of a game we have to prove equality (3.8), that is, to prove aminimax theorem.

We will prove first a lemma.

Lemma 3.3. If A, B are compact Hausdorff topological spaces and K : A×B→R is contin-
uous, then the functions

ϕ(x) :=min
y∈B

K(x, y)=minK(x×B), x ∈A,

ψ(y) :=max
x∈A

K(x, y)=maxK(A× y), y ∈ B,
(3.10)

are continuous too.

Proof. We will prove that ψ is continuous. The continuity of ϕ can be proved in a simi-
lar way.

Let (yi : i∈ I) be a net in B converging to y ∈ B. By the compactness of A there exists
xi ∈ A such that ψ(yi) = K(xi, yi), i ∈ I . Using again the compactness of A, the net (xi)
contains a subnet (xγ( j) : j ∈ J), γ : J → I , converging to an element x ∈ A. Then, by the
continuity of K ,

lim
j
ψ
(
yγ( j)

)= lim
j
K
(
xγ( j), yγ( j)

)= K(x, y). (3.11)

But, for every u ∈ A and j ∈ J , K(u, yγ( j)) ≤ K(xγ( j), yγ( j)), implying K(u, y) ≤ K(x, y),
u ∈ A, that is, K(x, y) =maxK(A× y) = ψ(y), which is equivalent to the continuity of
ψ at y. Indeed, if ψ would not be continuous at y, then it would exists ε > 0 such that
for every V ∈�(y) there exists yV ∈V with |ψ(yV )−ψ(y)| ≥ ε. Ordering �(y) by V1 ≤
V2 ⇔ V2 ⊂ V1, it follows that the net (yV : V ∈�(y)) converges to y and no subnet of
(ψ(yV ) :V ∈�(y)) converges to ψ(y). �

The minimax result we will prove is the following.

Theorem 3.4. Let (X ,P) and (Y ,Q) be Hausdorff locally convex spaces and A⊂ X , B ⊂ Y
nonempty compact convex sets.

Suppose that K :A×B→R is continuous and
(i) for every x ∈ A the function K(x,·) is convex, and
(ii) for every y ∈ B the function K(·, y) is concave.
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Then

min
y∈B

max
x∈A

K(x, y)=max
x∈A

min
y∈B

K(x, y), (3.12)

and the game (A,B,K) has a solution.

Proof. Let the functions ϕ(x) = minK(x × B) and ψ(y) = minK(A × y) be as in
Lemma 3.3, and let

Mx =
{
y ∈ B : K(x, y)= ϕ(x)

}
, Ny =

{
x ∈ A : K(x, y)= ψ(y)

}
, (3.13)

for x ∈ A and y ∈ B. Since A, B are Hausdorff compact spaces and the functions K , ϕ, ψ
are continuous, the setsMx and Ny are nonempty and closed, for every (x, y)∈A×B.

We will show that they are convex too. Let y1, y2 ∈Mx, t ∈ (0,1), and y = (1− t)y1 +
ty2. Then, by (i),

ϕ(x)≤ K(x, y)≤ (1− t)K
(
x, y1

)
+ tK

(
x, y2

)= (1− t)ϕ(x) + tϕ(x)= ϕ(x), (3.14)

showing that K(x, y) = ϕ(x), that is, y ∈Mx. Similarly, if x1,x2 ∈ Ny and t ∈ (0,1), we
have by (ii),

ψ(y)≥ K(x, y)≥ (1− t)K
(
x1, y

)
+ tK

(
x2, y

)= (1− t)ψ(y) + tψ(y)= ψ(y), (3.15)

showing that K(x, y)= ψ(y), that is, x ∈Ny .
Let C = A×B and define F : C ⇒ C by F(x, y) = Ny ×Mx, (x, y) ∈ C. It follows that

F(x, y) is a nonempty closed convex subset of C for every (x, y) ∈ C. If we show that F
has closed graph, then by Proposition 2.5, it is usc, so that, by Theorem 2.6, F has a fixed
point (x0, y0). We have

(
x0, y0

)∈ F
(
x0, y0

)⇐⇒ x0 ∈Ny0 , y0 ∈Mx0 . (3.16)

But

x0 ∈Ny0 ⇐⇒ K
(
x0, y0

)=max
x∈A

K
(
x, y0

)≥ inf
y∈B

max
x∈A

K(x, y),

y0 ∈Mx0 ⇐⇒ K
(
x0, y0

)=min
y∈B

K
(
x0, y

)≤ sup
x∈A

min
y ∈ B

K(x, y).
(3.17)

Taking into account these last two inequalities and (3.8), we get

K
(
x0, y0

)≤ sup
y∈B

min
x ∈ A

K(x, y)≤ inf
x∈A

max
y∈B

K(x, y)≤ K
(
x0, y0

)
, (3.18)

implying

max
x∈A

min
y∈B

K(x, y)= K
(
x0, y0

)=min
y∈B

max
x∈A

K(x, y). (3.19)

It remained to show that the graph GF of F, given by

GF =
{
(x, y,u,v)∈ C2 : (u,v)∈ F(x, y)

}
, (3.20)
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is closed in C2. Suppose that ((xi, yi) : i ∈ I) is a net in C converging to (x, y) ∈ C, and
(ui,vi)∈ F(xi, yi), i ∈ I , are such that the net ((ui,vi) : i ∈ I) converges to (u,v) ∈ C. We
have to show that (u,v)∈ F(x, y). We have

(
ui,vi

)∈ F
(
xi, yi

)⇐⇒ K
(
ui, yi

)= ψ
(
yi
)
, K

(
xi,vi

)= ϕ
(
xi
)
. (3.21)

Passing to limits for i ∈ I , and taking into account the continuity of the functions K , ϕ
and ψ, we get K(u, y)= ψ(y) and K(x,v)= ϕ(x), that is, (u,v)∈Ny ×Mx = F(x, y).

The proof is complete. �
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