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We present existence results for general variational inequalities without monotonicity
or coercivity assumptions. It relies on a Leray-Schauder degree approach and provides
additional information about the location of solutions.

1. Introduction

The study of variational inequalities is very important from a theoretic point of view in
mathematics as well as for its various and significant applications in different fields, for
instance, in what is called nonsmooth mechanics [1, 3, 10]. Comprehensive treatment of
different problems related to variational inequalities and their applications can be found
in the monographs [2, 5, 6, 7, 8]. A basic assumption in the results studying the vari-
ational inequalities on a Hilbert space is the monotonicity condition, in particular, the
ellipticity (or coercivity) hypothesis on the (possibly nonlinear) operator entering the
problem. The interest to relax this condition, by imposing other type of assumptions, is
a real challenge in the recent developments. The present paper is devoted to this topic,
where in place of monotonicity there are supposed suitable assumptions allowing the
application of topological degree arguments. Our approach permits to encompass the
solvability of cases that were not covered by the previous known results.

We describe the functional setting of the paper. Let H be a real Hilbert space endowed
with the scalar product 〈·,·〉 and the associated norm ‖ · ‖.

Consider the following general assumptions on the data in our variational inequality
formulation (see problem (1.3)):

(H1) Φ :H →H is a compact mapping, that is,Φ is continuous and maps the bounded
sets onto relatively compact sets;

(H2) ϕ :H →R is a convex and continuous function which is bounded from above on
the bounded subsets of H .

Since a convex and lower semicontinuous function on H is bounded from below by an
affine function, it is bounded from below on the bounded subsets ofH . Hypothesis (H2)
ensures thus that the function ϕ is bounded on the bounded subsets of H . We stress that
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the property of the function ϕ :H →R to be bounded from above on the bounded subsets
ofH as assumed in (H2) is not satisfied, in general, by a convex and continuous function
ϕ on H . We provide an example in this direction based on private communication with
J. Saint Raymond (2004).

Example 1.1. Consider the Hilbert space �2 and the function f : �2→R defined by

f (x)= sup
n≥0

(
2n
∣∣xn∣∣−n

) ∀x ∈ �2, (1.1)

where xn are the components of x. The function f is convex, continuous, and not bound-
ed on the bounded sets. Indeed, f is defined on �2 because for any x ∈ �2 the set

{
n : 2n

∣∣xn∣∣−n≥ 0
}= {n : ∣∣xn∣∣≥ 1

2

}
(1.2)

is finite. The function f is convex, since it is the upper hull of the convex functions fn
on �2 given by fn(x) = 2n|xn| − n. We note that f is zero on the ball centered at 0 and
of radius 1/2 because 0 = f0(x) ≤ f (x) and 2|xn| ≤ 1 if ‖x‖ < 1/2. Being bounded on a
nonempty open set, the function f is continuous. Finally, it is seen that f (en)= n, where
en is the nth vector of the canonical basis of �2. It turns out that the function f is not
bounded from above on the unit sphere in �2.

Given Φ :H →H and ϕ :H → R, we formulate now our variational inequality prob-
lem: find x̄ ∈H such that

〈
x̄−Φ(x̄),v− x̄

〉
+ϕ(v)−ϕ(x̄)≥ 0 ∀v ∈H. (1.3)

Our approach in studying the variational inequality (1.3) relies on the Leray-Schauder
degree theory (see [4, 9]). Assumption (H1) is mainly imposed to fit the setting of the
Leray-Schauder degree theory.

Several approaches using degree theory have been recently developed so as to study
problems like the one given in (1.3), even for general classes of proper, convex, and lower
semicontinuous functions ϕ (see [6, 11]), but here we give a more qualitative insight on
the topic. Specifically, assumption (H2) allows us to develop a new and powerful contin-
uation result (see Proposition 2.3). Using this continuation result for problem (1.3), we
prove several new results guaranteeing the existence of solutions (see Section 3). Some
location information on the solution set of problem (1.3) is also available through our
results, for example, criteria to have nontrivial solutions. Here the hypotheses (H1) and
(H2) play an essential role. Special attention is paid to the situation where the Hilbert
space H is finite dimensional. It is worth noting that if H is finite dimensional, then
every continuous mapping Φ :H →H satisfies assumption (H1), and every continuous
and convex function ϕ : H → R fulfills assumption (H2). This enables us to have great
flexibility in applying our results in the case H =RN .

