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We study Fréchet differentiable stable operators in real Banach spaces. We present the
theory of linear and nonlinear stable operators in a systematic way and prove solvability
theorems for operator equations with differentiable expanding operators. In addition,
some relations to the theory of monotone operators in Hilbert spaces are discussed. Using
the obtained solvability results, we formulate the corresponding fixed point theorem for
a class of nonlinear expanding operators.
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1. Introduction

The basic inspiration for studying stable and strongly stable operators in a real Banach
space X is the operator equation of the form

A(x)= a, a∈ X , (1.1)

where A : X → X is a nonlinear operator. We consider a single-valued mapping A, whose
domain of definition is X and whose range R(A) is contained in X . Throughout this
paper, the terms mapping, function, and operator will be used synonymously. We start
by recalling some basic concepts and preliminary results (see, e.g., [29]).

Definition 1.1. An operator A : X → X is called stable if

∥
∥A
(

x1
)−A

(

x2
)∥
∥≥ g

(∥
∥x1− x2

∥
∥
) ∀x1,x2 ∈ X , (1.2)

where g :R+→R+ is a strictly monotone increasing and continuous function with

g(0)= 0, lim
t→+∞g(t)= +∞. (1.3)

The function g(·) is called a stabilizing function of the operator A.
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2 A fixed point theorem

Let H be a real Hilbert space. By 〈·,·〉 we denote the inner product of H . The Hilbert
space H will be identified with the dual space H∗. It is easy to see that Definition 1.1
is closely related to the concept of a coercive operator (see, e.g., [9]). Evidently, a stable
operator B :H →H is coercive.

Definition 1.2. An operator B :H →H is called strongly stable if there is a number c > 0
such that

∣
∣
〈

B
(

h1
)−B

(

h2
)

,h1−h2
〉∣
∣≥ c

∥
∥h1−h2

∥
∥
2 ∀h1,h2 ∈H. (1.4)

Definition 1.2 coincides with the definition of a strongly monotone operator (see, e.g.,
[21, 29]). Moreover, a uniformly monotone operator B :H →H is also stable [29]. Let B
be a strongly stable operator in a real Hilbert space H . The Schwarz inequality implies
that

∥
∥B
(

h1
)−B

(

h2
)∥
∥≥ c

∥
∥h1−h2

∥
∥ ∀h1,h2 ∈H. (1.5)

We now suggest the following concept.

Definition 1.3. An operator A : X → X is called expanding if there is a number d > 0 such
that

∥
∥A
(

x1
)−A

(

x2
)∥
∥≥ d

∥
∥x1− x2

∥
∥ ∀x1,x2 ∈ X. (1.6)

The number d is called a constant of expansion.

It is evident that an expanding operatorA is a stable operator with the stabilizing func-
tion g(t)= d · t, t ≥ 0. It should bementioned that in the literature, alternative definitions
of stable operators are based on other viewpoints. For example, the theory of weakly sta-
ble operators in connection with the general approach to estimations for solutions of a
class of perturbed operator equations is comprehensively discussed in [4].

Let A : X → X be stable. Then, for each a∈ X , the operator equation (1.1) has at most
one solution x̂. To prove this, suppose that A(x̂1) = A(x̂2) = a, where x̂1, x̂2 ∈ X . This
implies that g(‖x̂1 − x̂2‖) = 0, and hence x̂1 = x̂2. Consequently, a stable operator A is
injective. Moreover, we have the continuous dependence of the solution on the right-
hand side of the equation A(x)= a. From Definition 1.1, it follows that the solution x̂ of
(1.1) is “stable” in the following sense: for each ε > 0, there exists a number δ(ε) > 0 such
that

∥
∥a1− a2

∥
∥ < δ(ε), (1.7)

where a1,a2 ∈ R(A) always imply that ‖x̂1 − x̂2‖ < ε for the corresponding solution x̂1,
x̂2 ∈ X of the problems A(x)= a1 and A(x)= a2, respectively.

The stable, strongly stable, and expanding operators play an important role in the
general theory of discretizationmethods and in optimization (see, e.g., [5, 19, 20, 25, 29]).
The aim of this paper is to study a class of Fréchet differentiable stable operators and to
prove a solvability theorem for nonlinear operator equations (1.1) with differentiable
expanding operators. Moreover, we examine the corresponding linearization of (1.1).
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The paper is organized as follows. In Section 2, we present some examples of stable
and expanding operators. Basic theoretical facts on stable operators are contained in
Section 3. In Sections 4 and 5, we prove ourmain results, namely, the solvability theorems
for a class of operator equations (1.1) and for the corresponding linearized equation. As
a corollary of the general solvability results, we obtain a fixed point theorem for a family
of Fréchet differentiable expanding operators in real Banach spaces.

2. Some examples of stable operators

In this section we give some examples of stable and strongly stable operators. First we
consider the case in which X is finite-dimensional. Assume that a continuously differen-
tiable functions γ1 :R→R satisfies

dγ1(x)
dx

≥ d ∀x ∈R, (2.1)

with d > 0. It is easy to see that γ1(·) is an expanding function. Assume that a function
γ2 :R→R is strongly stable (strongly monotone). Clearly, this condition is equivalent to
the following:

inf
x1 �=x2

γ2
(

x1
)− γ2

(

x2
)

x1− x2
> 0. (2.2)

We now examine the function γ3(x)= |x|qx, x ∈R, q ∈N. It is a matter of direct verifi-
cation to prove that this function is stable.

