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Let E be a reflexive Banach space with a uniformly Gâteaux differentiable norm, let K
be a nonempty closed convex subset of E, and let T : K → K be a uniformly continuous
pseudocontraction. If f : K → K is any contraction map on K and if every nonempty
closed convex and bounded subset of K has the fixed point property for nonexpansive
self-mappings, then it is shown, under appropriate conditions on the sequences of real
numbers {αn}, {μn}, that the iteration process z1 ∈ K , zn+1 = μn(αnTzn + (1− αn)zn) +
(1− μn) f (zn), n ∈ N, strongly converges to the fixed point of T , which is the unique
solution of some variational inequality, provided that K is bounded.

Copyright © 2006 Aniefiok Udomene. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let E be a real Banach space with dual E∗ and K a nonempty closed convex subset of
E. Let J : E → 2E

∗
denote the normalized duality mapping defined by J(x) := { f ∈ E∗ :

〈x, f 〉 = ‖x‖2, ‖ f ‖ = ‖x‖, x ∈ E} where 〈·,·〉 denotes the generalized duality pairing.
Following Morales [6], a mapping T with domain D(T) and range �(T) in E is called
strongly pseudocontractive if for some constant k < 1 and∀x, y ∈D(T),

(λ− k)‖x− y‖ ≤ ∥∥(λI −T)(x)− (λI −T)(y)
∥
∥ (1.1)

for all λ > k; whileT is called a pseudocontraction if (1.1) holds for k = 1. ThemappingT is
called Lipschitz if there exists L≥ 0 such that ‖Tx−Ty‖ ≤ L‖x− y‖, ∀x, y ∈D(T). The
mapping T is called nonexpansive if L= 1 and is called a (strict) contraction if L < 1. Every
nonexpansive mapping is a pseudocontraction. The converse is not true. The example,
T(x)= 1− x2/3, 0≤ x ≤ 1, is a continuous pseudocontraction which is not nonexpansive.
It follows from a result of Kato [3] that T is pseudocontractive if and only if there exists
j(x− y)∈ J(x− y) such that 〈Tx−Ty, j(x− y)〉 ≤ ‖x− y‖2, ∀x, y ∈D(T).
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2 Uniformly continuous pseudocontractions

In [9], Schu introduced the iterative process (1.2) below and proved the following
theorem.

Theorem 1.1 [9, Theorem 2.4, page 113]. Let K be a nonempty, closed convex, and
bounded subset of a Hilbert space H ; let T : K → K be a Lipschitz pseudocontractive map
with Lipschitz constant L≥ 0; {λn}n∈N ⊂ (0,1) with limn→∞ λn = 1; {αn}n∈N ⊂ (0,1) with
limn→∞αn = 0 such that ({αn},{μn}) has property (A), {(1− μn)(1− λn)−1} is bounded,
and limn→∞(1− μn)/αn = 0, where kn := (1+α2n(1+L)2)1/2 and μn := λn/kn, for all n∈N;
fix an arbitrary point w ∈ K , and define that for all n∈N,

zn+1 := μn+1
(

αnTzn +
(

1−αn
)

zn
)

+
(

1−μn+1
)

w. (1.2)

Then {zn}n converges strongly to the unique fixed point of T closest to w.

Here the pair of sequences ({αn}n,{μn}n)⊂ (0,∞)× (0,1) is said to have property (A)
if and only if the following conditions hold.

(i)′ {αn}n is decreasing;
(ii)′ {μn}n is strictly increasing;
(iii)′ There exists a strictly increasing sequence {βn}n ⊂N such that

(a)′ limn(αn−αn+βn)/(1−μn)= 0;
(b)′ limn(1−μn+βn)(1−μn)−1 = 1;
(c)′ limn βn(1−μn)=∞.

The first iterative process of this nature was introduced by Halpern [2]: for any fixed
w ∈ K and arbitrary z0 ∈ K ,

zn+1 = μnTzn +
(

1−μn
)

w, n= 0,1,2, . . . , (1.3)

where {μn} is a sequence in (0,1) with limn→∞μn = 1.
In [8], Moudafi proposed a viscosity approximation method of selecting a particu-

lar fixed point of a given nonexpansive mapping in Hilbert spaces, where he proved the
following theorem.

