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We prove an almost coincidence point theorem in generalized convex spaces. As an ap-
plication, we derive a result on the existence of a maximal element and an almost coin-
cidence point theorem in hyperconvex spaces. The results of this paper generalize some
known results in the literature.
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1. Introduction and preliminaries

The notion of a generalized convex space we work with in this paper was introduced
by Park and Kim in [10]. In generalized convex spaces, many results on fixed points,
coincidence points, equilibrium problems, variational inequalities, continuous selections,
saddle points, and others have been obtained, see, for example, [6, 8, 10–13].

In this paper, we obtain an almost coincidence point theorem in generalized convex
spaces. Some applications to the existence of a maximal element of an almost fixed point
theorem in hyperconvex spaces are given.

A multimap or map F : X � Y is a function from a set X into the power set of a set Y .
For A⊂ X , let F(A)=⋃{Fx : x ∈A}. For any B ⊂ Y , the lower inverse and upper inverse
of B under F are defined by

F−(B)= {x ∈ X : Fx∩B �= ∅},
F+(B)= {x ∈ X : Fx ⊂ B}, (1.1)

respectively. The lower inverse of F : X � Y is the map F− : Y � X defined by x ∈ F−y
if and only if y ∈ Fx.

A map F : X � Y is upper (lower) semicontinuous on X if and only if for every open
V ⊂ Y , the set F+(V) (F−(V)) is open. A map F : X � Y is continuous if and only if it is
upper and lower semicontinuous.
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2 On almost coincidence points

For a nonempty subset D of X , let 〈D〉 denote the set of all nonempty finite subsets
of D. Let Δn denote the standard n-simplex with vertices e1,e2, . . . ,en+1, where ei is the ith
unit vector in Rn+1.

A generalized convex space or G-convex space (X ,D;Γ) consists of a topological space
X , a nonempty set D, and a function Γ : 〈D〉� X with nonempty values such that for
each A ∈ 〈D〉 with |A| = n+ 1, there exists a continuous function ϕA : Δn → Γ(A), such
that ϕA(ΔJ)⊂ Γ(J), where ΔJ denote the faces of Δn corresponding to J ∈ 〈A〉.

Particular forms of G-convex space are convex subsets of a topological vector space,
Lassonde’s convex space, a metric space with Michael’s convex structure, S-contractible
space,H-space, Komiya’s convex space, Bielawski’s simplicial convexity, Joó’s pseudocon-
vex space, see, for example, [11–13].

For each A ∈ 〈D〉, we may write Γ(A) = ΓA. Note that ΓA does not need to contain
A. For (X ,D;Γ), a subset C of X is said to be G-convex if for each A ∈ 〈D〉, A ⊂ C im-
plies ΓA ⊂ C. If D = X , then (X ,D;Γ) will be denoted by (X ,Γ). The G-convex hull of K ,
denoted by G− co(K), is the set

⋂
{B ⊂ X : B is a G-convex subset of X containing K}. (1.2)

Let C be a G-convex subset of X , a map F : C � X is called G-quasiconvex if

F(d)∩ S �= ∅ for each d ∈D =⇒ F(u)∩ S �= ∅ for each u∈ ΓD, (1.3)

for each D ∈ 〈C〉, and for each G-convex subset S of X . If X is a topological vector space
and ΓA = coA, we obtain the class of quasiconvex maps, see, for example, [7, page 18].

Let C be a subset of X , a map F : C � X is called G-KKM map if ΓA ⊂ F(A) for each
A∈ 〈C〉.

The following version of G-KKM-type theorem, see, for example, [13, page 49], will
be used to prove the main result of this paper.

Theorem 1.1. Let (X ,Γ) be a G-convex space, K a nonempty subset of X , andH : K � X a
map with closed (open) values and G-KKM map. Then

⋂
x∈DH(x) �= ∅ for each D ∈ 〈K〉.

2. Almost-like coincidence point theorem

Theorem 2.1. Let (X ,Γ) be a G-convex space, K a nonempty subset of X , U a nonempty
closed (open) G-convex subset of X , and μ : K ×K � X a map such that

(1) for each fixed y ∈ K , the map x �→ μ(x, y) is upper (lower) semicontinuous map,
(2) for each fixed x ∈ K , the map y �→ μ(x, y) is G-quasiconvex map,
(3) there exists a set D ∈ 〈K〉 such that ΓD ⊆ K and μ(x,D)∩U �= ∅ for each x ∈ K .

Then there exists xU ∈ K such that

μ
(
xU ,xU

)∩U �= ∅. (2.1)

Proof. Let for every y ∈ K , H : K � K be defined by

H(y)= {x ∈ K : μ(x, y)∩U =∅}. (2.2)
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From assumption (1), we obtain that H(y) is closed (open) set for each y ∈ K . We can
prove that H is not a G-KKMmap. Namely,

⋂

y∈D
H(y)= {x ∈ K : μ(x,D)∩U =∅}, (2.3)

and from assumption (3), we obtain that
⋂

y∈D
H(y)=∅. (2.4)

So, by Theorem 1.1, H : K � K is not a G-KKM map. This implies that there exists A∈
〈D〉 such that

ΓA � H(A), (2.5)

and hence there is an xU ∈ ΓA such that xU /∈H(A). This implies that

μ
(
xU ,a

)∩U �= ∅ for each a∈A. (2.6)

From assumption (2), we obtain

μ
(
xU ,xU

)∩U �= ∅. (2.7)
�

From Theorem 2.1, we have the following almost coincidence point theorem for topo-
logical vector space.