Example 2.1. Let B :H →H be a monotone operator on a real Hilbert space H . We have

∥
∥
(

h1 +B
(

h1
))− (h2 +B

(

h2
))∥
∥
2

= 〈(h1 +B
(

h1
))− (h2 +B

(

h2
))

,
(

h1 +B
(

h1
))− (h2 +B

(

h2
))〉2

= 〈B(h1
)−B

(

h2
)

,h1−h2
〉

+
∥
∥h1−h2

∥
∥
2
+
∥
∥B
(

h1
)−B

(

h2
)∥
∥
2

≥ ∥∥h1−h2
∥
∥
2
+
∥
∥B
(

h1
)−B

(

h2
)∥
∥
2

(2.3)

for all h1,h2 ∈H . Denote by I the identity operator. Thus the operator (I +B) is an ex-
panding operator,

∥
∥(I +B)

(

h1
)− (I +B)

(

h2
)∥
∥≥ ∥∥h1−h2

∥
∥, (2.4)

with the constant of expansion d = 1.

Example 2.2. Let ω :R→R be a continuously differentiable function such that

ω′(x)≥ d ∀x ∈R, (2.5)
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and d > 0. By C([0,1],R) we denote the space of all continuous functions from [0,1] into
R. We now introduce a so-called Nemyckii operator � : C([0,1],R)→ C([0,1],R) given
by

�
(

x(·))(τ) := ω
(

x(τ)
)

, (2.6)

where x(·) ∈ C([0,1],R). This operator is of frequent use in optimization theory and
applications [2, 10]. By the mean value theorem, we have |ω(x1)−ω(x2)| ≥ d|x1 − x2|,
and therefore

∥
∥�
(

x1(·)
)−�

(

x2(·)
)∥
∥
C([0,1],R)

= max
0≤τ≤1

∣
∣�
(

x1(·)
)

(τ)−�
(

x2(·)
)

(τ)
∣
∣

= max
0≤τ≤1

∣
∣ω
(

x1(τ)
)−ω

(

x2(τ)
)∣
∣≥ d max

0≤τ≤1
∣
∣x1(τ)− x2(τ)

∣
∣

= d
∥
∥x1(·)− x2(·)

∥
∥
C([0,1],R).

(2.7)

Consequently, the Nemyckii operator �(·) is an expanding operator. Note that the intro-
duced Nemyckii operator is Fréchet differentiable [2].

Let Ω ⊂ Rr be a bounded smooth domain, r ∈ N, r ≥ 2. By Wl
p(Ω) we denote the

standard real Sobolev spaces endowed with the usual norms [1]. Here, 0 ≤ p ≤∞ and
l ∈N. Moreover, we setHl(Ω) :=Wl

2(Ω). Using the standard notation

Dβϕ := ∂|β|

∂ξ1 ···ξr , |β| = β1 + ···+βr , β =
(

β1, . . . ,βr
)∈Nr , (2.8)

we define the seminorm | · | onHl(Ω) (containing the derivatives of order l),

∣
∣v(·)∣∣ :=

[
∑

|β|<l

∣
∣
∣
∣

∫

Ω
Dβv(·)

∣
∣
∣
∣

2

+
∑

|β|=l

∫

Ω

∣
∣Dβv(·)∣∣2

]1/2

. (2.9)

Let H1
0(Ω) be the space of all elements from H1(Ω) vanishing on the boundary ∂Ω of

Ω in the usual sense of traces. It is common knowledge that H1
0(Ω) is a Hilbert space

[1, 16, 17].

Example 2.3. Consider the following mildly nonlinear Dirichlet problem:

−∇· (ζ(v)∇v)= ψ in Ω,

v = 0 on ∂Ω,
(2.10)

where ψ(·) ∈H1
0(Ω) and ζ(·) : R→ R is a bounded Lipschitz continuous twice contin-

uously differentiable function such that ζ(·)≥ ζ0 = const > 0 uniformly on R. For every
function v(·)∈H1

0(Ω), we may write the following Poincaré inequality [6, 16, 17]:

CΩ

∥
∥v(·)∥∥≤ ∣∣v(·)∣∣, (2.11)



Vadim Azhmyakov 5

where CΩ ∈ R+ is a constant. Here, | · | is the above-mentioned seminorm on Hl(Ω).
We now set X =H1

0(Ω). The Hilbert space H1
0(Ω) will be identified with the dual space

(H1
0(Ω))∗. It can be proved that the operator

� : X −→ X , �
(

v(·)) :=∇v(·) (2.12)

is an expanding operator [4, 5].
If in addition to the above-mentioned properties we assume that the function ζ(·) is

monotone increasing, then the nonlinear operator

v(·)−→
√

ζ
(

v(·))�(v(·)) (2.13)

is also an expanding operator [5].