Theorem 1.2 [8, Theorem 2.2, page 48]. Let H be a Hilbert space, let T : K → K be a
nonexpansive self-mapping of a nonempty closed convex subset K of H , and let f : K → K
be a contraction. With an initial z0 ∈ K , define the sequence {zn} by

zn+1 = 1
1+ εn

Tzn +
εn

1+ εn
f
(

zn
)

. (1.4)

Supposed that limn→∞ εn = 0,
∑∞

n=1 εn = ∞, and limn→∞ |1/εn+1 − 1/εn| = 0. Then {zn}
converges strongly to the unique solution of the variational inequality:

find x̃ ∈ F(T) such that
〈

(I − f )x̃, x̃− x
〉≤ 0, ∀x ∈ F(T), (1.5)

(i.e., the unique solution of the operator ProjF(T)◦ f ).
Xu [12] extended Theorem 1.2 to the more general uniformly smooth Banach spaces.

If ΠK denotes the set of all contractions on K , he proved the following theorem.
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Theorem 1.3 [12, Theorem 4.2, page 289]. Let E be a uniformly smooth Banach space, K
a closed convex subset of E, and T : K → K a nonexpansive mapping with F(T) �= ∅, and
f ∈ΠK . Assume that {αn} ⊂ (0,1) satisfies the following conditions:

(i) limn→∞αn = 0;
(ii)

∑∞
n=0αn =∞;

(iii) either limn→∞αn+1/αn = 1 or
∑∞

n=0 |αn+1−αn| <∞.
Then the sequence {zn} generated by z0 ∈ K ,

zn+1 := αn f
(

zn
)

+
(

1−αn
)

Tzn, n= 0,1,2, . . . , (1.6)

converges strongly to Q( f ), where Q :ΠK → F(T) is defined by Q( f ) := σ − limt→0 xt, with
xt satisfying

xt = tTxt + (1− t) f
(

xt
)

. (1.7)

Let K be a nonempty closed convex and bounded subset of a real reflexive Banach
space with a uniformly Gâteaux differentiable norm. Further to Theorems 1.2 and 1.3,
the purpose of this paper is to use the following iteration process: z1 ∈ K ,

zn+1 = μn
(

αnTzn +
(

1−αn
)

zn
)

+
(

1−μn
)

f
(

zn
)

, n∈N, (1.8)

where {μn}n, {αn}n are sequences in (0,1) and f : K → K is a contraction map, to approx-
imate the fixed point of a uniformly continuous pseudocontraction, which solves some
variational inequality. If themap f is a constantmap then we recover the iteration process
(1.2) from (1.8).

2. Preliminaries

Let E be a real normed linear space and let S := {x ∈ E : ‖x‖ = 1}. E is said to have a
Gâteaux differentiable norm and E is called smooth if the limit

lim
t→0

‖x+ ty‖−‖x‖
t

(2.1)

exists for each x, y ∈ S. E is said to have a uniformly Gâteaux differentiable norm if for
each y ∈ S the limit is attained uniformly for x ∈ S.

The modulus of smoothness of E is defined by

ρE(τ) := sup

{‖x+ y‖+‖x− y‖
2

− 1 : ‖x‖ = 1, ‖y‖ = τ

}

, τ > 0. (2.2)

E is equivalently said to be smooth if ρE(τ) > 0 ∀τ > 0. Every uniformly smooth Banach
space is a reflexive Banach space with a uniformly Gâteaux differentiable norm. An ex-
ample given in [7] illustrates that this inclusion is proper.

Let E be a linear space and let K be a subset of E. Then, for any x ∈ K , the set IK (x)=
{x+ λ(z− x) : z ∈ K , λ≥ 1} is called the inward set of x. A mapping T : K → E is said to
satisfy the inward condition if Tx ∈ IK (x) for each x ∈ K , and is said to satisfy the weakly
inward condition if Tx ∈ cl[IK (x)], the closure of IK (x), for each x ∈ K .
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We will let LIM
n

be a Banach limit. Recall that LIM
n
∈ (�∞)∗ such that ‖LIM

n
‖ = 1,

liminfn→∞ an ≤ LIM
n

an ≤ limsupn→∞ an, and LIM
n

an = LIM
n

an+1 for all {an}n ∈ �∞.