Theorem 2.2. Let X be a topological vector space, K a nonempty subset of X ,U a nonempty
open (closed) convex neighborhood of 0 in X , and F1 : K � X , F2 : K � X (F2 : K → X) are
maps such that

(1) the map F1 is lower (upper) semicontinuous map with convex values,
(2) the map F2 is quasiconvex,
(3) there exists a set D ∈ 〈K〉 such that coD ⊆ K and F1(x)∩ (F2(D) +U) �= ∅ for each

x ∈ K .
Then there exists xU ∈ K such that

F1
(
xU
)∩ (F2

(
xU
)
+U

) �= ∅. (2.8)

Proof. Taking μ(x, y) = F1(x)− F2(y) and ΓA = coA in Theorem 2.1, we get the proof.
�

As an application of Theorem 2.2, we obtain the following result of existence of almost
fixed point of Park [9, Theorem 2.1].

Corollary 2.3. Let X be a topological vector space, K a nonempty subset of X , U a non-
empty open (closed) convex neighborhood of 0 in X , and F : K � X a lower (upper) semi-
continuous map with convex values such that there exists a set D ∈ 〈K〉 such that coD ⊆ K
and F(x)∩ (D+U) �= ∅ for each x ∈ K . Then there exists xU ∈ K such that

F
(
xU
)∩ (xU +U

) �= ∅. (2.9)
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Remark 2.4. The assumption

F(x)∩ (D+U) �= ∅, for each x ∈ K , (2.10)

in Corollary 2.3 can be replaced by the following condition:

F(X)⊆D+U. (2.11)

In this case, we obtain the result of Kim and Park [4, Theorem 1.2].

3. Almost coincidence point theorem inmetrizableG-convex spaces

Let (X ,Γ) be ametrizableG-convex space withmetric d. For any nonnegative real number
r and any subset A of X , we define

B(A,r)=
⋃{

B(a,r) : a∈A
}
, (3.1)

where B(a,r)= {x ∈ X : d(a,x) < r}.
Similarly, we define

B[A,r]=
⋃{

B[a,r] : a∈A
}
, (3.2)

where B[a,r]= {x ∈ X : d(a,x)≤ r}.
In this case, we obtain the following result.

Theorem 3.1. Let (X ,Γ) be a metrizable G-convex space, K a nonempty subset of X , F1 :
K � X a map with G-convex values, and F2 : K � X a map such that

(1) the map F1 is lower semicontinuous,
(2) there exists a λ ≥ 1 such that G− co(B(F−2 (A),r)) ⊆ F−2 (B(A,λr)), for all G-convex

subsets A of X and nonnegative real number r,
(3) there exists a set D ∈ 〈K〉 such that ΓD ⊆ K and F1(x)∩ B(F2(D),ε) �= ∅ for each

x ∈ K , where ε > 0.
Then there exists xε ∈ K such that

F1
(
xε
)∩B

(
F2
(
xε
)
,λε
) �= ∅. (3.3)

Proof. Let for every y ∈ K , H : K � K be defined by

H(y)= {x ∈ K : F1(x)∩B
(
F2(y),ε

)=∅}. (3.4)

From assumption (1), we obtain thatH(y) is open for each y ∈ K , further, from assump-
tion (3), we obtain that

⋂

y∈D
H(y)=∅. (3.5)
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So, by Theorem 1.1, H : K � K is not a G-KKM map. This implies that there exists A∈
〈D〉 such that

ΓA � H(A), (3.6)

and hence there is an xε ∈ ΓA such that

F1
(
xε
)∩B

(
F2(a),ε

) �= ∅ for each a∈ A. (3.7)

Hence, we obtain

F2(a)∩B
(
F1
(
xε
)
,ε
) �= ∅ for each a∈ A. (3.8)

So, from assumption (2), we have

F2
(
xε
)∩B

(
F1
(
xε
)
,λε
) �= ∅, (3.9)

that is,

F1
(
xU
)∩B

(
F2
(
xU
)
,λε
) �= ∅. (3.10)

�

Note that if in Theorem 3.1 a map F2(x)= {x}, x ∈ K , and open balls are replaced by
closed balls, we obtain following result.

