A generalised fixed point theorem of Presic type in cone metric spaces and application to Markov process

Reny George ${ }^{1,2^{*}}$, KP Reshma ${ }^{2}$ and R Rajagopalan ${ }^{1}$

* Correspondence: renygeorge02@yahoo.com ${ }^{1}$ Department of Mathematics, College of Science, Al-Kharj University, Al-Kharj, Kingdom of Saudi Arabia
Full list of author information is available at the end of the article

Abstract

A generalised common fixed point theorem of Presic type for two mappings f: $X \rightarrow$ X and $T: X^{k} \rightarrow X$ in a cone metric space is proved. Our result generalises many wellknown results. 2000 Mathematics Subject Classification 47H10

Keywords: Coincidence and common fixed points, cone metric space; weakly compatible

1. Introduction

Considering the convergence of certain sequences, Presic [1] proved the following:
Theorem 1.1. Let (X, d) be a metric space, k a positive integer, $T: X^{k} \rightarrow X$ be a mapping satisfying the following condition:

$$
\begin{equation*}
d\left(T\left(x_{1}, x_{2}, \ldots, x_{k}\right), T\left(x_{2}, x_{3}, \ldots, x_{k+1}\right)\right) \leq q_{1} \cdot d\left(x_{1}, x_{2}\right)+q_{2} \cdot d\left(x_{2}, x_{3}\right)+\cdots+q_{k} \cdot d\left(x_{k}, x_{k+1}\right) \tag{1.1}
\end{equation*}
$$

where $x_{1}, x_{2}, \ldots, x_{k+1}$ are arbitrary elements in X and $q_{1}, q_{2}, \ldots, q_{k}$ are non-negative constants such that $q_{1}+q_{2}+\cdots+q_{k}<1$. Then, there exists some $x \in X$ such that $x=$ $T(x, x, \ldots, x)$. Moreover if $x_{1}, x_{2}, \ldots, x_{k}$ are arbitrary points in X and for $n \in N x_{n+k}=T$ $\left(x_{n}, x_{n+1}, \ldots, x_{n+k-1}\right)$, then the sequence $<x_{n}>$ is convergent and $\lim x_{n}=T\left(\lim x_{n}, \lim x_{n}\right.$, ..., $\lim x_{n}$).
Note that for $k=1$ the above theorem reduces to the well-known Banach Contraction Principle. Ciric and Presic [2] generalising the above theorem proved the following:

Theorem 1.2. Let (X, d) be a metric space, k a positive integer, $T: X^{k} \rightarrow X$ be a mapping satisfying the following condition:

$$
\begin{equation*}
d\left(T\left(x_{1}, x_{2}, \ldots, x_{k}\right), T\left(x_{2}, x_{3}, \ldots, x_{k+1}\right)\right) \leq \lambda \cdot \max \left\{d\left(x_{1}, x_{2}\right), d\left(x_{2}, x_{3}\right), \ldots d\left(x_{k}, x_{k+1}\right)\right. \tag{1.2}
\end{equation*}
$$

where $x_{1}, x_{2}, \ldots, x_{k+1}$ are arbitrary elements in X and $\lambda \in(0,1)$. Then, there exists some $x \in X$ such that $x=T(x, x, \ldots, x)$. Moreover if $x_{1}, x_{2}, \ldots, x_{k}$ are arbitrary points in X and for $n \in N x_{n+k}=T\left(x_{n}, x_{n+1}, \ldots, x_{n+k-1}\right)$, then the sequence $\left\langle x_{n}>\right.$ is convergent and $\lim x_{n}=T\left(\lim x_{n}, \lim x_{n}, \ldots, \lim x_{n}\right)$. If in addition T satisfies $D(T(u, u, \ldots u), T(v, v, \ldots$ $v))<d(u, v)$, for all $u, v \in X$ then x is the unique point satisfying $x=T(x, x, \ldots, x)$.

Huang and Zang [3] generalising the notion of metric space by replacing the set of real numbers by ordered normed spaces, defined a cone metric space and proved some fixed point theorems of contractive mappings defined on these spaces. Rezapour and Hamlbarani [4], omitting the assumption of normality, obtained generalisations of results of [3]. In [5], Di Bari and Vetro obtained results on points of coincidence and common fixed points in non-normal cone metric spaces. Further results on fixed point theorems in such spaces were obtained by several authors, see [5-15].
The purpose of the present paper is to extend and generalise the above Theorems 1.1 and 1.2 for two mappings in non-normal cone metric spaces and by removing the requirement of $D(T(u, u, \ldots u), T(v, v, \ldots v))<d(u, v)$, for all $u, v \in X$ for uniqueness of the fixed point, which in turn will extend and generalise the results of $[3,4]$.