Note that the Poincaré inequality can also be expressed in the form

∥
∥v(·)∥∥L2(Ω) ≤ CΩ

∥
∥∇u(·)∥∥L2(Ω), (2.14)

where L2(Ω) is the Lebesgue space of all square-integrable functions and v(·) ∈H1(Ω)
are the functions with vanishing mean value over Ω. In some problems, one can com-
pute the constant of expansion CΩ. For instance, in the case of a convex domain Ω with
diameter ρ, we have CΩ = ρ/π (see [7]).

Example 2.4. Consider a real Hilbert space H . According to the Riesz theorem, we define
the bijective linear mapping � :H →H (Riesz operator) such that

〈

�h∗,h
〉= 〈h∗,h〉 (2.15)

for all h∗ ∈ H , and ‖�h∗‖ = ‖h∗‖. It is evident that the introduced Riesz operator is
stable. Since a Hilbert space is a strictly convex Banach space [13, 26], for every h ∈ H
there exists a unique element �h∈H such that

〈

�h,h
〉= ‖h‖2 = ‖�h‖2 (2.16)

(see, e.g., [26]). The dualizing operator J :H →H , as it is called, is also stable. Moreover,
it follows that � =�−1. Note that the dualizing operator can also be defined in a real
Banach space X [24].

Recall that a linear operator � : X → X is called a linear homeomorphism if

� : X −→ R(�) (2.17)

is a homeomorphism, or equivalently, if there exist positive constantsm andM such that

m‖x‖ ≤ ‖�x‖ ≤M‖x‖ (2.18)

for each x ∈ X . This fact is an immediate consequence of the Banach open mapping the-
orem (see, e.g., [3]). Clearly, every linear homeomorphism is a stable operator.
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Example 2.5. We continue by considering a linear symmetric operator � :H →H , where
H is a real Hilbert space. Let λ be an eigenvalue of �. Evidently, a symmetric operator
�∈ L(H ,H) has only real eigenvalues [23]. An eigenvalue λ is called a regular value of �
if (λI −�)−1 exists and is bounded. Here I is the identity operator. It is well known that
a number λ∈R is a regular value of a symmetric operator � if and only if (λI −�) is an
expanding operator with the constant of expansion

d = 1
∥
∥Res(λ,�)

∥
∥
L(H ,H)

, (2.19)

where Res(λ,�) is the resolvent (see, e.g., [5]).
We now assume that λ∈R is a regular value of the symmetric operator � and

∥
∥Res(λ,�)

∥
∥
L(H ,H) < 1. (2.20)

Then the operator (λI −�) is expanding with the above constant of expansion d. Hence

‖λIh‖+‖�h‖ ≥ ∥∥(λI −�)h
∥
∥≥ d‖h‖ (2.21)

for every h∈H . We have ‖�h‖ ≥ (d− 1)‖h‖ for all h∈H . Thus the considered operator
� is also expanding.

In conclusion of this section, we consider an important class of linear expanding op-
erators in a real Banach space X . Let � : X → X be a linear continuous operator. For
�, there exists a unique determined linear continuous adjoint operator �∗ ∈ L(X∗,X∗),
where X∗ is a topological dual space of X . It is well known that the following properties
are equivalent [23]:

(i) R(�)= X ,
(ii) the adjoint operator �∗ is expanding.

As it is obvious from the foregoing, the class of stable and strongly stable operators is
broadly representative.

3. Theoretical background

This section is devoted to some analytical properties of differentiable stable operators
in real Banach spaces. We recall the Fréchet differentiability concept. Let A : X → X and
x0 ∈ X . If there is a continuous linear mapping A′(x0) : X → X with the property

lim
‖Δx‖→∞

∥
∥A
(

x0 +Δx
)−A

(

x0
)−A′

(

x0
)

Δx
∥
∥

‖Δx‖ = 0, (3.1)

then A′(x0) is called the Fréchet derivative of A at x0 and the operator A is called Fréchet
differentiable at x0. According to this definition, we obtain

A
(

x0 +Δx
)= A

(

x0
)

+A′
(

x0
)

Δx+ o
(‖Δx‖), (3.2)
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where the expression o(‖Δx‖) of this Taylor series has the property

lim
‖Δx‖→0

o
(‖Δx‖)
‖Δx‖ = 0. (3.3)

We now introduce the hyperstability concept.

Definition 3.1. A stable operator A : X → X is called hyperstable if there exists a strictly
monotone increasing and continuous function g̃ :R+→R+ with

g̃(0)= 0, lim
t→+∞ g̃(t)= +∞, (3.4)

such that the stabilizing function g(·) of A satisfies the inequality

kg
(
t

k

)

≥ g̃(t) ∀t,k ∈R+. (3.5)

For example, we may choose a linear function g̃(·). It is evident that every expand-
ing operator is hyperstable. Consider the function g(t) = et − 1, t ∈ R+. Evidently, this
function satisfies all conditions of a stabilizing function. Since

et/k − 1≥ t

k
∀t,k ∈R+, (3.6)

we have kg(t/k)≥ g̃(t), t,k ∈R+ for the function g̃(t)= t. The following lemma is an easy
consequence of the hyperstability property.