Our main argument lies in the use of a nonlinear operator Pϕ :H →H which is related
to the function ϕ in problem (1.3) and hypothesis (H2).

The rest of the paper is organized as follows. Section 2 contains some preliminary
results to set up our topological degree framework. Section 3 is devoted to our existence
results for the variational inequality (1.3).
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2. Preliminary results

This section concerns an auxiliary variational inequality on a real Hilbert space H whose
solution will be the main tool in solving problem (1.3). In the sequel we denote by idH the
identity mapping on H . For later use, for any r > 0, we denote Br := {x ∈H : ‖x‖ < r},
B̄r := {x ∈H : ‖x‖ ≤ r}, and ∂Br := {x ∈H : ‖x‖ = r}.

Let ϕ : H → R be a convex and continuous function. The notation ∂ϕ stands for the
subdifferential of ϕ in the sense of convex analysis, that is, the nonempty set

∂ϕ(x)= {w ∈H : ϕ(v)−ϕ(x)≥ 〈w,v− x〉 ∀v ∈H
}
. (2.1)

The subdifferential ∂ϕ is defined everywhere on H because the function ϕ is convex and
continuous on H .

For a fixed element y ∈ H , we state the variational inequality problem: find x ∈ H
such that

〈x− y,v− x〉+ϕ(v)−ϕ(x)≥ 0 ∀v ∈H. (2.2)

It is well known that problem (2.2) has a unique solution x ∈H (see, e.g., [2, 4, 8]).
Therefore the well-defined (nonlinear) operator Pϕ :H →H given by

Pϕ(y)= x ∀y ∈H , (2.3)

where x ∈H , is the solution to (2.2). We note that P0y = y for all y ∈H .
First we discuss the continuity properties of the nonlinear operator Pϕ described in

(2.2) and (2.3).

Proposition 2.1. Let ϕ :H → R be a convex and continuous function. Then the operator
Pϕ is continuous.

Proof. Let {yn} ⊂H be a sequence such that yn→ y∗ as n→ +∞. We claim that Pϕ(yn)→
Pϕ(y∗) in H as n→ +∞. Indeed, denoting xn := Pϕ(yn) and x∗ := Pϕ(y∗), we have from
(2.3) and (2.2) that

〈
xn− yn,v− xn

〉
+ϕ(v)−ϕ

(
xn
)≥ 0 ∀v ∈H , (2.4)〈

x∗ − y∗,v− x∗
〉
+ϕ(v)−ϕ

(
x∗
)≥ 0 ∀v ∈H. (2.5)

If we set v = x∗ in (2.4) and v = xn in (2.5), we obtain

〈
xn− yn,xn− x∗

〉−ϕ
(
x∗
)
+ϕ
(
xn
)≤ 0,

−〈x∗ − y∗,xn− x∗
〉−ϕ(xn) +ϕ

(
x∗
)≤ 0.

(2.6)

We derive

∥∥xn− x∗
∥∥2 ≤ ∥∥xn− x∗

∥∥∥∥yn− y∗
∥∥. (2.7)

It follows that xn→ x∗ in H as n→ +∞, and the conclusion is achieved. �
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Proposition 2.2. Let G : [0,T]×H →H be a continuous function on [0,T]×H , with a
number T > 0, and let ϕ :H →R satisfy hypothesis (H2). Then the mapping

(λ, y)∈ [0,T]×H �−→ Pλϕ
(
G(λ, y)

)∈H (2.8)

is continuous on [0,T]×H , where Pλϕ is the nonlinear operator introduced by (2.2) and
(2.3).