Themodulus of uniform continuity, δ(ε), of T is defined for all ε > 0 by

δ(ε)= sup{λ : ‖x− y‖ < λ=⇒ ‖Tx−Ty‖ < ε} (2.3)

and δ(0) = 0. By [4, Proposition 3], δ(ε) is nondecreasing, 0 ≤ δ(ε) ≤∞, and δ(‖Tx−
Ty‖) ≤ ‖x− y‖, for all x, y ∈ E. Furthermore, [4, Propositions 1 and 2] assert that the
function

φ(t)= sup{s : δ(s)≤ t} (2.4)

called the pseudo-inverse of δ is nondecreasing and right continuous, 0 ≤ φ(t) ≤∞ for
t ≥ 0 and ‖Tx−Ty‖ ≤ φ(‖x− y‖)∀x, y ∈ E.

The following lemmas will be needed in the sequel. Lemma 2.1 is well known, (see,
e.g., [7]). The proof of Lemma 2.2 can be deduced from [11, Lemma 2.5].

Lemma 2.1. Let E be an arbitrary real Banach space. Then

‖x+ y‖2 ≤ ‖x‖2 + 2
〈

y, j(x+ y)
〉

, (2.5)

for all x, y ∈ E and for all j(x+ y)∈ J(x+ y).

Lemma 2.2. Let {an}n be a sequence of nonnegative real numbers such that

an+1 ≤
(

1−αn
)

an +αnβn, n∈N, (2.6)

where {αn}n ⊂ [0,1], {βn}n ⊂ [0,1], and
∑∞

n=0αn =∞, limn→∞βn=0. Then, limn→∞ an=0.

Lemma 2.3, Proposition 2.4, and Lemma 2.5 that follow appear in [10]. For complete-
ness, we present also their proofs.

Lemma 2.3. Let E be a Banach space. Suppose K is a nonempty closed convex subset of E
and T : K → E is a continuous pseudocontraction satisfying the weakly inward condition.
Then for each contraction map f : K → K , with contraction constant α∈ [0,1), there exists
a unique continuous path t→ xt ∈ K , t ∈ [0,1) satisfying

xt = tTxt + (1− t) f
(

xt
)

. (2.7)

Proof. Let f : K → K be a contraction map with constant α ∈ [0,1). Then, for each t ∈
[0,1), the mapping T

f
t : K → E defined by T

f
t (x) = tTx + (1− t) f (x) is a continuous

strong pseudocontraction with constant t + (1− t)α ∈ [0,1), which satisfies the weakly

inward condition. By [1, Corollary 1], T
f
t has a unique fixed point xt ∈ K , that is,

xt = tTxt + (1− t) f
(

xt
)

. (2.8)
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To prove the continuity of the path, we follow the same line of arguments as in [7]. Let
t0 ∈ [0,1). Then for all j(xt − xt0 )∈ J(xt − xt0 ),

∥
∥xt − xt0

∥
∥
2 = t

〈

Txt −Txt0 , j
(

xt − xt0
)〉

+ (1− t)
〈

f
(

xt
)− f

(

xt0
)

, j
(

xt − xt0
)〉

+
(

t− t0
)〈

Txt0 − f
(

xt0
)

, j
(

xt − xt0
)〉

≤ (t+ (1− t)α)
∥
∥xt − xt0

∥
∥
2
+
∣
∣t− t0

∣
∣
∥
∥Txt0 − f (xt0 )

∥
∥
∥
∥xt − xt0

∥
∥,

(2.9)

so that ‖xt − xt0‖ ≤ (|t− t0|/(1− t)(1−α))‖Txt0 − f (xt0 )‖. Hence the proof. �

Proposition 2.4. Let E be a Banach space and let K be a nonempty closed convex subset
of E. Let the mapping T : K → E be a pseudocontraction such that for each contraction map,
f : K → K with contraction constant α∈ [0,1), the equation

x = tTx+ (1− t) f (x) (2.10)

has a solution xt for every t ∈ [0,1). Then the following hold.
(i) If for some u∈ K , the path yt = tT yt + (1− t)u is bounded, then for any contraction

map f : K → K , the path {xt} described by (2.7) is bounded.
(ii) If T has a fixed point in K , then the path {xt} is bounded.
(iii) If x∗ ∈ F(T), then for all j(xt − x∗)∈ J(xt − x∗),

〈

xt − f
(

xt
)

, j
(

xt − x∗
)〉≤ 0. (2.11)

(iv) If 0≤ s≤ t < 1 then

∥
∥xt −Txt

∥
∥≤ 1+α

1−α

∥
∥xs−Txs

∥
∥. (2.12)