Lemma 3.2. Let A : X → X be hyperstable and Fréchet differentiable at x0 ∈ X . Then the
linear operator A′(x0)∈ L(X ,X) is stable.

Proof. Evidently,

A
(

x0 + x
)= A

(

x0
)

+A′
(

x0
)

x+α
(

x0,x
) ∀x ∈ X ,

lim
‖x‖→0

∥
∥α
(

x0,x
)∥
∥

‖x‖ = 0.
(3.7)

Using the triangle inequality and Definition 1.1, we obtain
∥
∥α
(

x0,x
)∥
∥+

∥
∥A′

(

x0
)

x
∥
∥≥ ∥∥A(x0 + x

)−A
(

x0
)∥
∥≥ g

(‖x‖). (3.8)

For every ε > 0, we choose δ(ε) > 0 such that ‖x‖ < δ(ε) implies that ‖α(x0,x)‖ ≤ ε‖x‖.
Hence

∥
∥A′

(

x0
)

x
∥
∥≥ g

(‖x‖)−∥∥α(x0,x
)∥
∥≥ g

(‖x‖)− ε‖x‖. (3.9)

The inequality (3.9) holds for every x ∈ X with ‖x‖ < δ(ε). Consider an element ξ ∈ X
with ‖ξ‖ ≥ δ(ε) and select a number k ∈R such that (1/k)‖ξ‖ < δ(ε). Let x̃ := ξ/k. Since
the operator A′(x0) is linear, we obtain

1
k

∥
∥A′

(

x0
)

ξ
∥
∥= ∥∥A′(x0

)

x̃
∥
∥≥ g

(‖x̃‖)− ε‖x̃‖ = g
(
1
k
‖ξ‖

)

− ε 1
k
‖ξ‖, (3.10)
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and ‖A′(x0)ξ‖ ≥ kg((1/k)‖ξ‖)− ε‖ξ‖. Since the operator A is hyperstable, we have

∥
∥A′

(

x0
)

ξ
∥
∥≥ g̃

(‖ξ‖)− ε‖ξ‖ ∀ξ ∈ X. (3.11)

The inequality (3.11) holds for an arbitrary ε > 0 and ξ ∈ X . We conclude that

∥
∥A′

(

x0
)

ξ
∥
∥≥ g̃

(‖ξ‖) ∀ξ ∈ X. (3.12)

Thus the operator A′(x0) ∈ L(X ,X) is stable and g̃(·) is the corresponding stabilizing
function. �

In the same vein, we have the following observation.

Corollary 3.3. Let A : X → X be an expanding and Fréchet differentiable at x0 ∈ X ,

∥
∥A
(

x1
)−A

(

x2
)∥
∥≥ d

∥
∥x1− x2

∥
∥ ∀x1,x2 ∈ X. (3.13)

Then A′(x0) is expanding with the same constant d > 0,

∥
∥A′

(

x0
)

x1−A
(

x0
)

x2
∥
∥≥ d

∥
∥x1− x2

∥
∥ ∀x1,x2 ∈ X. (3.14)

By the statement that a nonlinear operator A : X → X is continuous we mean that
this operator is norm continuous. Moreover, in this paper we consider only norm-closed
subsets of a real Banach space X .

Lemma 3.4. Let A : X → X be stable and continuous. Then the range R(A) is a closed subset
of X .

Proof. Consider a sequence {ys} ⊂ R(A), s∈N such that

lim
s→∞

∥
∥ys− ỹ

∥
∥= 0, ỹ ∈ X. (3.15)

We now examine the corresponding sequence {xs} ⊂ X such that

A
(

xs
)= ys, s∈N. (3.16)

From

∥
∥yi− yj

∥
∥= ∥∥A(xi

)−A
(

xj
)∥
∥≥ g

(∥
∥xi− xj

∥
∥
)

, yi, yj ∈
{

yn
}

, i, j ∈N, (3.17)

it follows that limi, j→∞ g(‖xi− xj‖)= 0, where g(·) is the stabilizing function. Since this
function g :R+→R+ is a strictly monotone increasing function with g(0)= 0, we see that
{xs} is a Cauchy sequence. Hence

lim
s→∞

∥
∥xs− x̃

∥
∥= 0, x̃ ∈ X. (3.18)

Since A is continuous, we have A(x̃)= ỹ. The proof is complete. �

Assume that the range R(A) of a stable continuous operator A is a convex set. Then
R(A) is also closed in the weak topology on X [22]. A set Q ⊂ X is called norm bounded
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if there is a constant C ∈ R+ such that ‖x‖ ≤ C for all x ∈ Q. It is common knowledge
that a weakly closed, norm-bounded subset of a normed space is weakly compact in the
weak topology. Thus a norm-bounded convex range R(A) of a stable continuous operator
A : X → X is weakly compact.

Our next result is an immediate consequence of Lemmas 3.2, 3.4, and of the Banach
open mapping theorem (see, e.g., [3, 23]).

Lemma 3.5. Let A : X → X be hyperstable and Fréchet differentiable at x0 ∈ X . Then the
operator (A′(x0))−1 : R(A′(x0))⊆ X → X is linear and continuous.

