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Abstract

In this paper, we first establish some new fixed point theorems for MT -functions.
By using these results, we can obtain some generalizations of Kannan’s fixed point
theorem and Chatterjea’s fixed point theorem for nonlinear multivalued contractive
maps in complete metric spaces. Our results generalize and improve some main
results in the literature and references therein.
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1. Introduction
Throughout this paper, we denote by N and ℝ, the sets of positive integers and real

numbers, respectively. Let (X, d) be a metric space. For each x Î X and A ⊆ X, let d(x,

A) = infy Î A d(x, y). Denote by N (X) the family of all nonempty subsets of X, C(X)
the family of all nonempty closed subsets of X and CB(X) the class of all nonempty

closed bounded subsets of X, respectively.

For any A,B ∈ CB (X) , define a function H : CB(X) × CB(X) → [0,∞) by

H(A,B) = max
{
sup
x∈B

d(x,A), sup
x∈A

d(x,B)
}
,

then H is said to be the Hausdorff metric on CB(X) induced by the metric d on X.

A point x in X is a fixed point of a map T if Tx = x (when T: X ® X is a single-valued

map) or x Î Tx (when T: X ® 2X is a multivalued map). The set of fixed points of T

is denoted by F(T) .

It is known that many metric fixed point theorems were motivated from the Banach

contraction principle (see, e.g., [1]) that plays an important role in various fields of

applied mathematical analysis. Later, Kannan [2,3] and Chatterjea [4] established the

following fixed point theorems.

Theorem K. (Kannan [2,3]) Let (X,d) be a complete metric space and T: X ® X be

a selfmap. Suppose that there exists γ ∈ [0, 12 ) such that

d(Tx,Ty) ≤ γ (d(x,Tx) + d(y,Ty)) for all x, y ∈ X.

Then, T has a unique fixed point in X.
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Theorem C. (Chatterjea [4]) Let (X,d) be a complete metric space and T: X ® X be

a selfmap. Suppose that there exists γ ∈ [0, 12 ) such that

d(Tx,Ty) ≤ γ (d(x,Ty) + d(y,Tx)) for all x, y ∈ X.

Then, T has a unique fixed point in X.

Let f be a real-valued function defined on ℝ. For c Î ℝ, we recall that

lim sup
x→c

f (x) = inf
ε>0

sup
0<|x−c|<ε

f (x)

and

lim sup
x→c+

f (x) = inf
ε>0

sup
0<x−c<ε

f (x).

Definition 1.1. [5-10] A function �: [0, ∞) ® [0,1) is said to be an MT -function if it

satisfies Mizoguchi-Takahashi’s condition ( i.e., lim sups ® t+ �(s) < 1 for all t Î [0, ∞)).

It is obvious that if �: [0, ∞) ® [0,1) is a nondecreasing function or a nonincreasing

function, then � is an MT -function. So the set of MT -functions is a rich class. But

it is worth to mention that there exist functions that are not MT -functions.

Example 1.1. [8] Let �: [0, ∞) ® [0, 1) be defined by

ϕ(t) :=
{ sin t

t , if t ∈ (0, π
2 ]

0 , otherwise.

Since lim sups→0+ϕ(s) = 1,ϕ is not an MT -function.

Very recently, Du [8] first proved some characterizations of MT -functions.

Theorem D. [8] Let �: [0, ∞) ® [0,1) be a function. Then, the following statements

are equivalent.

(a) � is an MT -function.

(b) For each t Î [0, ∞), there exist r(1)t ∈ [0, 1) and ε
(1)
t > 0 such that ϕ(s) ≤ r(1)t

for all s ∈ (t, t + ε
(1)
t ).

(c) For each t Î [0, ∞), there exist r(2)t ∈ [0, 1) and ε
(2)
t > 0 such that ϕ(s) ≤ r(2)t

for all s ∈ [t, t + ε
(2)
t ] .

(d) For each t Î [0, ∞), there exist r(3)t ∈ [0, 1) and ε
(3)
t > 0 such that ϕ(s) ≤ r(3)t

for all s ∈ (t, t + ε
(3)
t ] .