Proof. (i) Let the path {yt} given by yt = tT yt + (1− t)u, for some u ∈ K , be bounded.
Then the set { f (yt)} is bounded. Let j(xt − yt)∈ J(xt − yt). From the estimates

∥
∥xt − yt

∥
∥
2 = t

〈

Txt −Tyt, j
(

xt − yt
)〉

+ (1− t)
〈

f
(

xt
)−u, j

(

xt − yt
)〉

≤ t
∥
∥xt − yt

∥
∥
2
+ (1− t)

∥
∥ f
(

xt
)−u

∥
∥
∥
∥xt − yt

∥
∥,

(2.13)

we have that ‖xt − yt‖ ≤ ‖ f (xt)−u‖ ≤ α‖xt − yt‖+‖ f (yt)−u‖. Thus,
∥
∥xt − yt

∥
∥≤ 1

1−α

∥
∥ f
(

yt
)−u

∥
∥. (2.14)

Hence, {xt} is bounded.
(ii) Let x∗ ∈ F(T), and let j(xt − x∗)∈ J(xt − x∗). Then

∥
∥xt − x∗

∥
∥
2 = t

〈

Txt − x∗, j
(

xt − x∗
)〉

+ (1− t)
〈

f
(

xt
)− x∗, j

(

xt − x∗
)〉

≤ t
∥
∥xt − x∗

∥
∥
2
+ (1− t)

∥
∥ f
(

xt
)− x∗

∥
∥
∥
∥xt − x∗

∥
∥

(2.15)
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so that ‖xt − x∗‖ ≤ ‖ f (xt)− x∗‖ ≤ α‖xt − x∗‖+‖ f (x∗)− x∗‖. Thus,
∥
∥xt − x∗

∥
∥≤ 1

1−α

∥
∥ f
(

x∗
)− x∗

∥
∥. (2.16)

Hence, {xt} is bounded.
(iii) Let x∗ ∈ F(T), and let j(xt − x∗)∈ J(xt − x∗). Then

〈

xt − f
(

xt
)

, j
(

xt − x∗
)〉

= t
〈

Txt − f
(

xt
)

, j
(

xt − x∗
)〉= t

〈

Txt − x∗, j
(

xt − x∗
)〉

+ t
〈

x∗ − f
(

xt
)

, j
(

xt − x∗
)〉≤ t

〈

xt − f
(

xt
)

, j
(

xt − x∗
)〉

.

(2.17)

Thus, 〈xt − f (xt), j(xt − x∗)〉 ≤ 0.
(iv) Let 0≤ s≤ t < 1. Then

∥
∥xt −Txt

∥
∥= 1− t

t

∥
∥xt − f

(

xt
)∥
∥

≤ 1− t

t

[

(1+α)
∥
∥xt − xs

∥
∥+

s

1− s

∥
∥xs−Txs

∥
∥

]

≤ 1− t

t

[

(1+α)(t− s)
(1−α)(1− t)(1− s)

+
s

1− s

]

∥
∥xs−Txs

∥
∥

≤ (1+α)(1− t)
(1−α)t

[

t− s

(1− t)(1− s)
+

s

1− s

]

∥
∥xs−Txs

∥
∥

= 1+α

1−α

∥
∥xs−Txs

∥
∥.

(2.18)

�

Lemma 2.5. Let E be a reflexive Banach space with a uniformly Gâteaux differentiable
norm, let K be a nonempty closed convex subset of E, let T : K → E be a continuous pseudo-
contraction satisfying the weakly inward condition, and let f : K → K be a contraction map
with constant α∈ [0,1). Suppose that every nonempty closed convex and bounded subset of
K has the fixed point property (f.p.p.) for nonexpansive self-mappings. If there exists u0 ∈ K
such that the set

B = {x ∈ K : Tx = u0 + λ
(

x−u0
)

for some λ > 1
}

(2.19)

is bounded, then the path {xt}, t ∈ [0,1) described by (2.7) converges strongly to the fixed
point of T , which is the unique solution of the variational inequality

p ∈ F(T) such that
〈

p− f (p), j
(

p− x∗
)〉≤ 0, x∗ ∈ F(T). (2.20)