Proof. By Lemma 3.2, the operator A′(x0) is stable. Clearly, this operator is an injection.
Lemma 3.4 implies that the range R(A′(x0)) is a closed subset of X . Moreover, R(A′(x0))
is a linear subspace of X . This shows that R(A′(x0)) is also a Banach space. By the Banach
open mapping theorem, the operator (A′(x0))−1 is linear and continuous. �

Recall the definition of a linear compact operator [23].

Definition 3.6. LetV be an open unit ball of the Banach spaceX . An operator�∈ L(X ,X)
is called compact if the set �(V) is relatively compact (i.e., the closure of the set �(V) is
compact).

We now present the following well-known fact (see, e.g., [30]).

Theorem 3.7. Let � ∈ L(X ,X) be compact and dimR(�) =∞. Then � is not from the
class of expanding operators.

Using Theorem 3.7, we can prove our next result.

Lemma 3.8. Let A : X → X be expanding and Fréchet differentiable at x0 ∈ X . If

dimR
(

A′
(

x0
))=∞, (3.19)

then A′(x0) is a noncompact operator.

Proof. ByCorollary 3.3, the operatorA′(x0)∈ L(X ,X) is also expanding. By Theorem 3.7,
the operator A′(x0) is noncompact. �

For a sequence {Ψs}, s ∈ N, of operators Ψs : X → X , one can consider the uniform
convergence and the pointwise convergence. In the next lemma, we deal with a sequence
of stable continuous operators and with the uniform limit of this sequence.

Lemma 3.9. Let {As}, s∈N, be a sequence of stable continuous operators

As : X −→ X , (3.20)

and let {gs(·)} be a sequence of stabilizing functions conforming to {As}. Assume that

inf
{

gs(·)}≥ g(·), (3.21)

where g :R+→R+ is a strictly monotone increasing and continuous function with

g(0)= 0, lim
t→+∞g(t)= +∞, (3.22)
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and R(As)= X , for all s∈N. If the operator A : X → X is the uniform limit of {As}, then A
is a stable continuous operator and R(A)= X . The function g(·) is a stabilizing function of
A.

Proof. Using the stability of the mapping As and the triangle inequality, we obtain

∥
∥As

(

x1
)−As

(

x2
)−(A(x1

)−A
(

x2
))∥
∥+

∥
∥A
(

x1
)−A

(

x2
)∥
∥≥gs(∥∥x1− x2

∥
∥
) ∀x1,x2 ∈ X.

(3.23)

The uniform convergence implies that

lim
s→∞

∥
∥
(

As
(

x1
)−As

(

x2
))− (A(x1

)−A
(

x2
))∥
∥= 0 ∀x1,x2 ∈ X. (3.24)

Since inf{gs(·)} ≥ g(·), we have
∥
∥A
(

x1
)−A

(

x2
)∥
∥
Y ≥ g

(∥
∥x1− x2

∥
∥
) ∀x1,x2 ∈ X. (3.25)

In other words, the operator A is stable and the function g(·) is the corresponding stabi-
lizing function. Since the uniform limit of a sequence of continuous operators is contin-
uous (see, e.g., [8]), the operator A is continuous.

Every operatorAs, s∈N, is a surjection (we have R(As)= X). Given an element y ∈ X ,
we consider a sequence {xs} ⊂ X such that

As
(

xs
)= y ∀s∈N. (3.26)

We deduce from the uniform convergence of the sequence {As} that for each ε > 0, there
exists a number N(ε) ∈ N such that ‖As(xs)−Ar(xs)‖ ≤ ε for s,r ≥ N(ε). This means
that {As} is a uniformly Cauchy sequence [8]. Hence

∥
∥y−Ar

(

xs
)∥
∥≤ ε (3.27)

for s,r ≥N(ε). From the triangle inequality, it follows that

∥
∥y−A

(

xs
)∥
∥≤ ε−∥∥A(xs

)−Ar
(

xs
)∥
∥ (3.28)

for s,r ≥N(ε). Using the uniform convergence of the sequence {As}, we obtain

lim
s→∞

∥
∥y−A

(

xs
)∥
∥= 0. (3.29)

Thus, the element y ∈ X is a limit of the sequence {A(xs)} in R(A). The operator A is
stable and continuous. According to Lemma 3.4, the range R(A) is a closed subset of X .
Consequently, y ∈ R(A). Since the element y is chosen as an arbitrary element of X , we
see that R(A)= X . This completes the proof of the lemma. �

From Lemma 3.8, it follows that a broad class of linear expanding operators is non-
compact. The solvability theory for operator equations with compact operators has been
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given adequate consideration in the literature (see, e.g., [9]). Therefore, it is important to
obtain the solvability criteria for operator equations with linear expanding operators.

4. Linear expanding operators

Let us reformulate the general (Lemma 3.9) for the linear expanding operators.

Lemma 4.1. Let {�s} s∈N be a sequence of expanding operators �s ∈ L(X ,X),

∥
∥As

(

x1
)−As

(

x2
)∥
∥≥ ds

∥
∥x1− x2

∥
∥ ∀x1,x2 ∈ X. (4.1)

Assume that inf{ds} ≥ d > 0. If lims→∞‖�s −�‖L(X ,X) = 0, then � is also an expanding
linear continuous operator

∥
∥A
(

x1
)−A

(

x2
)∥
∥≥ d

∥
∥x1− x2

∥
∥ ∀x1,x2 ∈ X , (4.2)

and R(�)= X .

