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We prove that N( f )= |L( f )| for any continuous map f of a given infranilmanifold with
Abelian holonomy group of odd order. This theorem is the analogue of a theorem of
Anosov for continuous maps on nilmanifolds. We will also show that although their
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solvmanifolds, and hence they cannot be treated using the techniques developed for solv-
manifolds.
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1. Introduction

Let M be a smooth closed manifold and let f :M →M be a continuous self-map of M.
In fixed point theory, two numbers are associated with f to provide information on its
fixed points: the Lefschetz number L( f ) and the Nielsen number N( f ). Inspired by the
fact that N( f ) gives more information than L( f ), but unfortunately N( f ) is not readily
computable from its definition (while L( f ) is much easier to calculate), in literature, a
considerable amount of work has been done on investigating the relation between both
numbers. In [1] Anosov proved that N( f )= |L( f )| for all continuous maps f :M →M
ifM is a nilmanifold, but he also observed that there exists a continuous map f : K → K
of the Klein bottle K such that N( f ) �= |L( f )|.

There are two possible ways of trying to generalize this theorem of Anosov. Firstly, one
can search classes of maps for which the relation holds for a specific type of manifold. For
instance, Kwasik and Lee proved in [10] that the Anosov theorem holds for homotopic
periodic maps of infranilmanifolds and in [14] Malfait did the same for virtually unipo-
tent maps of infranilmanifolds. Secondly, one can look for classes of manifolds, other
than nilmanifolds, for which the relation holds for all continuous maps of the given man-
ifold, as was established by Keppelmann and McCord for exponential solvmanifolds (see
[8]).
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2 The Anosov theorem for infranilmanifolds

In this article we will work on the class of infranilmanifolds. After the preliminaries we
will first describe a class of maps for which the Anosov theorem holds and thereafter we
will follow the second approach and work with infranilmanifolds with odd-order Abelian
holonomy group. The main result of this paper is that the Anosov theorem always holds
for these kinds of infranilmanifolds. This result cannot be extended to the case of even-
order Abelian holonomy groups, since Anosov already constructed a counterexample for
the Klein bottle, which has Z2 as holonomy group. A detailed investigation of the case of
even-order holonomy is much more delicate and will be dealt with in an other paper.

Throughout the paper we will illustrate all concepts by means of examples. In fact the
whole collection of examples together forms one big example. Moreover, by means of this
example, we will also show that the manifolds we study are in general not solvmanifolds
and therefore cannot be treated by the techniques developed for solvmanifolds.

2. Preliminaries

Let G be a connected, simply connected, nilpotent Lie group. An affine endomorphism
of G is an element (g,ϕ) of the semigroup G�Endo(G) with g ∈G the translational part
and ϕ ∈ Endo(G) (= the semigroup of all endomorphisms of G) the linear part. The
product of two affine endomorphisms is given by (g,ϕ)(h,μ) = (g · ϕ(h),ϕμ) and (g,ϕ)
maps an element x ∈ G to g ·ϕ(x). If the linear part ϕ belongs to Aut(G), then (g,ϕ) is
an invertible affine transformation of G. We write Aff (G)=G�Aut(G) for the group of
invertible affine transformations of G.

Example 2.1. One of the best known examples of a connected and simply connected
nilpotent Lie group is the Heisenberg group

H =
⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

1 y z
0 1 x
0 0 1

⎞

⎟
⎠ | x, y,z ∈R

⎫
⎪⎬

⎪⎭
. (2.1)

For further use, we will use h(x, y,z) to denote the element
(
1 y (1/3)z
0 1 x
0 0 1

)

. (The reason for

introducing a 3 in the upper right corner lies in the use of this example later on.) The
reader easily computes that

h
(
x1, y1,z1

)
h
(
x2, y2,z2

)= h
(
x1 + x2, y1 + y2,z1 + z2 + 3x2y1

)
. (2.2)

Let us fix the following elements for use throughout the paper: a= h(1,0,0), b = h(0,1,0)
and c = h(0,0,1). The group N generated by the elements a, b, c has a presentation of the
form

N = 〈a,b,c | [b,a]= c3, [c,a]= [c,b]= 1
〉
. (2.3)

(We use the convention that [b,a] = b−1a−1ba.) Obviously the group N consists exactly
of all elements h(x, y,z), for which x, y,z ∈ Z.
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For any connected, simply connected nilpotent Lie group G with Lie algebra g, it is
known that the exponential map exp : g→G is bijective and we denote by log the inverse
of exp.