Proof. It follows from Lemma 2.3 that for each contraction map f : K → K there exists
a unique continuous path t → xt ∈ K , t ∈ [0,1) satisfying (2.7). Let there exists u0 ∈ K
such that the set B is bounded. Then by Proposition 2.4(i), the path {xt} described by
(2.7) is bounded. It is easy to see that this implies that the set { f (xt) : t ∈ [0,1)} is
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bounded. The boundedness of the set {Txt : t ∈ [0,1)} follows from Proposition 2.4(iv).
Let supt∈[0,1)‖xt‖ ≤M. Then ‖xt − xs‖ ≤ 2M for any t,s ∈ [0,1). Set xn = xtn for tn →
1−. Define ψ : K → R by ψ(x) = LIM

n
‖xn − x‖2 ∀x ∈ K . Since E is reflexive, ψ is con-

vex, continuous and ψ(x)→∞ as ‖x‖ → ∞, we have that the set C := {y ∈ K : ψ(y) =
infx∈K ψ(x)} is nonempty, closed and convex. We show that C is bounded. Let y ∈ C.
Then ψ(y)≤ LIM

n
‖xn− x0‖2 ≤ 4M2, where x0 ≡ xt0 . Applying the convexity of the func-

tional (1/2)‖ · ‖2 : K →R, we deduce that

‖y‖2 ≤ 2LIM
n

∥
∥xn− y

∥
∥
2
+ 2LIM

n

∥
∥xn
∥
∥
2 ≤ 2ψ(y) + 2M2 ≤ 10M2, (2.21)

that is, ‖y‖ ≤ √10M, ∀y ∈ C. Thus, C is bounded. The mapping J1 = (2I − T)−1 is a
nonexpansive self-mapping of K (see [5, Theorem 6]). C is invariant under J1. Indeed, let
y ∈ C. Then

ψ
(

J1(y)
)= LIM

n

∥
∥xn− J1(y)

∥
∥
2 ≤ LIM

n

(∥
∥xn− J1

(

xn
)∥
∥+

∥
∥xn− y

∥
∥
)2

≤ LIM
n

(∥
∥xn−Txn

∥
∥+

∥
∥xn− y

∥
∥
)2 = LIM

n

∥
∥xn− y

∥
∥
2 = ψ(y).

(2.22)

By hypothesis, J1 has a fixed point p ∈ C. Thus, Tp = p. Let τ ∈ (0,1). Then ψ(p) ≤
ψ((1− τ)p + τx), x ∈ K , and using Lemma 2.1, we have that 0 ≤ (ψ((1− τ)p + τx)−
ψ(p))/τ ≤−2LIM

n
〈x− p, j(xn− p− τ(x− p))〉. Thus

LIM
n

〈

x− p, j
(

xn− p− τ(x− p)
)〉≤ 0. (2.23)

Since, in this setting, J is norm-to-weak∗ uniformly continuous on bounded sets, letting
τ → 0, we have that

LIM
n

〈

x− p, j
(

xn− p
)〉≤ 0, x ∈ K. (2.24)

In particular,

LIM
n

〈

f (p)− p, j
(

xn− p
)〉≤ 0. (2.25)

Observe that

(1−α)
∥
∥xn− p

∥
∥
2 ≤ 〈xn− f

(

xn
)

, j
(

xn− p
)〉

+
〈

f (p)− p, j
(

xn− p
)〉

. (2.26)

Using Proposition 2.4(iii) and (2.25), we have find that LIM
n
‖xn − p‖ = 0. Therefore,

there exists a subsequence {xnk} of {xn} such that xnk → p as k→∞. Assume that there is
another subsequence {xnl} of {xn} such that xnl → q ∈ F(T) as l→∞. With xnk → p and
setting x∗ = q, it follows from Proposition 2.4(iii) that

〈

p− f (p), j(p− q)
〉≤ 0. (2.27)
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Also, with xnl → q and setting x∗ = p in Proposition 2.4(iii), we have that

〈

q− f (q), j(q− p)
〉≤ 0. (2.28)

Inequalities (2.27) and (2.28) yield that

‖p− q‖2 ≤ 〈 f (p)− f (q), j(p− q)
〉≤ α‖p− q‖2, (2.29)

which implies that p = q, since α∈ [0,1). Thus, xn→ p as n→∞ and p ∈ F(T) is unique.
Again, using Proposition 2.4(iii), we observe that

〈

p− f (p), j
(

p− x∗
)〉≤ 0, ∀x∗ ∈ F(T). (2.30)

Hence, p is the unique solution of the variational inequality (2.20). This concludes the
proof of Lemma 2.5. �

3. Main results

In the results that follow, if the map T is uniformly continuous and δ(ε) denotes the
modulus of continuity of T , we will let φ denote the pseudoinverse of δ and will assume
that the set {φ(t)/t : 0 < t < 1} is bounded. Observe that if T is Lipschitz, then it is clear
that the set {φ(t)/t : 0 < t < 1} is bounded.
Theorem 3.1. Let K be a nonempty closed convex and bounded subset of a real Banach
space E. Let T : K → K be a uniformly continuous pseudocontraction and let f : K → K be
a contraction map with contraction constant α ∈ [0,1). Let {zn} be a sequence generated
from an arbitrary z1 ∈ K by (1.8), where {μn}, {αn} are real sequences in (0,1) satisfying
the following conditions:

(i) {αn} is decreasing and limn→∞αn = 0;
(ii) limn→∞μn = 1 and

∑∞
n=0(1−μn)=∞;

(iii) (a) limn→∞(1−μn)/αn = 0,
(b) limn→∞α2n/(1−μn)= 0,
(c) limn→∞ |μn−μn−1|/(1−μn)2 = 0,
(d) limn→∞(αn−1−αn)/αn−1(1−μn)= 0.

Then ‖zn−Tzn‖→ 0 as n→∞.

Proof. We first prove that ‖zn − xn‖ → 0 as n→∞, where {xn} is a sequence satisfying
(2.7).

Set tn = αn/(1− μn + αn), ∀n∈N. Then tn ∈ (0,1) for each n∈N. By the given con-
dition (iii)(a), tn → 1 as n→∞. It follows from Lemma 2.3 that there exists a unique
sequence {xn} ⊂ K satisfying the following conditions:

xn = tnTxn +
(

1− tn
)

f
(

xn
)

, n∈N. (3.1)

Equation (3.1) can be rewritten as follows:

xn = μn
(

αnTxn +
(

1−αn
)

xn
)

+
(

1−μn
)

f
(

xn
)

+
(

1−μn
)

αn
(

Txn− xn
)

. (3.2)
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Using the pseudocontractivity of T , we make the following estimates:

∥
∥zn+1− xn

∥
∥
2 = μnαn

〈

Tzn−Txn, j
(

zn+1− xn
)〉

+μn
(

1−αn
)〈

zn− xn, j
(

zn+1− xn
)〉

+
(

1−μn
)〈

f
(

zn
)− f

(

xn
)

, j
(

zn+1− xn
)〉

+
(

1−μn
)

αn
〈

xn−Txn, j
(

zn+1− xn
)〉

= μnαn
〈

Tzn+1−Txn, j
(

zn+1− xn
)〉

+μnαn〈Tzn−Tzn+1, j
(

zn+1− xn
)〉

+μn
(

1−αn
)〈

zn− xn, j
(

zn+1− xn
)〉

+
(

1−μn
)〈

f
(

zn
)− f

(

xn
)

, j
(

zn+1− xn
)〉

+
(

1−μn
)

αn
〈

xn−Txn, j
(

zn+1− xn
)〉

≤ μnαn
∥
∥zn+1− xn

∥
∥
2
+μnαn

∥
∥Tzn−Tzn+1

∥
∥
∥
∥zn+1− xn

∥
∥

+μn
(

1−αn
)∥
∥zn− xn

∥
∥
∥
∥zn+1− xn

∥
∥+

(

1−μn
)∥
∥ f
(

zn
)− f

(

xn
)∥
∥
∥
∥zn+1− xn

∥
∥

+
(

1−μn
)

αn
∥
∥xn−Txn

∥
∥
∥
∥zn+1− xn

∥
∥.

(3.3)

Thus, we have that

∥
∥zn+1− xn

∥
∥≤ μnαn

∥
∥zn+1− xn

∥
∥+μnαn

∥
∥Tzn−Tzn+1

∥
∥

+
[

μn
(

1−αn
)

+
(

1−μn
)

α
]∥
∥zn− xn

∥
∥+

(

1−μn
)

αn
∥
∥xn−Txn

∥
∥

≤ μnαn
∥
∥zn+1− xn

∥
∥+μnαnφ

(∥
∥zn− zn+1

∥
∥
)

+
[

μn
(

1−αn
)

+
(

1−μn
)

α
]∥
∥zn− xn

∥
∥+

(

1−μn
)

αn
∥
∥xn−Txn

∥
∥,

(3.4)

so that

∥
∥zn+1− xn

∥
∥≤

[

1− (1−α)
(

1−μn
)

1−αnμn

]

∥
∥zn− xn−1

∥
∥+

∥
∥xn−1− xn

∥
∥

+
αn

1−αnμn
φ
(∥
∥zn− zn+1

∥
∥
)

+

(

1−μn
)

αn
1−αnμn

∥
∥xn−Txn

∥
∥.