(e) For each t Î [0, ∞), there exist r(4)t ∈ [0, 1) and ε
(4)
t > 0 such that ϕ(s) ≤ r(4)t

for all s ∈ [t, t + ε
(4)
t ) .

(f) For any nonincreasing sequence {xn}n ÎN in [0, ∞), we have 0 ≤ supn ÎN �(xn) < 1.

(g) � is a function of contractive factor [10]; that is, for any strictly decreasing

sequence {xn}n ÎN in [0, ∞), we have 0 ≤ supn ÎN �(xn) <1.

In 2007, Berinde and Berinde [11] proved the following interesting fixed point

theorem.

Theorem BB. (Berinde and Berinde [11]) Let (X,d) be a complete metric space,

T : X → CB(X) be a multivalued map, �: [0, ∞) ® [0,1) be an MT -function and L ≥
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0. Assume that

H(Tx,Ty) ≤ ϕ(d(x, y))d(x, y) + Ld(y,Tx) for all x, y ∈ X.

Then F(T) �= ∅ .
It is quite obvious that if let L = 0 in Theorem BB, then we can obtain Mizoguchi-

Takahashi’s fixed point theorem [12] that is a partial answer of Problem 9 in Reich

[13,14].

Theorem MT. (Mizoguchi and Takahashi [12]) Let (X,d) be a complete metric

space, T : X → CB(X) be a multivalued map and �: [0, ∞) ® [0,1) be an MT -func-

tion. Assume that

H(Tx,Ty) ≤ ϕ(d(x, y))d(x, y) for all x, y ∈ X.

Then F(T) �= ∅ .
In fact, Mizoguchi-Takahashi’s fixed point theorem is a generalization of Nadler’s

fixed point theorem, but its primitive proof is difficult. Later, Suzuki [15] give a very

simple proof of Theorem MT. Recently, Du [5] established new fixed point theorems

for τ0-metric (see Def. 2.1 below) and MT -functions to extend Berinde-Berinde’s fixed

point theorem. In [5], some generalizations of Kannan’s fixed point theorem, Chatter-

jea’s fixed point theorem and other new fixed point theorems for nonlinear multiva-

lued contractive maps were given.

In this paper, we first establish some new fixed point theorems for MT -functions.

By using these results, we can obtain some generalizations of Kannan’s fixed point the-

orem and Chatterjea’s fixed point theorem for nonlinear multivalued contractive maps

in complete metric spaces. Our results generalize and improve some main results in

[1-5,7-9,12-15] and references therein.

2. Preliminaries
Let (X, d) be a metric space. Recall that a function p: X × X ® [0, ∞) is called a w-dis-

tance [1,16,17], if the following are satisfied:

(w1) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z Î X;

(w2) for any x Î X,p(x, ⋅) : X ® [0, ∞) is l.s.c;

(w3) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply d(x, y)

≤ ε.

Recently, Lin and Du introduced and studied τ-functions [5,9,18-22]. A function p: X

× X ® [0, ∞) is said to be a τ-function, if the following conditions hold:

(τ1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z Î X;

(τ2) If x Î X and {yn} in X with limn ®∞ yn = y such that p(x, yn) ≤ M for some M =

M(x) > 0, then p(x, y) ≤ M;

(τ3) For any sequence {xn} in X with limn ®∞ sup{p(xn, xm): m >n} = 0, if there exists

a sequence {yn} in X such that limn ®∞ p(xn, yn) = 0, then limn ®∞ d(xn, yn) = 0;

(τ4) For x, y, z Î X,p(x, y) = 0 and p(x, z) = 0 imply y = z.

Note that not either of the implications p(x, y) = 0 ⇔ x = y necessarily holds and p is

nonsymmetric in general. It is well-known that the metric d is a w-distance and any w-

distance is a τ-function, but the converse is not true; see [5,19].

The following Lemma is essentially proved in [19]. See also [5,8,20,22].
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Lemma 2.1. [5,8,19,20,22] Let (X,d) be a metric space and p: X × X ® [0, ∞) be any

function. Then, the following hold:

(a) If p satisfies (w2), then p satisfies (τ2);

(b) If p satisfies (w1) and (w3), then p satisfies (τ3);

(c) Assume that p satisfies (τ3). If {xn} is a sequence in X with limn ®∞ sup{p(xn,

xm): m >n} = 0, then {xn} is a Cauchy sequence in X.