Example 2.2. The Lie algebra of H , is the Lie algebra of matrices of the form

h=
⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

0 y z
0 0 x
0 0 0

⎞

⎟
⎠ | x, y,z ∈R

⎫
⎪⎬

⎪⎭
. (2.4)

The exponential map is given by

exp : h−→H :

⎛

⎜
⎝

0 y z
0 0 x
0 0 0

⎞

⎟
⎠ �−→

⎛

⎜
⎜
⎝

1 y z+
xy

2
0 1 x
0 0 1

⎞

⎟
⎟
⎠ . (2.5)

Hence

log :H −→ h :

⎛

⎜
⎝

1 y z
0 1 x
0 0 1

⎞

⎟
⎠ �−→

⎛

⎜
⎜
⎝

0 y z− xy

2
0 0 x
0 0 0

⎞

⎟
⎟
⎠ . (2.6)

For later use, we fix the following basis of h:

C =

⎛

⎜
⎜
⎝

0 0
1
3

0 0 0
0 0 0

⎞

⎟
⎟
⎠= log(c), B =

⎛

⎜
⎝

0 1 0
0 0 0
0 0 0

⎞

⎟
⎠= log(b),

A=
⎛

⎜
⎝

0 0 0
0 0 1
0 0 0

⎞

⎟
⎠= log(a).

(2.7)

For any endomorphism ϕ of the Lie group G to itself there exists a unique endomor-
phism ϕ∗ of the Lie algebra g (namely the differential of ϕ), making the following diagram
commutative:

G
ϕ

log

G

log

g
ϕ∗

exp

g

exp (2.8)

Conversely, every endomorphism ϕ∗ of g appears as the differential of an endomorphism
of G.
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Example 2.3. Let H and h be as before. With respect to the basis C, B and A (in this
order!), any endomorphism ϕ∗ is given by a matrix of the form

⎛

⎜
⎝

k1l2− k2l1 l3 k3
0 l2 k2
0 l1 k1

⎞

⎟
⎠ . (2.9)

This follows from the fact that 3C = [B,A] and hence 3ϕ∗(C) = [ϕ∗(B),ϕ∗(A)]. Con-
versely, any such a matrix represents an endomorphism of g. The corresponding endo-
morphism ϕ of H satisfies

ϕ
(
h(x, y,z)

)= exp
(
ϕ∗
(
log
(
h(x, y,z)

)))

= h

(

k1x+ l1y,k2x+ l2y,3k3x+3l3y +
3
(
k1x+ l1y

)(
k2x+ l2y

)

2

+
(
k1l2− k2l1

)
(

z− 3xy
2

))

.

(2.10)

As one sees, although themap ϕ∗ is linear and thus easy to describe, the corresponding
ϕ is much more complicated. In order to be able to continue presenting examples, we will
use a matrix representation of the semigroup H �Endo(H). Given an endomorphism ϕ
of H , let us denote byMϕ the 4× 4-matrix

Mϕ =
(
P 0
0 1

)

, (2.11)

where P denotes the 3× 3-matrix, representing ϕ∗ with respect to the basis C, B, A (again
in this fixed order). Define the map

ψ :H �Endo(H)−→M4(R) :
(
h(x, y,z),ϕ

) �−→

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 −3x
2

3y
2

−3xy
2

+ z

0 1 0 y

0 0 1 x

0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

·Mϕ.