We now introduce the set ℵ̃(X ,X) ⊂ L(X ,X) of all linear continuous surjective in-
vertible operators. Let ℵ(X ,X) be the subset of all expanding operators from ℵ̃(X ,X).
Consider an operator �∈ ℵ̃(X ,X). Evidently, the inverse operator �−1 is linear and con-
tinuous [11, 12]. We examine an operator �∈ L(X ,X) such that

‖�‖L(X ,X) < 1
∥
∥�−1∥∥

L(X ,X)

. (4.3)

Then the operator (� + �) is invertible and (� + �)−1 is linear and continuous (see
[11, 12]), that is, (�+�) ∈ ℵ̃(X ,X). In effect the set ℵ̃(X ,X) is an open (in the norm
topology) subset of L(X ,X). Using this fact, Lemma 3.4, and the Banach open mapping
theorem, we can prove the next result.

Theorem 4.2. Assume that � ∈ ℵ(X ,X) and that ‖�x1 −�x2‖ ≥ d‖x1 − x2‖. Consider
an operator �∈ L(X ,X) such that

‖�‖L(X ,X) <min

{

1
∥
∥�−1∥∥

L(X ,X)

,η

}

, (4.4)

where 0 < η < d. Then the operator (�+�) is expanding and invertible. Moreover, (�+
�)−1 is a linear and continuous operator, that is, (�+�)∈ ℵ(X ,X).
Proof. The expanding operator � is an injection. Lemma 3.4 implies that the range R(�)
is a closed subset of X . Moreover, R(A′(x0)) is a linear subspace of X . By the Banach open
mapping theorem, the operator �−1 is linear and continuous. Therefore, � ∈ ℵ̃(X ,X).
Consider an operator �∈ L(X ,X) such that

‖�‖L(X ,X) < 1
∥
∥�−1∥∥

L(X ,X)

, ‖�‖L(X ,X) < η, (4.5)
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where η < d. From the above-mentioned result, it follows that (� +�) ∈ ℵ̃(X ,X). Let
x ∈ X . By the definition of the operator norm ‖ · ‖L(X ,X), we obtain

∥
∥(�+�)x

∥
∥≥ ‖�x‖−‖�‖L(X ,X)‖x‖ ≥ d‖x‖−η‖x‖ = (d−η)‖x‖. (4.6)

It follows that (�+�)∈ ℵ(X ,X). �

The proved Theorem 4.2 establishes, in fact, that the set ℵ(X ,X) is an open (in the
norm topology) set in L(X ,X). Let us recall the following useful concept.

Definition 4.3. An operator A : X → X , where X is a Banach space, is called graph-closed
if the graph GA := {(x,Ax)∈ X ×X : x ∈ X} is a closed set.

We now take a look at the linear variant of the operator equation (1.1),

�(x)= a, a∈ X , (4.7)

where � : X → X is a linear operator. Let R(�)⊥ be the generalized orthogonal comple-
ment to the set R(�). It is well known that we have R(�)= X if and only if the following
two conditions are satisfied:

(i) R(�)⊥ = {0},
(ii) R(�) is closed.

Using this fact and the concept of graph-closed operators, one can prove the following
solvability result for (4.7) (see [28]).

Theorem 4.4. Let � : X → X be a linear expanding and graph-closed operator, where X is
a real Banach space. Suppose that R(�)⊥ = {0}. Then, for each a ∈ X , (4.7) has a unique
solution.

Sometimes the closedness ofGA for an operatorA : X → X characterizes the continuity
of A. An important case presents the closed graph theorem (see, e.g., [3]). If the linear
operator � : X → X is continuous, we can apply Lemma 3.4.

Theorem 4.5. Let X be a real Banach space and let � : X → X be a linear expanding and
continuous operator. Suppose that R(�)⊥ = {0}. Then, for each a ∈ X , (4.7) has a unique
solution.

Proof. By Lemma 3.4, the set R(�) is closed. The expanding operator � is injective. Since
R(�)⊥ = {0}, we also have R(�)= X . �

In relation to the considered topics, it is pertinent to present the well-known solvability
result for strongly stable (strongly monotone) linear operator in Hilbert spaces, namely,
the Lax-Milgram lemma [14].

Theorem 4.6. Let � :H →H be a linear strongly stable and continuous operator on a real
Hilbert space H . Then for each b ∈H , the equation �h= b, h∈H , has a unique solution.

For some other related theorems, see also [27, 29]. We recall that the classic result of
Minty [18] states that a monotone operator � :H →H is maximal monotone if and only
if (I +B) is surjective. Note that in this case, B is also maximal accretive and the operator
(I +B) is expanding (see Example 2.1).
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Let A : X → X be a nonlinear operator. We now require for A the existence of Fréchet
derivatives A′(x0) at the point x0 ∈ X . It makes sense to compare the nonlinear equation
(1.1) with its linearization (4.7) at the point x0 ∈ X , where �=A′(x0). Thus we deal with
the following linearized equation:

A′
(

x0
)

x = a, a∈ X. (4.8)

Note that linearization techniques have long been recognized as a powerful tool for study-
ing and solving operator equations. We now prove our basic theorem for a class of differ-
entiable linear expanding operators.