Let (X, d) be a metric space and p: X × X ® [0, ∞) a τ-function. For each x Î X and

A ⊆ X, let

d(x,A) = inf
y∈A

d(x, y).

Recall that a selfmap T: X ® X is said to be

(a) Kannan’s type [2,5,16] if there exists γ ∈ [0, 12 ) , such that d(Tx, Ty) ≤ g{d(x,

Tx)+d(y, Ty)} for all x, y Î X;

(b) Chatterjea’s type [3,5] if there exists γ ∈ [0, 12 ) , such that d(Tx, Ty) ≤ g{d(x, Ty)

+ d(y, Tx)} for all x, y Î X.

Lemma 2.2. [5,9,21,22] Let A be a closed subset of a metric space (X, d) and p: X ×

X ® [0, ∞) be any function. Suppose that p satisfies (τ3) and there exists u Î X such

that p(u, u) = 0. Then, p(u, A) = 0 if and only if u Î A.

Recently, Du [5,21] first has introduced the concepts of τ0-functions and τ0-metrics

as follows.

Definition 2.1. [5,9,21,22] Let (X, d) be a metric space. A function p: X × X ® [0,

∞) is called a τ0-function if it is a τ-function on X with p(x, x) = 0 for all x Î X.

Remark 2.1. If p is a τ0-function then, from (τ4), p(x, y) = 0 if and only if x = y.

Example 2.1. [5] Let X = ℝ with the metric d(x, y) = |x —y| and 0 <a <b. Define the

function p: X × X ® [0, ∞) by

p(x, y) = max{a(y − x), b(x − y)}.

Then, p is nonsymmetric, and hence, p is not a metric. It is easy to see that p is a τ0-

function.

Definition 2.2. [5,9,21,22] Let (X, d) be a metric space and p be a τ0-function (resp.

w0-distance). For any A,B ∈ CB (X) , define a function Dp : CB(X) × CB(X) → [0,∞)

by

Dp(A,B) = max{δp(A,B), δp(B,A)},

where δp(A, B) = supx Î A p(x, B) and δp(B, A) = supx Î B p(x, A), then Dp is said to

be the τ0-metric (resp. w0-metric) on CB(X) induced by p.

Clearly, any Hausdorff metric is a τ0-metric, but the reverse is not true. It is well-

known that every τ0-metric Dp is a metric on CB(X) ; for more detail, see [5,9,21,22].

Lemma 2.3. Let (X,d) be a metric space, T : X → C(X) be a multivalued map and

{zn} be a sequence in X satisfying zn +1 Î Tzn, n Î N, and {zn} converge to v in X.
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Then, the following statements hold.

(a) If T is closed (that is, GrT = {(x, y) Î X × X: y Î Tx}, the graph of T, is closed

in X × X), then F(T) �= ∅ .
(b) Let p be a function satisfying (τ3) and p(v, v) = 0. If limn ®∞ p(zn, zn +1) = 0 and

the map f: X ® [0, ∞) defined by f(x) = p(x, Tx) is l.s.c., then F(T) �= ∅ .
(c) If the map g: X ® [0, ∞) defined by g(x) = d(x, Tx) is l.s.c., then F(T) �= ∅ .
(d) Let p be a function satisfying (τ3). If limn ®∞ p(zn, Tv) = 0 and lim n ®∞ sup{p

(zn, zm): m >n} = 0, then F(T) �= ∅ .

Proof.

(a) Since T is closed, zn +1 Î Tzn, n Î N and zn ® v as n ® ∞, we have v Î Tv. So

F(T) �= ∅ .
(b) Since zn ® v as n ® ∞, by the lower semicontinuity of f, we obtain

p(v,Tv) = f (v) ≤ lim inf
m→∞ p (zn,Tzn) ≤ lim

n→∞ p (zn, zn+1) = 0,

which implies p(v, Tv) = 0. By Lemma 2.2, we get v ∈ F(T).