(2.12)

We leave it to the reader to verify that ψ defines a faithful representation of the semigroup
H �Endo(H) into the semigroupM4(R) (respectively of the group Aff(H) into the group
Gl(4,R)).

Remark 2.4. An analogous matrix representation can be obtained for any G� Endo(G)
in case G is two-step nilpotent. (Recall that a group G is said to be k-step nilpotent if
the k +1’th term of the lower central series γk+1(G)= 1, where γ1(G)= G and γi+1(G)=
[G,γi(G)]. For example, the Heisenberg group is 2-step nilpotent.) This is proved in [3]
for the group Aff(G), but the details in that paper can easily be adjusted to the case of the
semigroup G�Endo(G).
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2.1. Infranilmanifolds and continuous maps. In this section we quickly recall the no-
tion of almost-crystallographic groups and infranilmanifolds. We refer the reader to [4]
for more details.

An almost-crystallographic group is a subgroup E of Aff(G), such that its subgroup
of pure translations N = E∩G, is a uniform lattice (by which we mean a discrete and
cocompact subgroup) ofG andmoreover,N is of finite index in E. Therefore the quotient
group F = E/N is finite and is called the holonomy group of E. Note that the group F is
isomorphic to the image of E under the natural projection Aff(G)→ Aut(G), and hence
F can be viewed as a subgroup of Aut(G) and of Aff(G).

Any almost-crystallographic group acts properly discontinuously on (the correspond-
ing) G and the orbit space E\G is compact. Recall that an action of a group E on a locally
compact space X is said to be properly discontinuous, if for every compact subset C of X ,
the set {γ ∈ E | γC∩C �= ∅} is finite. When E is a torsion free almost-crystallographic
group, it is referred to as an almost-Bieberbach group and the orbit space M = E\G is
called an infranilmanifold. In this case E equals the fundamental group π1(M) of the
infranilmanifold, and we will also talk about F as being the holonomy group ofM.

Any almost-crystallographic group determines a faithful representationT :F→Aut(G),
which is induced by the natural projection p : Aff(G)=G�Aut(G)→ Aut(G), and which
is referred to as the holonomy representation.

Remark 2.5. As isomorphic crystallographic subgroups are conjugated inside Aff(G) (see
Theorem 2.7 below or [13]), it follows that the holonmy representation of an almost-
crystallographic group is completely determined from the algebraic structure of E up to
conjugation by an element of Aff(G).

Let g denote the Lie algebra of G. By taking differentials, the holonomy representation
also induces a faithful representation

T∗ : F −→ Aut(g) : x �−→ T∗(x) := d
(
T(x)

)
. (2.13)

Example 2.6. Let ϕ be the automorphism of H , whose differential ϕ∗ is given by the

matrix
(1 −3/2 0
0 −1 1
0 −1 0

)

. Let α= (h(0,0,1/3),ϕ)∈ Aff(H). Then the group E generated by a, b,

c and α has a presentation of the form

E =
〈
a,b,c,α |[b,a]= c3 [c,a]= 1 [c,b]= 1

αa= bα αb = a−1b−1α αc = cα α3 = c

〉

. (2.14)

(This is easily checked using the matrix representation (2.12).) E is an almost-crystallo-
graphic group with translation subgroup N = H ∩ E = 〈a,b,c〉 and a holonomy group
F = E/N ∼= Z3 of order three. (See also [4, page 164, type 13].) We have that

T∗(F)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I3,

⎛

⎜
⎜
⎜
⎝

1 −3
2

0

0 −1 1
0 −1 0

⎞

⎟
⎟
⎟
⎠
,

⎛

⎜
⎜
⎜
⎝

1 −3
2

0

0 −1 1
0 −1 0

⎞

⎟
⎟
⎟
⎠

2

=

⎛

⎜
⎜
⎜
⎝

1 0 −3
2

0 0 −1
0 1 −1

⎞

⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (2.15)

(Of course In will denote the n×n-identity matrix.)
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As E is torsion-free, it is an almost-Bieberbach group and it determines an infranil-
manifoldM = E\H .