Theorem 4.7. Let X be a real Banach space. Let
(i) an operator A : X → X be expanding and continuously Fréchet differentiable at every

point x ∈ X ;
(ii) R(A′(x̃))= X for a point x̃ ∈ X .

Then the linearized problem (4.8) has a unique solution for every x0 ∈ X .

Proof. By Corollary 3.3, the mapping A′(x) is expanding at every point x ∈ X . Moreover,
the constant of expansion d > 0 for A′(x) is the same. Let

T := {x ∈ X : R
(

A′(x)
)= X

}

. (4.9)

Since R(A′(x̃))= X for a x̃ ∈ X , we have T �=∅. We claim that the set T is a closed subset
of X . To see this, consider a convergent sequence {xs}, xs ∈ T , s∈N, such that

lim
s→∞

∥
∥xs− x̄

∥
∥= 0. (4.10)

The mapping A′ : X → L(X ,X) is continuous. Hence

lim
s→∞

∥
∥A′

(

xs
)−A′(x̄)

∥
∥

�(X ,X) = 0. (4.11)

By Lemma 4.1, the continuous operator A′(x̄) is expanding. By Lemma 3.4,

R
(

A′(x̄)
)= X. (4.12)

This proves that x̄ ∈ T .
We now consider the set ℵ(X ,X) ⊂ L(X ,X). Evidently, T = (A′)−1(ℵ(X ,X)), where

A′ : X → L(X ,X). The set ℵ(X ,X) is an open (in the usual norm topology) subset of
L(X ,X) (see [11, 12]). Since the mapping A′ : X → L(X ,X) is continuous, the set T is also
an open set in X . Thus the considered set T �=∅ is closed and open. Hence, T = X and
we obtain

R
(

A′
(

x0
))= X ∀x0 ∈ X. (4.13)

Since the linear expanding operator A′(x0) is injective, A′(x0) is bijective for every ele-
ment x0 ∈ X . This completes the proof. �

The presented Theorem 4.7 establishes solvability results for a class of linearized oper-
ator equations (4.8). This class is defined by points of linearization x0 ∈ X for the initial
nonlinear problem (1.1) with a differentiable expanding operator A.
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5. The main theorem on differentiable expanding operators

We now formulate and prove the following new inverse mapping theorem for nonlinear
differentiable expanding operators.

Theorem 5.1. Let X be a real Banach space and let
(i) A : X → X be an expanding and continuously Fréchet differentiable operator;
(ii) R(A′(x̃))= X for an element x̃ ∈ X .

Then the given operator A has an inverse A−1 : X → X and (1.1) has a unique solution for
every a∈ X .

Proof. Clearly, the expanding operator A is injective. We claim that R(A)= X . To see this,
we introduce the following set (see the proof of Theorem 4.7):

T := {x ∈ X : R
(

A′(x)
)= X

}

. (5.1)

Since R(A′(x̃))= X for a x̃ ∈ X , we have T �=∅. Consider a convergent sequence

{

xs
}

, xs ∈ T , s∈N, (5.2)

such that

lim
s→∞

∥
∥xs− x̄

∥
∥= 0. (5.3)

The mapping A′ : X → L(X ,X) is continuous. Hence

lim
s→∞

∥
∥A′

(

xs
)−A′(x̄)

∥
∥
L(X ,X) = 0. (5.4)

By Lemma 4.1, the continuous operator A′(x̄) is expanding. By Lemma 3.4,

R
(

A′(x̄)
)= X. (5.5)

This proves that x̄ ∈ T and the set T is closed.
Consider the set ℵ(X ,X)⊂ L(X ,X). Evidently, T = (A′)−1(ℵ(X ,X)), where

A′ : X −→ L(X ,X). (5.6)

The set ℵ(X ,X) is an open subset of L(X ,X) (see [11, 12]). Since the introduced mapping
A′ : X → L(X ,X) is continuous, the set T is an open set in X . Thus, the considered set
T �=∅ is closed and open. Hence, T = X and

R
(

A′
(

x0
))= X ∀x0 ∈ X. (5.7)

Since the linear expanding operator A′(x0) is also injective, A′(x0) is bijective for every
x0 ∈ X . Moreover, (A′(x0))−1 : X → X is linear and continuous [11, 12]. According to the
inverse function theorem (see, e.g., [23]), the range R(A) of the nonlinear operator A is
an open subset of X .

By Lemma 3.4, the range R(A) of the stable continuous operator A is closed in X .
Hence R(A)= X . This means that the expanding operator A is bijective and there exists
the inverse mapping A−1 : X → X . The proof is finished. �
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In contrast to Theorem 4.7, the formulated Theorem 5.1 represents a solvability result
for a class of initial nonlinear equations (1.1) with differentiable expanding operators A.
The assumptions of Theorem 5.1 are analogous to the assumptions of Theorem 4.7. Thus,
under the conditions of Theorem 5.1, we obtain not only the solvability result for the
linearized operator equation (4.8), but also the solvability of the initial operator equation
(1.1).