(c) Since {zn} is convergent in X, limn ®∞ d(zn, zn+1) = 0. Since

d(v,Tv) = g(v) ≤ lim inf
m→∞ d(zn,Tzn) ≤ lim

n→∞ d(zn, zn+1) = 0,

we have d(v,Tv) = 0 and hence v ∈ F(T).

(d) Since limn ®∞ sup{p(zn, zm): m >n} = 0 and limn ®∞ p(zn, Tv) = 0, there exists

{an} ⊂ {zn} with limn ®∞ sup{p(an, am): m >n} = 0 and {bn} ⊂ Tv such that limn ®∞

p(an, bn) = 0. By (τ3), limn ®∞ d(an, bn) = 0. Since an ® v as n ® ∞ and d(bn,v) ≤

d(bn,an) + d(an,v), it implies bn ® v as n ® ∞. By the closedness of Tv, we have v

Î Tv or v ∈ F(T). □

In this paper, we first introduce the concepts of capable maps as follows.

Definition 2.3. Let (X, d) be a metric space and T : X → C(X) be a multivalued

map. We say that T is capable if T satisfies one of the following conditions:

(D1) T is closed;

(D2) the map f: X ® [0, ∞) defined by f(x) = p(x, Tx) is l.s.c;

(D3) the map g: X ® [0, ∞) defined by g(x) = d(x, Tx) is l.s.c;

(D4) for each sequence {xn} in X with xn +1 Î Txn, n Î N and limn ®∞ xn = v, we

have limn ®∞ p(xn, Tv) = 0;

(D5) inf{p(x, z) + p(x,Tx) : x Î X} > 0 for every z /∈ F(T) .

Remark 2.2.

(1) Let (X, ||⋅||) be a Banach space. If T : X → C(X) is u.s.c, then T is a capable

map since it is closed (for more detail, see [5,23]).
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(2) Let (X, d) be a metric space and T : X → C(X) be u.s.c. Since the function f: X

® [0, ∞) defined by f(x) = d(x,Tx) is l.s.c. (see, e.g., [24, Lemma 3.1] and [25,

Lemma 2]), T is a capable map.

(3) Let (X, d) be a metric space and T : X → CB(X) be a generalized multivalued

(�, L)-weak contraction [11], that is, there exists an MT -function � and L ≥ 0

such that

H(Tx,Ty) ≤ ϕ(d(x, y))d(x, y) + Ld(y,Tx) for all x, y ∈ X.

Then, T is a capable map. Indeed, let {xn} in X with xn +1 Î Txn, n Î N and limn ®∞

xn = v.

Then

lim
n→∞ d(xn+1,Tv) ≤ lim

n→∞H(Txn,Tv)

≤ lim
n→∞{ϕ(d(xn, v))d(xn, v) + Ld(v, xn+1)} = 0,

which means that T satisfies (D4).

(4) Let (X, d) be a metric space and T: X ® X is a single-valued map of Kannan’s

type, then T is a capable map since (D5) holds; for more detail, see [[16], Corollary

3].

3. Fixed point theorems of generalized Chatterjea’s type and others
Below, unless otherwise specified, let (X, d) be a complete metric space, p be a τ0-func-

tion and Dp be a τ0-metric on CB(X) induced by p.

In this section, we will establish some fixed point theorems of generalized Chatter-

jea’s type.

Theorem 3.1. Let T : X → C(X) be a capable map. Suppose that there exists an

MT -function �: [0, ∞) ® [0,1) such that for each x Î X,

2p(y,Ty) ≤ ϕ(p(x, y))p(x,Ty) for all y ∈ Tx. (3:1)

Then F(T) �= ∅ .
Proof. Let �: [0, ∞) ® [0,1) be defined by κ(t) = 1+ϕ(t)

2
. Then

0 ≤ ϕ(t) < κ(t) < 1 for all t ∈ [0,∞).