(3.5)

Since the mapping J̃n := [I + (αn/(1−μn))(I −T)]−1 is nonexpansive and xn = J̃n( f (xn)),

∥
∥xn− xn−1

∥
∥= ∥∥J̃n

(

f
(

xn
))− xn−1

∥
∥= ∥∥J̃n

(

f
(

xn
))− J̃n

(

f
(

xn−1
))

+ J̃n
(

f
(

xn−1
))− xn−1

∥
∥

≤ ∥∥ f (xn
)− f

(

xn−1
)∥
∥+

∥
∥J̃n
(

f
(

xn−1
))− xn−1

∥
∥

≤ α
∥
∥xn− xn−1

∥
∥+

∥
∥J̃n
(

f
(

xn−1
))− xn−1

∥
∥,

(3.6)
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so that

∥
∥xn− xn−1

∥
∥≤ 1

1−α

∥
∥J̃n
(

f
(

xn−1
))− xn−1

∥
∥

≤ 1
1−α

∥
∥
∥
∥ f
(

xn−1
)−

[

xn−1 +
αn

1−μn

(

xn−1−Txn−1
)
]∥
∥
∥
∥

= 1
1−α

∣
∣
∣
∣

αn−1
1−μn−1

− αn
1−μn

∣
∣
∣
∣

∥
∥xn−1−Txn−1

∥
∥

= 1
1−α

∣
∣
∣
∣1−

αn
1−μn

1−μn−1
αn−1

∣
∣
∣
∣

∥
∥ f
(

xn−1
)− xn−1

∥
∥

= 1
1−α

∣
∣
∣
∣
∣

(

αn−1−αn
)(

1−μn
)

+αn
(

μn−1−μn
)

αn−1
(

1−μn
)

∣
∣
∣
∣
∣

∥
∥ f
(

xn−1
)− xn−1

∥
∥

≤ 1
1−α

[

αn−1−αn
αn−1

+

∣
∣μn−1−μn

∣
∣

1−μn

]

∥
∥ f
(

xn−1
)− xn−1

∥
∥.

(3.7)

We estimate ‖zn− zn+1‖. Let c := supn≥1{(1−μn)/αn}. Since the sequences {zn}, {xn} and
the set {φ(t)/t : 0 < t < 1} are bounded, let ‖zn −Tzn‖ ≤M, ‖xn −Txn‖ ≤M, ‖ f (zn)−
zn‖ ≤M, ‖ f (xn)− xn‖ ≤M ∀n ∈N and sup{φ(t)/t : 0 < t < 1} ≤M for some constant
M > 0. Then

∥
∥zn+1− zn

∥
∥= ∥∥μnαn

(

Tzn− zn
)

+
(

1−μn
)(

f
(

zn
)− zn

)∥
∥

≤ αn
∥
∥Tzn− zn

∥
∥+

(

1−μn
)∥
∥ f
(

zn
)− zn

∥
∥

≤ [αn +
(

1−μn
)]

M ≤ αn(1+ c)M,

(3.8)

for all n∈N. It follows from (3.5) that

∥
∥zn+1− xn

∥
∥≤

[

1− (1−α)
(

1−μn
)

1−αnμn

]

∥
∥zn− xn−1

∥
∥+

1
1−α

[

αn−1−αn
αn−1

−
∣
∣μn−μn−1

∣
∣

1−μn

]

M

+
αn

1−αnμn
φ
(

αn(1+ c)M
)

+

(

1−μn
)

αn
1−αnμn

M.

(3.9)

There exists N ∈N such that αn(1+ c)M < 1∀n≥N . Thus,

∥
∥zn+1− xn

∥
∥≤

[

1− (1−α)
(

1−μn
)

1−αnμn

]

∥
∥zn− xn−1

∥
∥

+

[

1
1−α

(

αn−1−αn
αn−1

−
∣
∣μn−μn−1

∣
∣

1−μn

)

+
α2n(1+ c)M
1−αnμn

+

(

1−μn
)

αn
1−αnμn

]

M, ∀n≥N.