2. Preliminaries

Let E be a real Banach space and P a subset of E. Then, P is called a cone if
(i) P is closed, non-empty, and satisfies $P \neq\{0\}$,
(ii) $a x+b y \in P$ for all $x, y \in P$ and non-negative real numbers a, b
(iii) $x \in P$ and $-x \in P \Rightarrow x=0$, i.e. $P \cap(-P)=0$

Given a cone $P \subset E$, we define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y-x \in P$. We shall write $x<y$ if $x \leq y$ and $x \neq y$, and $x \ll y$ if $y-x \in \operatorname{int} P$, where $\operatorname{int} P$ denote the interior of P. The cone P is called normal if there is a number $K>0$ such that for all $x, y \in E, 0 \leq x \leq y$ implies $\|x\| \leq K\|y\|$.

Definition 2.1. [3]Let X be a non empty set. Suppose that the mapping d : $X \times X \rightarrow E$ satisfies:

$$
\begin{aligned}
& \left(d_{1}\right) 0 \leq d(x, y) \text { for all } x, y \in X \text { and } d(x, y)=0 \text { if and only if } x=y \\
& \left(d_{2}\right) d(x, y)=d(y, x) \text { for all } x, y \in X \\
& \left(d_{3}\right) d(x, y) \leq d(x, z)+d(z, y) \text { for all } x, y, z \in X
\end{aligned}
$$

Then, d is called a conemetric on X and (X, d) is called a conemetricspace.
Definition 2.2. [3]Let (X, d) be a cone metric space. The sequence $\left\{x_{n}\right\}$ in X is said to $b e$:
(a) A convergent sequence if for every $\mathrm{c} \in E$ with $0 \ll c$, there is $n_{0} \in N$ such that for all $n \geq n_{0}, d\left(x_{n}, x\right) \ll c$ for some $x \in X$. We denote this by $\lim _{n \rightarrow \infty} x_{n}=x$.
(b) A Cauchy sequence if for all $c \in E$ with $0 \ll c$, there is no $\in N$ such that d (x_{m}, $\left.x_{n}\right) \ll c$, for all $m, n \geq n_{0}$.
(c) A cone metric space (X, d) is said to be complete if every Cauchy sequence in X is convergent in X .
(d) A self-map T on X is said to be continuous if $\lim _{n \rightarrow \infty} x_{n}=x$ implies that $\lim _{n \rightarrow \infty}$ $T\left(x_{n}\right)=T(x)$, for every sequence $\left\{x_{n}\right\}$ in X .
Definition 2.3. Let (X, d) be a metric space, k a positive integer, $T: X^{k} \rightarrow X$ and $f: X$ $\rightarrow X$ be mappings.
(a) An element $x \in \mathrm{X}$ said to be a coincidence point of f and T if and only if $f(x)=$ $T(x, x, \ldots, x)$. If $x=f(x)=T(x, x, \ldots, x)$, then we say that x; is a common fixed point of f and T. If $w=f(x)=T(x, x, \ldots, x)$, then w is called a point of coincidence of f and T.
(b) Mappings f and T are said to be commuting if and only if $f(T(x, x, \ldots x))=T(f x$, $f x, \ldots f x)$ for all $x \in X$.
(c) Mappings f and T are said to be weakly compatible if and only if they commute at their coincidence points.
Remark 2.4. For $k=1$, the above definitions reduce to the usual definition of commuting and weakly compatible mappings in a metric space.

The set of coincidence points of f and T is denoted by $C(f, T)$.

3. Main results

Consider a function $\varphi: E^{k} \rightarrow \mathrm{E}$ such that
(a) φ is an increasing function, i.e $x_{1}<y_{1}, x_{2}<y_{2}, \ldots, x_{k}<y_{k}$ implies $\varphi\left(x_{1}, x_{2}, \ldots, x_{k}\right)<\varphi$ $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$.
(b) $\varphi(t, t, t, \ldots) \leq t$, for all $t \in X$
(c) φ is continuous in all variables.