Let x1 Î X and x2 Î Tx1. If x1 = x2, then x1 ∈ F(T) and we are done. Otherwise, if

x2 ≠ x1, by Remark 2.1, we have p(x1,x2) > 0. If x1 Î Tx2, then it follows from (3.1) that

2p(x2,Tx2) ≤ ϕ(p(x1, x2))p(x1,Tx2) = 0,

which implies p(x2,Tx2) = 0. Since p is a τ0-function and Tx2 is closed in X, by

Lemma 2.2, x2 Î Tx2 and x2 ∈ F(T) . If x1 ∉ Tx2, then p(x1,Tx2) > 0 and, by (3.1),

there exists x3 Î Tx2 such that

2p(x2, x3) < κ(p(x1, x2))p(x1, x3)

≤ κ(p(x1, x2))[p(x1, x2) + p(x2, x3)].
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By induction, we can obtain a sequence {xn} in X satisfying xn +1 Î Txn, n Î N, p(xn,

xn +1) > 0

and

2p(xn+1, xn+2) < κ(p(xn, xn+1))[p(xn, xn+1) + p(xn+1, xn+2)] (3:2)

By (3.2), we get

p(xn+1, xn+2) <
κ(p(xn, xn+1))

2 − κ(p(xn, xn+1))
p(xn, xn+1) (3:3)

Since 0 <�(t) < 1 for all t ∈ [0,∞), κ(p(xn,xn+1))
2−κ(p(xn,xn+1))

∈ (0, 1) for all n Î N. So the

sequence {p(xn, xn +1)} is strictly decreasing in [0, ∞). Since � is an MT -function, by

applying (g) of Theorem D, we have

0 ≤ sup
n∈N

ϕ(p(xn, xn+1)) < 1.

Hence, it follows that

0 < sup
n∈N

κ(p(xn, xn+1)) =
1
2

[
1 + sup

n∈N
ϕ(p(xn, xn+1))

]
< 1.

Let l:= supn ÎN �(p(xn, xn +1)) and take c := λ
2−λ

. Then l, c Î (0,1). We claim that

{xn} is a Cauchy sequence in X. Indeed, by (3.3), we have

p(xn+1, xn+2) <
κ(p(xn, xn+1))

2 − κ(p(xn, xn+1))
p(xn, xn+1) ≤ cp(xn, xn+1). (3:4)

It implies from (3.4) that

p(xn+1, xn+2) < cp(xn, xn+1) < · · · < cnp(x1, x2) for each n ∈ N.

We have limn ®∞ sup{p(xn,xm): m >n} = 0. Indeed, let αn = cn−1

1−c p(x1, x2), n ∈ Z . For

m, n Î N with m >n, we have

p(xn, xm) ≤
m−1∑
j=n

p(xj, xj+1) < αn. (3:5)

Since c Î (0,1), limn ®∞ an = 0 and, by (3.5), we get

lim
n→∞ sup{p(xn, xm) : m > n} = 0. (3:6)

Applying (c) of Lemma 2.1, {xn} is a Cauchy sequence in X. By the completeness of

X, there exists v Î X such that xn ® v as n ® ∞. From (τ2) and (3.5), we have

p(xn, v) ≤ αn for all n ∈ N. (3:7)

Now, we verify that v ∈ F(T). Applying Lemma 2.3, we know that v ∈ F(T) if T

satisfies one of the conditions (D1), (D2), (D3) and (D4).

Finally, assume (D5) holds. On the contrary, suppose that v ∉ Tv. Then, by (3.5) and

(3.7), we have
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0 < inf
x∈X

{p(x, v) + p(x,Tx)}
≤ inf

n∈N
{p(xn, v) + p(xn,Txn)}

≤ inf
n∈N

{p(xn, v) + p(xn, xn+1)}
≤ lim

n→∞ 2αn

= 0,

a contradiction. Therefore v ∈ F(T). The proof is completed. □
Here, we give a simple example illustrating Theorem 3.1.

Example 3.1. Let X = [0,1] with the metric d(x,y) = |x — y| for x,y Î X. Then, (X,d)

is a complete metric space. Let T : X → C(X) be defined by

T(x) =

⎧⎪⎪⎨
⎪⎪⎩

{0, 1}, if x = 0,
{ 12x3, 1}, if x ∈ (0, 12 ],
{0, 12x3}, if x ∈ ( 12 , 1),

{1}, if x = 1.

and �: [0, ∞) ® [0,1) be defined by

ϕ(t) =
{
2t, if t ∈ [0, 12 ),
0, if t ∈ [ 12 ,∞).