Proof. We check the continuity at an arbitrary point (λ∗, y∗)∈ [0,T]×H . Consider the
convergent sequences {yn} ⊂ H and {λn} ⊂ [0,T] with yn → y∗ in H and λn → λ∗ in
R as n→ +∞. We have to show that Pλnϕ(G(λn, yn))→ Pλ∗ϕ(G(λ∗, y∗)) in H as n→ +∞.
Denote xn := Pλnϕ(G(λn, yn)) and x

∗ := Pλ∗ϕ(G(λ∗, y∗)). By the definition of themapping
Pλϕ in (2.2) and (2.3) it is known that

〈
xn−G

(
λn, yn

)
,v− xn

〉
+ λnϕ(v)− λnϕ

(
xn
)≥ 0 ∀v ∈H , (2.9)〈

x∗ −G
(
λ∗, y∗

)
,v− x∗

〉
+ λ∗ϕ(v)− λ∗ϕ

(
x∗
)≥ 0 ∀v ∈H. (2.10)

We first prove that the sequence {xn} is bounded. To this end, suppose, on the contrary,
that along a relabeled subsequence one has ‖xn‖→ +∞ as n→ +∞. Setting v = 0 in (2.9),
we obtain

−〈xn−G
(
λn, yn

)
,xn
〉
+ λn

[
ϕ(0)−ϕ

(
xn
)]≥ 0. (2.11)

This leads to

1≤
∥∥G(λn, yn)∥∥∥∥xn∥∥ +

λn∥∥xn∥∥2
[
ϕ(0)−ϕ

(
xn
)]
. (2.12)

For n large enough, wemay admit that 1/‖xn‖ ∈ (0,1]. Using the convexity of ϕwe obtain

ϕ

(
xn∥∥xn∥∥

)
≤ 1∥∥xn∥∥ϕ

(
xn
)
+

(
1− 1∥∥xn∥∥

)
ϕ(0) (2.13)

or, equivalently,

ϕ(0)−ϕ
(
xn
)

∥∥xn∥∥ ≤ ϕ(0)−ϕ

(
xn∥∥xn∥∥

)
. (2.14)

Combining with (2.12) implies

1≤
∥∥G(λn, yn)∥∥∥∥xn∥∥ + λn

ϕ(0)−ϕ
(
xn/
∥∥xn∥∥)∥∥xn∥∥ . (2.15)

Since the function ϕ is convex and continuous on the whole space H , it turns out ϕ is
bounded from below on the bounded subsets of H . Consequently, in conjunction with
assumption (H2), one has that ϕ is bounded on the bounded subsets of H . This ensures
that

lim
n→+∞

ϕ
(
xn/
∥∥xn∥∥)∥∥xn∥∥ = 0. (2.16)



D. Goeleven et al. 265

Passing to the limit as n→ +∞ in (2.15) and using the continuity of G, we arrive at con-
tradiction. Therefore the sequence {xn} is bounded in H .

Setting now v = x∗ in (2.9) and v = xn in (2.10) allows to write

〈
xn−G

(
λn, yn

)
,xn− x∗

〉− λnϕ
(
x∗
)
+ λnϕ

(
xn
)≤ 0,

−〈x∗ −G
(
λ∗, y∗

)
,xn− x∗

〉− λ∗ϕ
(
xn
)
+ λ∗ϕ

(
x∗
)≤ 0.

(2.17)

It follows that

∥∥xn− x∗
∥∥2 ≤ ∥∥G(λn, yn)−G

(
λ∗, y∗

)∥∥∥∥xn− x∗
∥∥+ (λn− λ∗

)
ϕ
(
x∗
)
+
(
λ∗ − λn

)
ϕ
(
xn
)
.

(2.18)

The continuity of G gives ‖G(λn, yn)−G(λ∗, y∗)‖ → 0, while the boundedness of the
sequence {xn} combined with assumption (H2) guarantees that the sequence {ϕ(xn)}
is bounded. It is then clear that (2.18) yields xn → x∗ as n→ +∞, which completes the
proof. �

The following technical result is useful for the computations involving the Leray-
Schauder degree in the next section. We recall that, given a compact mapping Ψ : B̄r →H
such that 0 /∈ (idH−Ψ)(∂Br), there exists the Leray-Schauder degree deg(idH−Ψ,Br ,0) of
idH−Ψ in Br with respect to 0 (see, e.g., [4, 9]).