Essential for our purposes is the following result due to K. B. Lee (see [11]).

Theorem 2.7. Let E,E′ ⊂ Aff(G) be two almost-crystallographic groups. Then for any ho-
momorphism θ : E→ E′, there exists a g = (d,D)∈ G�Endo(G) such that θ(α) · g = g ·α
for all α∈ E.

Important for us is the following corollary of this theorem (we refer to [11] for a
detailed proof).

Corollary 2.8. LetM = E\G be an infranilmanifold and f :M→M a continuous map of
M. Then f is homotopic to a map h :M →M induced by an affine endomorphism (d,D) :
G→G.

We say that (d,D) is a homotopy lift of f . Note that one can find the homotopy lift of
a given f , by using Theorem 2.7 for the homomorphism f∗ : π1(M)→ π1(M) induced by
f . In fact, using this method one can characterize all continuous maps, up to homotopy,
of a given infranilmanifoldM.

Example 2.9. Let E be the almost Bieberbach group of the previous example, then there
is a homomorphism θ1 : E→ E, which is determined by the images of the generators as
follows:

θ1(a)= b2c3, θ1(b)= a2c3, θ1(c)= c−4, θ1(α)= c−2α2. (2.16)

Using the matrix representation (2.12) it is easy to check that θ1 really determines an
endomorphism of E and that this endomorphism is induced by the affine endomorphism
(h(0,0,0),D1), where

D1,∗ =
⎛

⎜
⎝

−4 3 3
0 0 2
0 2 0

⎞

⎟
⎠ . (2.17)

Another example is given by the morphism θ2 determined by

θ2(a)= a4b4c20, θ2(b)= a−4c−10, θ2(c)= c16, θ2(α)= c5α, (2.18)

and induced by (h(0,0,0),D2), where

D2,∗ =
⎛

⎜
⎝

16 −10 −4
0 0 4
0 −4 4

⎞

⎟
⎠ . (2.19)

2.2. Lefschetz and Nielsen numbers on infranilmanifolds. Let M be a compact mani-
fold and assume f :M →M is a continuous map. The Lefschetz number L( f ) is defined
by

L( f )=
∑

i

(−1)iTrace( f∗ :Hi(M,Q)−→Hi(M,Q)
)
. (2.20)
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The set Fix( f ) of fixed points of f is partitioned into equivalence classes, referred to as
fixed point classes, by the relation: x, y ∈ Fix( f ) are f -equivalent if and only if there is a
path w from x to y such that w and f w are (rel. endpoints) homotopic. To each class one
assigns an integer index. A fixed point class is said to be essential if its index is nonzero.
The Nielsen number of f is the number of essential fixed point classes of f . The relation
between L( f ) andN( f ) is given by the property that L( f ) is exactly the sum of the indices
of all fixed point classes. For more details we refer to [2, 7] or [9].

In this paper, we examine the relation N( f )= |L( f )| for continuous maps f :M→M
on an infranilmanifoldM. Since L( f ) andN( f ) are homotopy invariants, one can restrict
to those maps which are induced by an affine endomorphism of the covering Lie group
G.

In fact, this is exploited completely in the following theorem of K. B. Lee (see [11]),
which will play a crucial role throughout the rest of this paper.

Theorem 2.10. Let f :M →M be a continuous map of an infranilmanifold M and let
T : F → Aut(G) be the associated holonomy representation. Let (d,D)∈ G�Endo(G) be a
homotopy lift of f . Then

N( f )= L( f )⇐⇒ det(In−T∗(x)D∗)≥ 0, ∀x ∈ F, and respectively,

N( f )=−L( f )⇐⇒ det(In−T∗(x)D∗)≤ 0, ∀x ∈ F.
(2.21)

Remark 2.11. Recently J. B. Lee and K. B. Lee generalized (see [12]) this theorem by
proving that the following formulas for L( f ) and N( f ) hold on infranilmanifolds. Using
the notations from above:

L( f )= 1
|F|

∑

x∈F
det
(
In−T∗(x)D∗

)
,

N( f )= 1
|F|

∑

x∈F

∣
∣det

(
In−T∗(x)D∗

)∣
∣.