Now, we present our main results as follows:
Theorem 3.1. Let (X, d) be a cone metric space with solid cone P contained in a real Banach space E. For any positive integer k, let $T: X^{k} \rightarrow X$ and $f: X \rightarrow X$ be mappings satisfying the following conditions:

$$
\begin{align*}
& T\left(X^{k}\right) \subseteq f(X) \tag{3.1}\\
& d\left(T\left(x_{1}, x_{2}, \ldots, x_{k}\right), T\left(x_{2}, x_{3}, \ldots, x_{k+1}\right)\right) \leq \lambda \phi\left(d\left(f x_{1}, f x_{2}\right), d\left(f x_{2}, f x_{3}\right), \ldots,\left(f x_{k}, f x_{k+1}\right)\right) \tag{3.2}
\end{align*}
$$

where $x_{1}, x_{2}, \ldots, x_{k+1}$ are arbitrary elements in X and $\lambda \in\left(0, \frac{1}{k}\right)$ and

$$
\begin{equation*}
f(X) \text { is complete } \tag{3.3}
\end{equation*}
$$

there exist elements $x_{1}, x_{2}, \ldots, x_{k}$ in X such that

$$
\begin{equation*}
R=\max \left(\frac{d\left(f x_{1}, f x_{2}\right)}{\theta}, \frac{d\left(f x_{2}, f x_{3}\right)}{\theta^{2}}, \ldots, \frac{d\left(f x_{k}, T\left(x_{1}, x_{2}, \ldots, x_{k}\right)\right)}{\theta^{k}}\right) \text { exist in } E \tag{3.4}
\end{equation*}
$$

where $\theta=\lambda^{\frac{1}{k}}$. Then, f and T have a coincidence point, i.e. $C(f, T) \neq \varnothing$.
Proof. By (3.1) and (3.4) we define sequence $<y_{n}>\operatorname{in} f(X)$ as $y_{n}=f x_{n}$ for $n=1,2, \ldots, k$ and $y_{n+k}=f\left(x_{n+k}\right)=T\left(x_{n}, x_{n+1}, \ldots, x_{n+k-1}\right), n=1,2, \ldots$ Let $\alpha_{n}=d\left(y_{n}, y_{n+1}\right)$. By the method of mathematical induction, we will now prove that

$$
\begin{equation*}
\alpha_{n} \leq R . \theta^{n} \tag{3.5}
\end{equation*}
$$

for all n. Clearly by the definition of R, (3.5) is true for $n=1,2, \ldots, k$. Let the k inequalities $\alpha_{n} \leq R \theta^{n}, \alpha_{n+1} \leq R \theta^{n+1}, \ldots, \alpha_{n+k-1} \leq R \theta^{n+k-1}$ be the induction hypothesis. Then, we have

$$
\begin{aligned}
& \alpha_{n+k}=d\left(y_{n+k}, y_{n+k+1}\right) \\
& =d\left(T\left(x_{n}, x_{n+1}, \ldots, x_{n+k-1}\right), T\left(x_{n+1}, x_{n+2}, \ldots, x_{n+k}\right)\right) \\
& \leq \lambda \phi\left(d\left(f x_{n}, f x_{n+1}\right), d\left(f x_{n+1}, f x_{n+2}\right), \ldots, d\left(f x_{n+k-1}, f x_{n+k}\right)\right) \\
& =\lambda \phi\left(\alpha_{n}, \alpha_{n+1}, \ldots, \alpha_{n+k-1}\right) \\
& \leq \lambda \phi\left(R \theta^{n}, R \theta^{n+1}, \ldots, R \cdot \theta^{n+k-1}\right) \\
& \leq \lambda \phi\left(R \theta^{n}, R \theta^{n}, \ldots, R \theta^{n}\right) \leq \lambda R \theta^{n}=R \cdot \theta^{n+k} .
\end{aligned}
$$

Thus inductive proof of (3.5) is complete. Now for $n, p \in N$, we have

$$
\begin{aligned}
& d\left(y_{n}, y_{n+p}\right) \leq d\left(y_{n}, y_{n+1}\right)+d\left(y_{n+1}, y_{n+2}\right)+\cdots+d\left(y_{n+p-1}, y_{n+p}\right) \\
& \leq R \theta^{n}+R \theta^{n+1}+\cdots+R \theta^{n+p-1} \\
& \leq R \theta^{n}\left(1+\theta+\theta^{2}+\cdots\right) \\
& =\frac{R \theta^{n}}{1-\theta}
\end{aligned}
$$