Proposition 2.3. Assume that conditions (H1) and (H2) on the mappingsΦ :H →H and
ϕ : H → R, respectively, are fulfilled. If there exists a compact mapping χ : H → H and a
number r > 0 such that

〈
x−Φ(x),χ(x)− x

〉
+ϕ
(
χ(x)

)−ϕ(x) < 0 ∀x ∈H , ‖x‖ = r, (2.19)

then the following equality holds:

deg
(
idH−PϕΦ,Br ,0

)= deg
(
idH−χ,Br ,0

)
. (2.20)

Proof. Notice that the mapping PϕΦ is compact being the composition of the continuous
mapping Pϕ (cf. Proposition 2.1) and the compact one Φ (cf. (H1)). So the mapping
idH−PϕΦ is of the form required in the definition of the Leray-Schauder degree (see
[4, 9]). Let h : [0,1]× B̄r →H be the mapping defined by

h(λ, y)= y−Pλϕ
(
λΦ(y) + (1− λ)χ(y)

) ∀(λ, y)∈ [0,1]× B̄r . (2.21)

Applying Proposition 2.2 withG : [0,1]×H →H given byG(λ, y)= λΦ(y) + (1− λ)χ(y),
for all (λ, y)∈ [0,1]×H , we infer that h is a continuous mapping. Moreover, sinceΦ and
χ are compact, for each λ∈ [0,1], the mapping y �→ Pλϕ(λΦ(y) + (1− λ)χ(y)) is compact
too.
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We claim that

h(λ,x) = 0 ∀λ∈ [0,1], ∀x ∈ ∂Br. (2.22)

Arguing by contradiction, suppose that there exist x ∈ H , with ‖x‖ = r, and λ ∈ [0,1]
such that h(λ,x)= 0. This reads as

x = Pλϕ
(
λΦ(x) + (1− λ)χ(x)

)
. (2.23)

We first remark that

λ > 0. (2.24)

If not, we have λ= 0 and equality (2.23) reduces to x = P0(χ(x))= χ(x), which contradicts
assumption (2.19). Thus (2.24) holds true.

On the other hand, (2.23) expresses that

〈
x− λΦ(x)− (1− λ)χ(x),v− x

〉
+ λϕ(v)− λϕ(x)≥ 0 ∀v ∈H. (2.25)

For v = χ(x), it is seen that

λ
[〈
x−Φ(x),χ(x)− x

〉
+ϕ
(
χ(x)

)−ϕ(x)
]≥ (1− λ)

∥∥χ(x)− x
∥∥2 ≥ 0. (2.26)

In view of (2.24) we derive

〈
x−Φ(x),χ(x)− x

〉
+ϕ
(
χ(x)

)−ϕ(x)≥ 0. (2.27)

This contradicts assumption (2.19). Property (2.22) is established.
On the basis of (2.22), the homotopy invariance property of the Leray-Schauder degree

implies

deg
(
idH−PϕΦ,Br ,0

)= deg
(
h(1,·),Br ,0

)= deg
(
h(0,·),Br ,0

)
= deg

(
idH−P0χ,Br ,0

)= deg
(
idH−χ,Br ,0

)
.

(2.28)

The proof is thus complete. �

3. Existence theorems

Our first main existence result in studying problem (1.3) is the following.

Theorem 3.1. Assume that (H1), (H2) hold and that

(H3) there exists r > 0 such that

〈
x−Φ(x),x

〉
+ϕ(x)−ϕ(0) > 0 ∀x ∈H , ‖x‖ = r. (3.1)

Then problem (1.3) has at least a solution in Br , that is, there exists x̄ ∈ Br such that

〈
x̄−Φ(x̄),v− x̄

〉
+ϕ(v)−ϕ(x̄)≥ 0 ∀v ∈H. (3.2)
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Proof. Assumption (H3) entails that relation (2.19) is fulfilled for χ = 0. Consequently,
Proposition 2.3 can be applied with χ = 0. Thus we have

deg
(
idH−PϕΦ,Br ,0

)= deg
(
idH ,Br ,0

)= 1 = 0. (3.3)

A basic property of Leray-Schauder degree ensures that there exists x̄ ∈ Br verifying x̄ =
Pϕ(Φ(x̄)). Taking into account (2.2), it follows that x̄ solves problem (1.3). �

Theorem 3.1 yields a sufficient condition for the existence of nontrivial solutions in
solving problem (1.3).