(2.22)

3. A class of maps for which the Anosov theorem holds

With Theorem 2.10 in mind, we can describe a class of maps on infranilmanifolds, for
which the Anosov theorem always holds. Note that we do not claim that such maps exist
on all infranilmanifolds.

Proposition 3.1. Let M be an infranilmanifold with holonomy group F and associated
holonomy representation T : F → Aut(G). Let f :M→M be a continuous map and (d,D)
a homotopy lift of f .

Suppose that for all x ∈ F, x �= 1 : T∗(x)D∗ �=D∗T∗(x). Then

∀x ∈ F : det
(
In−D∗

)= det
(
In−T∗(x)D∗

)
, (3.1)

and hence N( f )= |L( f )|.
Proof. Let 1 �= x ∈ F. Since (d,D) is obtained fromTheorem 2.7, we know that there exists
an y ∈ F such that T(y)∗D∗ = D∗T(x)∗. Indeed, if x̃ is a pre-image of x ∈ E = π1(M),
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then y is the natural projection of f∗(x̃), where f∗ denote the morphism induced by f
on π1(M).

Because of the condition on T∗ and D∗ we know that x �= y. Then

det
(
In−D∗

)= det
(
T∗(x)−D∗T∗(x)

)
det
(
T∗
(
x−1
))

= det
(
T∗(x)−T∗(y)D∗

)
det
(
T∗
(
x−1
))

= det
(
In−T∗

(
x−1y

)
D∗
)
.

(3.2)

Since x �= y and T∗ is faithful, we have that T∗(x−1y) �= In. Moreover, for any other
1 �= x′ ∈ F, with x �= x′ and T∗(y′)D∗ = D∗T∗(x′), we have that x−1y �= x′−1y′. Indeed,
suppose that there exists an x′ ∈ F, x �= x′, such that x−1y = x′−1y′. Then

T∗
(
x−1y

)
D∗ = T∗

(
x′−1y′

)
D∗ ⇐⇒ T∗

(
x−1
)
D∗T∗(x)= T∗

(
x′−1

)
D∗T∗(x′)

⇐⇒D∗T∗
(
xx′−1

)= T∗
(
xx′−1

)
D∗.

(3.3)

This last equality is only satisfied when xx′−1 = 1. This proves the proposition because any
x ∈ F determines an unique element x−1y ∈ F, and thus all elements of F are obtained.
The last conclusion easily follows from Theorem 2.10. �

Example 3.2. Let M = E\H be the infra-nilmanifold from before and suppose that f1 :
M →M is a continuous map inducing the endomorphism θ1 on E = π1(M). We know
already that f∗ = θ1 is induced by (1,D1) and it is easy to check that

ϕ∗D1,∗ =

⎛

⎜
⎜
⎜
⎝

1 −3
2

0

0 −1 1
0 −1 0

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎝

−4 3 3
0 0 2
0 2 0

⎞

⎟
⎠=

⎛

⎜
⎝

−4 3 3
0 0 2
0 2 0

⎞

⎟
⎠

⎛

⎜
⎜
⎜
⎝

1 0 −3
2

0 0 −1
0 1 −1

⎞

⎟
⎟
⎟
⎠
=D1,∗ϕ2

∗ (3.4)

which implies that the map f (or D1,∗) satisfies the criteria of the theorem, and indeed
we have that

det
(
I3−D1,∗

)= det
(
I3−ϕ∗D1,∗

)= det
(
I3−ϕ2

∗D1,∗
)=−15. (3.5)

4. Infranilmanifolds with Abelian holonomy group of odd order

In this section, we concentrate on the infranilmanifolds with an odd-order Abelian ho-
lonomy group F and show that the Anosov theorem can be generalized to this class of
manifolds.