Then, � is an MT -function and F(T) = {0, 1} �= 0 .

On the other hand, one can easily see that

d(x,Tx) =
{
x − 1

2x
3, if x ∈ [0, 1),

0, if x = 1.

So f(x): = d(x,Tx) is l.s.c., and hence, T is a capable map. Moreover, it is not hard to

verify that for each x Î X,

2p(y,Ty) ≤ ϕ(p(x, y))p(x,Ty) for all y ∈ Tx.

Therefore, all the assumptions of Theorem 3.1 are satisfied, and we also show that

F(T) �= ∅ from Theorem 3.1.

Theorem 3.2. Let T : X → C(X) be a capable map and �: [0, ∞) ® [0,1) be an

MT -function. Let k Î ℝ with k ≥ 2. Suppose that for each x Î X

kp(y,Ty) ≤ ϕ(p(x, y))p(x,Ty) for all y ∈ Tx. (3:9)

Then F(T) �= ∅ .
Proof. Since k ≥ 2, (3.9) implies (3.1). Therefore, the conclusion follows from Theo-

rem 3.1. □
The following result is immediate from the definition of Dp and Theorem 3.1.

Theorem 3.3. Let T : X → CB(X) be a capable map. Suppose that there exists an

MT -function �: [0, ∞) ® [0,1) such that for each x Î X,

2Dp(Tx,Ty) ≤ ϕ(p(x, y))p(x,Ty) for all y ∈ Tx.

Then F(T) �= ∅ .
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Theorem 3.4. Let T : X → CB(X) be a capable map. Suppose that there exist two

MT -functions �, τ: [0, ∞) ® [0,1) such that

2Dp(Tx,Ty) ≤ ϕ(p(x, y))p(x,Ty) + τ (p(x, y))p(y,Tx) for all x, y ∈ X.

Then F(T) �= ∅ .
Proof. For each x Î X, let y Î Tx be arbitrary. Since p(y,Tx) = 0, we have

2Dp(Tx,Ty) ≤ ϕ(p(x, y))p(x,Ty) . Therefore, the conclusion follows from Theorem 3.3. □
Theorem 3.5. Let T : X → CB(X) be a capable map. Suppose that there exists an

MT -function �: [0, ∞) ® [0,1) such that

2Dp(Tx,Ty) ≤ ϕ(p(x, y))(p(x,Ty) + p(y,Tx)) for all x, y ∈ X. (3:10)

Then F(T) �= ∅ .
Proof. Let τ = �. Then, the conclusion follows from Theorem 3.4. □
Theorem 3.6. Let T: X ® X be a selfmap. Suppose that there exists an MT -func-

tion �: [0, ∞) ® [0,1) such that

2d(Tx,Ty) ≤ ϕ(d(x, y))(d(x,Ty) + d(y,Tx)) for all x, y ∈ X. (3:11)

Then, T has a unique fixed point in X.

Proof. Let p ≡ d. Then, (3.11) and (3.10) are identical. We prove that T is a capable

map. In fact, it suffices to show that (D5) holds. Assume that there exists w Î X with

w ≠ Tw and inf {d(x,w) + d(x,Tx): x Î X} = 0. Then, there exists a sequence {xn} in X

such that limn ®∞(d(xn, w) + d(xn,Txn)) = 0. It follows that d(xn,w) ® 0 and d(xn,Txn)

® 0 and hence d(w,Txn) ® 0 or Txn ® w as n ® ∞. By hypothesis, we have

2d(Txn,Tw) ≤ ϕ(d(xn,w))((d(xn,Tw) + d(w,Txn)) (3:12)

for all n Î N. Letting n ® ∞ in (3.12), since � is an MT -function and d(xn,w) ® 0,

we have d(w,Tw) <d(w,Tw), which is a contradiction. So (D5) holds and hence T is a

capable map. Applying Theorem 3.5, F(T) �= ∅ . Suppose that there exists u, v ∈ F(T)

with u ≠ v. Then, by (3.11), we have

2d(u, v) = 2d(Tu,Tv) ≤ ϕ(d(u, v))((d(u,Tv) + d(v,Tu)) < 2d(u, v),

a contradiction. Hence, F(T) is a singleton set. □
Applying Theorem 3.6, we obtain the following primitive Chatterjea’s fixed point the-

orem [3].