Corollary 3.2. Assume that the hypotheses of Theorem 3.1 hold and, in addition, there
exists a point v0 ∈H \ {0} such that

〈
Φ(0),v0

〉
> ϕ
(
v0
)−ϕ(0). (3.4)

Then problem (1.3) has at least a nontrivial solution in Br .

Proof. Applying Theorem 3.1, we find x̄ ∈ Br verifying (1.3). In view of (3.4), one obtains
that x̄ = 0. �

The next result provides verifiable conditions under which Theorem 3.1 can be ap-
plied.

Corollary 3.3. Suppose that conditions (H1) and (H2) are verified as well as 0 ∈ ∂ϕ(0)
and that

(H3′) there exists r > 0 such that

〈
x−Φ(x),x

〉
> 0 ∀x ∈H , ‖x‖ = r. (3.5)

Then problem (1.3) has at least a solution in Br .

Proof. The result follows from Theorem 3.1 observing that assumptions (H3′) and 0 ∈
∂ϕ(0) imply (H3). �

A second main existence result in solving problem (1.3) is now given.

Theorem 3.4. Assume that (H1), (H2) hold and that

(H3′′) there exists r > 0 such that

ϕ
(
Φ(x)

)−ϕ(x) <
∥∥Φ(x)− x

∥∥2 ∀x ∈H , ‖x‖ = r,

deg
(
idH−Φ,Br ,0

) = 0.
(3.6)

Then problem (1.3) has at least a solution in Br .
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Proof. We apply Proposition 2.3 with χ = Φ. This is possible because relation (2.19) is
fulfilled for χ =Φ. It turns out from Proposition 2.3 that

deg
(
idH−PϕΦ,Br ,0

)= deg
(
idH−Φ,Br ,0

)
. (3.7)

According to assumption (H3′′), we infer that

deg
(
idH−PϕΦ,Br ,0

) = 0. (3.8)

It follows that there exists x̄ ∈ Br such that x̄ = Pϕ(Φ(x̄)). This allows us to conclude.
�

Theorem 3.4 gives rise to the following result.

Corollary 3.5. Assume the hypotheses of Theorem 3.4 hold and that there exists a point
v0 ∈H \ {0} satisfying (3.4). Then problem (1.3) admits at least a nontrivial solution in Br .

Proof. The existence of a solution follows from Theorem 3.4. The obtained solution x̄ ∈
Br of problem (1.3) is nontrivial because (3.4) prevents having x̄ = 0. �

We have the following significant case of Theorem 3.4.

Corollary 3.6. Suppose that (H1) holds and that

(H2′) ϕ :H →R is convex and Lipschitz continuous with Lipschitz constant K > 0, that is,

∣∣ϕ(x)−ϕ(y)
∣∣≤ K‖x− y‖ ∀x, y ∈H ; (3.9)

(H3′′′) there exists r > 0 such that

∥∥x−Φ(x)
∥∥ > K ∀x ∈H with ‖x‖ = r,

deg
(
idH−Φ,Br ,0

) = 0.
(3.10)

Then problem (1.3) has at least a solution in Br .

Proof. It is worth noting that because a Lipschitz continuous function is bounded on
bounded sets, assumption (H2′) assures that (H2) is satisfied. We see again from (H2′)
that

ϕ
(
Φ(x)

)−ϕ(x)−∥∥Φ(x)− x
∥∥2 ≤ K

∥∥x−Φ(x)
∥∥−∥∥x−Φ(x)

∥∥2
= ∥∥x−Φ(x)

∥∥(K −∥∥x−Φ(x)
∥∥). (3.11)

Thus, due to (H3′′′), we have

ϕ
(
Φ(x)

)−ϕ(x)−∥∥Φ(x)− x
∥∥2 < 0 ∀x ∈H , ‖x‖ = r. (3.12)

Since (H3′′) holds, the conclusion follows from Theorem 3.4. �

We point out a relevant special case of Corollary 3.6.
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Theorem 3.7. Assume that (H2′) holds and that

(H4) A :H →H is a linear topological isomorphism such that idH−A is a compact map-
ping.