Let T : F → Aut(G) denote the holonomy representation as before, then, for any x ∈ F,
we have that T∗(x) is of finite order, since F is finite, and so the eigenvalues T∗(x) are
roots of unity. Moreover, since the order of T∗(x) has to be odd, we know that the only
eigenvalues of T∗(x) are 1 or not real. The usefulness of this observation follows from the
next lemma concerning commuting matrices.
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Lemma 4.1. Let B,C ∈Mn(R) be two real matrices such that BC = CB and suppose that
B has only nonreal eigenvalues. Then the (algebraic) multiplicity of any real eigenvalue of C
must be even which implies that det(In−C)≥ 0.

Proof. We prove this lemma by induction on n. Note that n is even because B only has
non real eigenvalues.

Suppose n = 2 and λ is a real eigenvalue of C with eigenvector v such that Cv = λv.
Then Bv is also an eigenvector of C, since CBv = BCv = λBv. Moreover, v and Bv are
linearly independent over R. Otherwise there would exist a μ∈R such that Bv = μv con-
tradicting the fact that B has no real eigenvalues. So the dimension of the eigenspace of λ
is 2 and therefore the multiplicity of λmust be 2.

Suppose the lemma holds for r × r matrices with r even and r < n. We then have to
show that the lemma holds for n× n matrices. Again, let λ be a real eigenvalue of C and
v an eigenvector of C such that Cv = λv. Then, for any m ∈ N, we have that Bmv is an
eigenvector of C. Indeed, CBmv = BmCv = λBmv. Let S be the subspace of Rn generated
by all vectors Bmv with m ∈N. Then, for any s ∈ S, we have that Cs = λs, so S is part of
the eigenspace of λ and secondly Bs ∈ S, which implies that S is a B-invariant subspace
of Rn. Let {v1, . . . ,vk} be a basis for S, then we can complete this basis with vk+1, . . . ,vn to
obtain a basis for Rn. Writing (the matrices of the linear transformations determined by)
B and C with respect to this new basis, implies the existence of a matrix P ∈Gl(n,R) such
that

PCP−1 =
(
λIk C2

0 C3

)

, PBP−1 =
(
B1 B2

0 B3

)

(4.1)

with B1 a real k× k matrix; B2,C2 real k× (n− k) matrices; and B3,C3 real (n− k)× (n−
k) matrices. Of course, the eigenvalues of B1 and B3 are also not real and B3C3 = C3B3.
Therefore, k has to be even and we can proceed by induction on B3 and C3 to conclude
that the real eigenvalues of C indeed have even multiplicities.

To prove the second claim of the lemma, we suppose that λ1, . . . ,λr are the real eigen-
values of C with even multiplicities m1, . . . ,mr and that μ1,μ1, . . . ,μt,μt are the complex
eigenvalues of C with multiplicities n1, . . . ,nt. Then

det
(
In−C

)

= (1− λ1
)m1 ···(1− λr

)mr
(
1−μ1

)n1(1−μ1
)n1 ···(1−μt

)nt(1−μt
)nt

= (1− λ1
)m1 ···(1− λr

)mr
((
1−μ1

)(
1−μ1

))n1 ···((1−μt
)(
1−μt

))nt

= (1− λ1
)m1 ···(1− λr

)mr
∣
∣1−μ1

∣
∣2n1 ···∣∣1−μt

∣
∣2nt .

(4.2)

This last expression is clearly nonnegative since themi are even. �

We are now ready to prove the main theorem of this paper.

Theorem 4.2. Let M be an n-dimensional infranilmanifold with Abelian holonomy group
F of odd order. Then, for any continuous map f :M→M, N( f )= |L( f )|.
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Proof. Let T : F → Aut(G) be the associated holonomy representation and suppose that
(d,D) is a homotopy lift of f . To apply Theorem 2.10, we have to calculate the deter-
minants det(In − T∗(x)D∗) for any x ∈ F. If D∗ does not commute with T(x)∗ for all
1 �= x ∈ F, we can use Proposition 3.1 to obtain that N( f )= |L( f )|.