(3.10)
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Set βn := (1 − α)(1 − μn)/(1 − αnμn) and γn := (1/(1 − α))((αn−1 − αn)/αn−1 − |μn
−μn−1|/(1−μn)) +α2n(1+ c)M/(1−αnμn) + (1−μn)αn/(1−αnμn). Then the inequality

∥
∥zn+1− xn

∥
∥≤ (1−βn

)∥
∥zn− xn−1

∥
∥+ γnM (3.11)

follows. By the assumptions on the sequences of numbers {αn} and {μn} we find that
γn = o(βn). Thus, by Lemma 2.2, ‖zn+1− xn‖→ 0 as n→∞, so that

∥
∥zn− xn

∥
∥≤ ∥∥zn− zn+1

∥
∥+

∥
∥zn+1− xn

∥
∥−→ 0 (3.12)

as n→∞.
Finally, we show that ‖zn−Tzn‖→ 0 as n→∞.
Since ‖xn−Txn‖ = (1− μn)/αn‖ f (xn)− xn‖ ≤ (1−μn)/αnM→ 0 as n→∞, and since

T is uniformly continuous, we have that

∥
∥zn−Tzn

∥
∥≤ ∥∥zn− xn

∥
∥+

∥
∥xn−Txn

∥
∥+

∥
∥Txn−Tzn

∥
∥−→ 0 (3.13)

as n→∞. Hence the proof of Theorem 3.1. �

Theorem 3.2. Let K be a nonempty closed convex and bounded subset of a real reflexive
Banach space E with a uniformly Gâteaux differentiable norm. Let T : K → K be a uniformly
continuous pseudocontraction and let f : K → K be a contraction map. Suppose that every
nonempty closed convex subset ofK has the f.p.p. for nonexpansive self-mappings. Let {zn} be
a sequence generated from an arbitrary z1 ∈ K by (1.8), where {μn}, {αn} are real sequences
in (0,1) satisfying the same conditions in Theorem 3.1. Then {zn} converges strongly to the
fixed point of T , which is the unique solution of the variational inequality (2.20).

Proof. By Lemmas 2.3 and 2.5, a sequence {xn} given by xn = tnTxn + (1− tn) f (xn), with
tn = αn/(1−μn +αn), n∈N exists and converges strongly to the fixed point of T , which is
the unique solution of the variational inequality (2.20). From the proof of Theorem 3.1,
‖zn− xn‖→ 0 as n→∞. Hence, {zn} converges strongly to the same fixed point of T . �

Corollary 3.3. Let K be a nonempty closed convex and bounded subset of a real Banach
space E with a uniformly Gâteaux differentiable norm. Let T : K → K be a uniformly contin-
uous pseudocontraction and let f : K → K be a contraction map. Suppose that K has normal
structure. Let {zn} be a sequence generated from an arbitrary z1 ∈ K by (1.8), where {μn},
{αn} are real sequences in (0,1) satisfying the same conditions in Theorem 3.1. Then {zn}
converges strongly to the fixed point of T , which is the unique solution of the variational
inequality (2.20).

Corollary 3.4. Let K be a nonempty closed convex and bounded subset of a real Banach
space E with a uniformly Gâteaux differentiable norm and let T : K → K be a unformly con-
tinuous pseudocontraction. Suppose that every nonempty closed convex subset of K has the
f.p.p. for nonexpansive self-mappings. Fix any w ∈ K and let {zn} be a sequence generated
from an arbitrary z1 ∈ K by (1.2), where {μn}, {αn} are real sequences in (0,1) satisfying
the same conditions in Theorem 3.1. Then {zn} converges strongly to the fixed point of T ,
which is the unique solution of the variational inequality (2.20).
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Remarks 3.5. (A) If the map T is assumed to be Lipschitz in the above results then the
condition that the set K or the sequence {zn}n be bounded can be dropped. It is proved
in [10] that, in this case, the sequence {zn}n is bounded.

(B) It is clear that the conditions on the iteration parameters {αn}, {μn} in Theorems
3.1, 3.2 and Corollaries 3.3, 3.4 are much simpler than those imposed on the parameters
in Theorem 1.1. Examples of real sequences {μn} and {αn} that satisfy the conditions (i),
(ii), and (iii) of Theorem 3.1 are

μn = 1− (n+1)−1/2 and αn = (n+1)−1/3, (3.14)

respectively.
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