Corollary 3.1. [3] Let T: X ® X be a selfmap. Suppose that there exists γ ∈ [0, 12 )

such that

d(Tx,Ty) ≤ γ (d(x,Ty) + d(y,Tx)) for all x, y ∈ X. (3:13)

Then, T has a unique fixed point in X.

Proof. Define �: [0, ∞) ® [0,1) by �(t) = 2g. Then, � is an MT -function. So (3.13)

implies (3.11), and the conclusion is immediate from Theorem 3.6. □
Corollary 3.2. Let T : X → CB(X) be a capable map. Suppose that there exist

α,β ∈ [0, 12 ) such that
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Dp(Tx,Ty) ≤ αp(x,Ty) + βp(y,Tx) for all x, y ∈ X. (3:14)

Then F(T) �= ∅ .
Proof. Let �, τ: [0, ∞) ® [0,1) be defined by �(t) = 2a and τ(t) = 2b for all t Î [0,

∞). Then, � and τ are MT -functions, and the conclusion follows from Theorem 3.4. □
The following conclusion is immediate from Corollary 3.2 with a = b = g.
Corollary 3.3. Let T : X → CB(X) be a capable map. Suppose that there exists

γ ∈ [0, 12 ) such that

Dp(Tx,Ty) ≤ γ (p(x,Ty) + p(y,Tx)) for all x, y ∈ X. (3:15)

Then F(T) �= ∅ .
Remark 3.1.

(a) Corollary 3.2 and Corollary 3.3 are equivalent. Indeed, it suffices to prove that

Corollary 3.2 implies Corollary 3.3. Suppose all assumptions of Corollary 3.2 are

satisfied. Let g:= max {a, b}. Then γ ∈ [0, 12 ) and (3.14) implies (3.15), and the

conclusion of Corollary 3.3 follows from Corollary 3.2.

(b) Theorems 3.1-3.4 and Corollaries 3.1 and 3.2 all generalize and improve [5,

Theorem 3.4] and the primitive Chatterjea’s fixed point theorem [3].

4. Fixed point theorems of generalized Kannan’s type and others
The following result is given essentially in [5, Theorem 2.1].

Theorem 4.1. Let T : X → CB(X) be a capable map. Suppose that there exists an

MT -function �: [0, ∞) ® [0,1) such that for each x Î X,

p(y,Ty) ≤ ϕ(p(x, y))p(x, y) for all y ∈ Tx. (4:1)

Then F(T) �= ∅ .
Applying Theorem 4.1, we establish the following new fixed point theorem.

Theorem 4.2. Let T : X → CB(X) be a capable map. Suppose that there exist two

MT -functions �, τ: [0, ∞) ® [0,1) such that for each x Î X,

2Dp(Tx,Ty) ≤ ϕ(p(x, y))p(x,Tx) + τ (p(x, y))p(y,Ty) for all y ∈ Tx, (4:2)

Then F(T) �= ∅ .
Proof. Notice that for each x Î X, if y Î Tx, then (4.2) implies

2p(y,Ty) ≤ 2Dp(Tx,Ty) ≤ ϕ(p(x, y))p(x,Tx) + τ (p(x, y))p(y,Ty)

and hence

p(y,Ty) ≤ ϕ(p(x, y))
2 − τ (p(x, y))

p(x,Tx) ≤ ϕ(p(x, y))p(x, y).

Applying Theorem 4.1, we can get the thesis. □
The following conclusion is immediate from Theorem 4.2.

Theorem 4.3. Let T : X → CB(X) be a capable map. Suppose that there exist two

MT -functions �, τ: [0, ∞) ® [0,1) such that
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2Dp(Tx,Ty) ≤ ϕ(p(x, y))p(x,Tx) + τ (p(x, y))p(y,Ty) for all x, y ∈ X.