Now assume that there exists an x0 ∈ F, x0 �= 1, such that T∗(x0)D∗ =D∗T∗(x0). Since
T∗(x0) is of finite odd order, the eigenvalues of T∗(x0) are 1 or non real and T∗(x0) is
diagonalizable (over C). This implies that there exists a P ∈Gl(n,R) such that

PT∗
(
x0
)
P−1 =

(
In1 0
0 A2

)

, (4.3)

with n1 the multiplicity of the eigenvalue 1 and A2 an (n−n1)× (n−n1)-matrix having
non real eigenvalues. Note that we do not exclude the case where n1 = 0 (i.e., the case
where 1 is not an eigenvalue of T∗(x0)). Since PD∗P−1 now commutes with PT∗(x0)P−1,
we must have that

PD∗P−1 =
(
D1 0
0 D2

)

, (4.4)

with D1 an n1 × n1-matrix and D2 an (n− n1)× (n− n1)-matrix commuting with A2.
Moreover, since F is Abelian, all T∗(x) commute with T∗(x0), and hence

∀x ∈ F : PT∗(x)P−1 =
(
T′1(x) 0
0 T′2(x)

)

, (4.5)

with T′1 : F →Gl(n1,R) and T′2 : F →Gl(n−n1,R). So we obtain for any x ∈ F

det(In−T∗(x)D∗)= det
(
In−PT∗(x)P−1PD∗P−1

)

= det
(
In1 −T′1(x)D1

)
det
(
In−n1 −T′2(x)D2

)
.

(4.6)

On the second factor of the above expression we can apply Lemma 4.1 sinceA2 commutes
with T′2(x)D2, for any x ∈ F, and A2 only has non real eigenvalues. So the second factor
is always positive or zero. (In case n1 = 0, there is no “first factor” and the proof finishes
here.)

To calculate the first factor, we define F1 = F/kerT′1 and consider the faithful repre-
sentation T1∗ : F1 → Gl(n1,R) : x �→ T′1(x). One can easily verify that T1∗ is well defined.
Note that |F1| < |F| since x0 ∈ ker(T′1) and so we can proceed by induction on the or-
der. This induction process ends when F1 = 1 or when for any x1 ∈ F1 : T1∗(x1)D1 �=
D1T1∗(x1). �

Example 4.3. Let M = E\H as before and let f2 :M →M be a continuous map inducing
the endomorphism θ2 on E = π1(M). Then we have that

det
(
I3−D2,∗

)= det
(
I3−ϕ2

∗D2,∗
)=−195, det

(
I3−ϕ∗D2,∗

)=−375. (4.7)

Although these determinants are no longer all equal, they still have the same sign, imply-
ing N( f )= |L( f )|. (In fact here N( f )=−L( f ).)
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Finally, we would like to remark that although the fundamental group of an infranil-
manifold with an Abelian holonomy group is always solvable (in fact polycyclic), these
manifolds do not need to be solvmanifolds in general and so the Nielsen theory on these
manifolds cannot be treated by the techniques developed for solvmanifolds (as in e.g.
[5, 6, 8]).

Example 4.4. The almost-Bieberbach group E = 〈a,b,c,α〉 is not the fundamental group
of a solvmanifold. Indeed, suppose that E is the fundamental group of a solvmanifold,
then it is known that the manifold admits a fibering over a torus with a nilmanifold as
fibre. On the level of the fundamental group, this implies that there exists a short exact
sequence

1−→ Γ−→ E −→ A−→ 1, (4.8)

where Γ is a finitely generated torsion free nilpotent group and A is a free Abelian group
of finite rank. However, it is easy to see that [E,E] is of finite index in E, and therefore,
the only free Abelian quotient of E is the trivial group. Therefore, there does not exist a
normal nilpotent group Γ⊆ E, with E/Γ free Abelian. This shows that E is not the funda-
mental group of a solvmanifold.
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