We can expect that the existence of an inverse mapping for a given nonlinear expand-
ing mapping of X into itself involves a specific fixed point theorem. As a corollary of
our main Theorem 5.1, we obtain the following fixed point theorem for differentiable
expanding operators in real Banach spaces.

Theorem 5.2. Let X be real Banach spaces and let
(i) A : X → X be a continuously Fréchet differentiable expanding operator with a con-

stant of expansion d > 1,
(ii) R(A′(x̃))= X for a x̃ ∈ X .

Then the mapping A has a unique fixed point.

Proof. We must show that the operator (A− I), where I is the identity operator, satisfies
all assumptions of Theorem 5.1. Since A is expanding, we have

∥
∥A
(

x1
)− x1−A

(

x2
)− x2

∥
∥

≥ ∥∥A(x1
)−A

(

x2
)∥
∥−∥∥x1− x2

∥
∥≥ (d− 1)

∥
∥x1− x2

∥
∥ ∀x1,x2 ∈ X.

(5.8)

Moreover, we have d − 1 > 0. We can also show that R(A′(x̃)− I) = X (see proof of
Theorem 4.7). Theorem 5.1 implies the existence of the inverse operator (A− I)−1 and
the existence of the fixed point

xfix = (A− I)−1
(

0X
)

(5.9)

for themappingA, where 0X is the zero-element ofX . Since (A− I) is bijective, we deduce
the uniqueness of the fixed point xfix ∈ X . �

Our next fixed point theorem can be formulated as a corollary of the basic (Theorem
4.7) for linear expanding operators.

Theorem 5.3. Let X be real Banach spaces and let
(i) A : X → X be a continuously Fréchet differentiable expanding operator with the con-

stant of expansion d > 1,
(ii) R(A′(x̃))= X for a x̃ ∈ X .

Then the mapping A′(x0) has a unique fixed point for every x0 ∈ X .

The presented Theorem 5.3 can be proved in the same way as Theorem 5.2. We now
establish a linkage between monotone operators in Hilbert spaces and operators from
Theorem 5.1.

Theorem 5.4. Let B :H →H be a monotone and continuously Fréchet differentiable oper-

ator on the real Hilbert space H . Let R(B′(h̃))=H for a vector h̃∈H . Then B is a maximal
monotone and maximal accretive operator.
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Proof. The operator (I +B) is expansive (see Example 2.1). We deduce that

R
(

I +B′(h̃)
)=H (5.10)

for a vector h̃ ∈ H . It follows that all conditions of Theorem 5.1 are satisfied and the
operator (I +B) is surjective on H . According to the Minty theorem [18], the operator B
is maximal monotone and maximal accretive. The proof is complete. �

Finally, note that the theory of differentiable expanding operators has a wide applica-
tion in the general theory of discretization methods and in optimization. For the corre-
sponding examples, see, for example, [5, 19, 20, 25].

6. Concluding remarks

In this paper, we present the theory of differentiable stable and expanding operators in
real Banach and Hilbert spaces. It is not difficult to see that many of the results obtained
here also hold in the corresponding spaces over C. The next question concerns a possi-
ble weakening of the “strong” Fréchet differentiability assumptions in our main results,
namely, in Theorems 4.7 and 5.1. What are the weakened differentiability conditions un-
der which the statement of the above theorems is correct? A constructive investigation in
this context can follow the directions of the nonlinear analysis. It is not unlikely to prove
the analogs of the main results using the generalized derivatives and the suitable variants
of the implicit function theorem.

Finally, note that the stability concept proposed for the single-valued operators can
also be extended to the multifunctions in Banach spaces. The next interesting problem is
the generalization of the main results for the stable operators to the multivalued case.

Acknowledgment

The author is grateful to Professor A. Kaplan (University of Trier) and to Professor J.
Eichhorn (University of Greifswald) for their helpful comments and suggestions.

References

[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, vol. 65, Academic Press, New York,
1973.

[2] V. M. Alekseev, V. M. Tichomirov, and S. V. Fomin, Optimal Control, Contemporary Soviet
Mathematics, Plenum Press, New York, 1987.

[3] C. D. Aliprantis and K. C. Border, Infinite-Dimensional Analysis, 2nd ed., Springer, Berlin, 1999.
[4] L. Angermann, A posteriori error estimates for approximate solutions of nonlinear equations with

weakly stable operators, Numerical Functional Analysis and Optimization 18 (1997), no. 5-6,
447–459.

[5] V. Azhmyakov, Stable Operators in Analysis and Optimization, Peter Lang, Berlin, 2005.
[6] C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities. Applications to Free

Boundary Problems, A Wiley-Interscience Publication, John Wiley & Sons, New York, 1984.
[7] M. Bebendorf, A note on the Poincaré inequality for convex domains, Zeitschrift für Analysis und

ihre Anwendungen 22 (2003), no. 4, 751–756.
[8] S. K. Berberian, Fundamentals of Real Analysis, Universitext, Springer, New York, 1999.



Vadim Azhmyakov 17
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