Then, for every f ∈H , there exists x̄ ∈H such that

〈Ax̄− f ,v− x̄〉+ϕ(v)−ϕ(x̄)≥ 0, ∀v ∈H. (3.13)

Proof. Fix f ∈H . According to assumption (H4), the mapping Φ :H →H defined by

Φ(x)= x−Ax+ f , ∀x ∈H , (3.14)

is compact, so condition (H1) is verified. Since A is invertible, there exists a constant c > 0
such that ‖Ax‖ ≥ c‖x‖ for all x ∈H . Fix a number

r >max
{
K +‖ f ‖

c
,
∥∥A−1 f ∥∥}, (3.15)

where K > 0 is the Lipschitz constant in (H2′). For ‖x‖ = r, it is seen from (3.15) that

∥∥x−Φ(x)
∥∥= ‖Ax− f ‖ ≥ ‖Ax‖−‖ f ‖ ≥ c‖x‖−‖ f ‖ = cr−‖ f ‖ > K. (3.16)

It follows that the first part of condition (H3′′′) in Corollary 3.6 is fulfilled. We introduce
the mapping h : [0,1]× B̄r →H by

h(λ,x)= Ax− λ f ∀λ∈ [0,1], ∀x ∈ B̄r . (3.17)

We remark that

h(λ,x) = 0 ∀λ∈ [0,1], ∀x ∈H , with ‖x‖ = r. (3.18)

Indeed, suppose on the contrary that there exist λ∈ [0,1] and x ∈H with ‖x‖ = r such
that Ax = λ f . By (3.15), it is known that ‖x‖ = λ‖A−1 f ‖ < r, which is a contradiction.
Thus the homotopy invariance property of the Leray-Schauder degree can be applied to
obtain

deg
(
idH−Φ,Br ,0

)= deg
(
A− f ,Br ,0

)= deg
(
h(1,·),Br ,0

)
= deg

(
h(0,·),Br ,0

)= deg
(
A,Br ,0

) = 0
(3.19)

since A ∈ Isom(H). So the second part of (H3′′′) is valid too. Therefore the hypothe-
ses of Corollary 3.6 are satisfied. Applying Corollary 3.6 leads to the desired conclusion.

�

Corollary 3.8. Let X and Y be Hilbert spaces, with Y finite dimensional. Suppose that
T : Y → Y is a linear invertible mapping and ϕ : X ×Y → R is a function verifying (H2′)
with H = X ×Y . Then, for any ( f ,g)∈ X ×Y , there exists (x̄, ȳ)∈ X ×Y such that

〈x̄− f ,v− x̄〉+ 〈T ȳ− g,w− ȳ〉+ϕ(v,w)−ϕ(x̄, ȳ)≥ 0 ∀(v,w)∈ X ×Y. (3.20)



270 Variational inequalities via Leray-Schauder degree

Proof. Let H := X ×Y . Then the operator A :H →H defined by

A(x, y)= (x,Ty), ∀(x, y)∈H , (3.21)

is a linear topological isomorphism. Since

(
idH−A

)
(x, y)= (x, y)− (x,Ty)= (0, y−Ty), ∀(x, y)∈H , (3.22)

and Y is finite dimensional, it follows that the mapping idH−A is compact. The applica-
tion of Theorem 3.7 completes the proof. �

We illustrate the above result with an application in the finite-dimensional setting.

Corollary 3.9. Suppose that T ∈RN×N is a real nonsingular matrix and ϕ :RN →R is a
function verifying (H2′) with H =RN . Then, for any g ∈RN , there exists x̄ ∈RN such that

〈Tx̄− g,v− x̄〉+ϕ(v)−ϕ(x̄)≥ 0 ∀v ∈RN . (3.23)

Proof. It suffices to apply Corollary 3.8 for X = {0}, Y =RN , f = 0. �
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