Theorem 3.2. Let (X ,Γ) be a metrizable G-convex space, K a nonempty subset of X , F :
K � X an upper semicontinuous map with G-convex values, and there exists a λ ≥ 1 such
that G− coB[A,r] ⊆ B[A,λr], for all G-convex subsets A of X and nonnegative real num-
ber r. If there exists a setD ∈ 〈K〉 such that ΓD ⊆ K and F(x)∩B[D,ε] �= ∅ for each x ∈ K ,
where ε > 0, then there exists xε ∈ K such that

F
(
xε
)∩B

[
xε,λε

] �= ∅. (3.11)

Corollary 3.3. Let X be a metrizable G-convex space, K a nonempty subset of X , f : K →
X a continuous map, and there exists a λ ≥ 1 such that G− coB[A,r] ⊆ B[A,λr], for all
G-convex subsets A of X and nonnegative real number r. If there exists a set D ∈ 〈K〉 such
that coD ⊆ K and f (K)⊆ B[D,ε] �= ∅, where ε > 0, then there exists xε ∈ K such that

f
(
xε
)∈ B

[
xε,λε

]
. (3.12)

Corollary 3.4. Let X be a metrizable G-convex space, K a nonempty G-convex compact
subset of X , f : K → K a continuous map, and there exists a λ≥ 1 such thatG− coB[A,r]⊆
B[A,λr], for all G-convex subsets A of X and nonnegative real number r. Then there exists
x ∈ K such that f (x)= x.

Remark 3.5. (1) Note that if X is locally G-convex space, see, for example, [13, page 190],
set K is a compact set and F : K � K is map with closed values, from Theorem 3.2 we
obtain a famous Fan-Glicksberg-type fixed point theorem.
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(2) If X is a normed space, then Corollary 3.3 reduces to the result of Kim and Park [4,
Theorem 2.1].

(3) Note that from Corollary 3.4, we obtain famous Schauder fixed point theorem.

Example 3.6. Let X be a hyperconvex metric space, see, for example, [2, 3]. For a non-
empty bounded subset A of X , put

coA=
⋂
{B : B is closed ball in X containing A}. (3.13)

Let �(X) = {A ⊂ X : A = coA}. The elements of �(X) are called admissible subsets of
X . It is known that any hyperconvex metric space (X ,d) is a G-convex space (X ,Γ), with
ΓA = coA for each A∈ 〈X〉.

The B(A,r) of an admissible subsetA of a hyperconvex metric space is also an admissi-
ble set, see [2, Lemma 4.10]. Let F2 : K � X be a G-quasiconvex map, that is, F−2 (A) is an
admissible set for each admissible subset A of X . Then the map F2 satisfies the condition
(2) in Theorem 3.1 for each real number λ such that λ≥ 1.

From Theorem 3.1, we have the following almost coincidence point theorem and al-
most fixed point theorem in hyperconvex metric spaces.

Theorem 3.7. Let X be a hyperconvex metric space, K a nonempty subset of X , F1 : K � X
a map with admissible values, and F2 : K � X a map such that

(1) the map F1 is lower semicontinuous,
(2) the map F2 is quasiconvex,
(3) there exists a set D ∈ 〈K〉 such that coD ⊆ K and F1(x)∩B(F2(D),ε) �= ∅ for each

x ∈ K , where ε > 0.
Then there exists xε ∈ K such that

F1
(
xε
)∩B

(
F2
(
xε
)
,ε
) �= ∅. (3.14)

Note that if K is a bounded set and α(·) is a measure of noncompactness, then for
each ε > 0, there exists a finite setD ⊆ K such that K ⊆ B[D,α(K) + ε)]. In this case, lower
semicontinuous map can be replaced by upper semicontinuous map.

Theorem 3.8. Let X be a hyperconvex metric space, K a nonempty bounded admissible
subset of X , F : K � B[K ,μ] an upper semicontinuous map with admissible values, where
μ > 0. Then for each ε > 0, there exists xε ∈ K such that

xε ∈ B
[
F
(
xε
)
,α(K) + ε+μ

]
. (3.15)

If in Theorem 3.8 set K is a compact set and map F with closed values, then as an
immediate consequence, we obtain the result of existence of fixed point of Kirk and Shin
[5, Corollary 3.5].

Finally, we obtain the result of existence of maximal elements for hyperconvex metric
spaces.

Let F : K → 2X , where 2X denotes the set of all subsets of X . An element x ∈ K is a
maximal element of K if F(x)=∅, see, for example, [1, page 33]. The F-maximal set of
F is defined asMF = {x ∈ K : F(x)=∅}.
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Corollary 3.9. Let X be a hyperconvex metric space, K a nonempty subset of X , F1 : K →
2X a map with admissible values, and F2 : K → 2X a map such that

(1) the map F1 is lower semicontinuous,
(2) the map F2 is quasiconvex,
(3) there exists a set D ∈ 〈K〉 such that coD ⊆ K and F1(x)∩B(F2(D),ε) �= ∅ for each

x ∈ K , where ε > 0.
If x /∈ F−1 (B(F2(x),ε)) for each x ∈ K , thenMF1 ∪MF2 is a nonempty set.

Corollary 3.10. Let X be a hyperconvex metric space, K a nonempty bounded admissible
subset of X , F : K → 2X an upper semicontinuous map with admissible values, and let ε >
0 such that x ∈ F−(B[K ,ε]) \ F−(B[x,α(K) + ε]) for each x ∈ K . Then F has a maximal
element.
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