Then F(T) �= ∅ .
Theorem 4.4. Let T : X → CB(X) be a capable map. Suppose that there exists an

MT -function �: [0, ∞) ® [0,1) such that for each x Î X,

2Dp(Tx,Ty) ≤ ϕ(p(x, y))(p(x,Tx) + p(y,Ty)) for all y ∈ Tx.

Then F(T) �= ∅ .
Theorem 4.5. Let T : X → CB(X) be a capable map. Suppose that there exists an

MT -function �: [0, ∞) ® [0,1) such that

2Dp(Tx,Ty) ≤ ϕ(p(x, y))(p(x,Tx) + p(y,Ty)) for all x, y ∈ X. (4:3)

Then F(T) �= ∅ .
Theorem 4.6. Let T: X ® X be a selfmap. Suppose that there exists an MT -func-

tion �: [0, ∞) ® [0,1) such that

2d(Tx,Ty) ≤ ϕ(d(x, y))(d(x,Tx) + d(y,Ty)) for all x, y ∈ X. (4:4)

Then, T has a unique fixed point in X.

Proof. Let p ≡ d. Then, (4.3) and (4.4) are identical. We prove that T is a capable

map. In fact, it suffices to show that (D5) holds. Assume that there exists w Î X with

w ≠ Tw and inf {d(x, w) + d(x,Tx): x Î X} = 0. Then, there exists a sequence {xn} in X

such that limn®∞ (d(xn, w) + d(xn,Txn)) = 0. It follows that d(xn,w) ® 0 and d(xn,Txn)

® 0 and hence d(w,Txn) ® 0 or Txn ® w as n ® ∞. By hypothesis, we have

2d(Txn,Tw) ≤ ϕ(d(xn,w))((d(xn,Txn) + d(w,Tw)) (4:5)

for all n Î N. Since d(xn,w) ® 0 as n ® ∞ and � is an MT -function, limn ®∞ �(d

(xn,w)) < 1. Letting n ® ∞ in (4.5), since Txn ® w and d(xn,Txn) ® 0 as n ® ∞, we

have 2d(w,Tw) <d(w, Tw), which is a contradiction. So (D5) holds and hence T is a

capable map. Applying Theorem 4.5, F(T) �= ∅ . Suppose that there exists u, v ∈ F(T)

with u ≠ v. Then, by (4.4), we have

0 < 2d(u, v) = 2d(Tu,Tv) ≤ ϕ(d(u, v))((d(u,Tu) + d(v,Tv)) = 0,

a contradiction. Hence, F(T) is a singleton set. □
Applying Theorem 4.6, we obtain the primitive Kannan’s fixed point theorem [2].

Corollary 4.1. Let T: X ® X be a selfmap. Suppose that there exists γ ∈ [0, 12 ) such

that

d(Tx,Ty) ≤ γ (d(x,Tx) + d(y,Ty)) for all x, y ∈ X.

Then F(T) �= ∅ .
Corollary 4.2. Let T: X ® X be a selfmap. Suppose that there exist α,β ∈ [0, 12 )

such that

d(Tx,Ty) ≤ αd(x,Tx) + βd(y,Ty) for all x, y ∈ X.

Then F(T) �= ∅ .
Remark 4.1. Corollary 4.1 and Corollary 4.2 are indeed equivalent.
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Corollary 4.3. Let T : X → CB(X) be a capable map. Suppose that there exist

α,β ∈ [0, 12 ) such that

Dp(Tx,Ty) ≤ αp(x,Tx) + βp(y,Ty) for all x, y ∈ X.

Then F(T) �= ∅ .
Corollary 4.4. Let T : X → CB(X) be a capable map. Suppose that there exists

γ ∈ [0, 12 ) such that

Dp(Tx,Ty) ≤ γ (p(x,Tx) + p(y,Ty)) for all x, y ∈ X.

Then F(T) �= ∅ .
Remark 4.2.

(a) Corollary 4.3 and Corollary 4.4 are indeed equivalent.

(b) Theorems 4.1-4.6 and Corollaries 4.1-4.4 all generalize and improve [5, Theo-

rem 2.6] and the primitive Kannan’s fixed point theorem [2].
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