Let $0 \ll c$ be given. Choose $\delta>0$ such that $c+N_{\delta}(0) \subseteq P$ where $N_{\delta}(0)=\{y \in E ; \| y$ $\|<\delta\}$. Also choose a natural number N_{1} such that $\frac{R \theta^{n}}{1-\theta} \in N_{\delta}(0)$, for all $n>N_{1}$. Then, $\frac{R \theta^{n}}{1-\theta} \ll c$ for all $n \geq N_{1}$. Thus, $d\left(y_{n}, y_{n+p}\right) \leq \frac{R \theta^{n}}{1-\theta} \ll c$ for all $n \geq N_{1}$. Hence, sequence $<y_{n}>$ is a Cauchy sequence in $f(X)$, and since $f(\mathrm{X})$ is complete, there exists $v, u \in X$ such that $\lim _{n \rightarrow \infty} y_{n}=v=f(u)$. Choose a natural number N_{2} such that $d\left(y_{n}, y_{n+1}\right) \ll \frac{c}{\lambda(k+1)}$ and $d\left(x, y_{n+1}\right) \ll \frac{c}{k+1}$ for all $n \geq N_{2}$.

Then for all $n \geq N_{2}$

$$
\begin{aligned}
& d(f u, T(u, u, \ldots u)) \leq d\left(f u, y_{n+k}\right)+d\left(y_{n+k}, T(u, u, \ldots u)\right) \\
& =d\left(f u, y_{n+k}\right)+d\left(T\left(x_{n}, x_{n+1}, \ldots x_{n+k-1}\right), T(u, u, \ldots u)\right) \\
& \leq d\left(f u, y_{n+k}\right)+d\left(T(u, u, \ldots u), T\left(u, u, \ldots x_{n}\right)\right)+d\left(T\left(u, u, \ldots x_{n}\right), T\left(u, u, \ldots x_{n}, x_{n+1}\right)\right) \\
& +\cdots d\left(T\left(u, x_{n}, \ldots x_{n+k-2}\right), T\left(x_{n}, x_{n+1} \ldots x_{n+k-1}\right)\right. \\
& \leq d\left(f u, y_{n+k}\right)+\lambda \phi\left\{d(f u, f u), d(f u, f u), \ldots, d\left(f u, f x_{n}\right)\right\} \\
& +\lambda \phi\left\{d(f u, f u), d(f u, f u), \ldots, d\left(f u, f x_{n}\right), d\left(f x_{n}, f x_{n+1}\right)\right\}+\cdots \\
& +\lambda \phi\left\{d\left(f u, f x_{n}\right), d\left(f x_{n}, f x_{n+1}\right), \ldots d\left(f x_{n+k-2}, f x_{n+k-1}\right)\right\} . \\
& =d\left(f u, y_{n+k}\right)+\lambda \phi\left(0,0, \ldots, d\left(f u, f x_{n}\right)\right) \\
& +\lambda \phi\left(0,0, \ldots, d\left(f u, f x_{n}\right), d\left(f x_{n}, f x_{n+1}\right)\right)+\cdots \\
& +\lambda \phi\left(d\left(f u, f x_{n}\right), d\left(f x_{n}, f x_{n+1}\right), \ldots d\left(f x_{n+k-2}, f x_{n+k-1}\right)\right) . \\
& \ll \frac{c}{k+1}+\lambda \phi\left(\frac{c}{\lambda(k+1)}, \frac{c}{\lambda(k+1)}, \ldots, \frac{c}{\lambda(k+1)}\right)+\lambda \phi\left(\frac{c}{\lambda(k+1)}, \frac{c}{\lambda(k+1)}, \ldots, \frac{c}{\lambda(k+1)}\right) \\
& +\cdots+\lambda \phi\left(\frac{c}{\lambda(k+1)}, \frac{c}{\lambda(k+1)}, \ldots, \frac{c}{\lambda(k+1)}\right) \\
& \ll \frac{c}{k+1}+\lambda \frac{c}{\lambda(k+1)} \ldots+\lambda \frac{c}{\lambda(k+1)}=c .
\end{aligned}
$$

Thus, $d(f u, T(u, u, \ldots u)) \ll \frac{c}{m}$ for all $m \geq 1$.
So, $\frac{c}{m}-d(f u, T(u, u, \ldots u)) \in P$ for all $m \geq 1$. Since $\frac{c}{m} \rightarrow 0$ as $m \rightarrow \infty$ and P is closed, $-d(f u, T(u, u, \ldots u)) \in P$, but $P \cap(-P)=/ 0 /$. Therefore, $d(f u, T(u, u, \ldots u))=0$. Thus, $f u$ $=T(u, u, u, \ldots, u)$, i.e. $C(f, T) \neq \varnothing$. \square

Theorem 3.2. Let (X, d) be a cone metric space with solid cone P contained in a real Banach space E. For any positive integer k, let $T: X^{k} \rightarrow X$ and $f: X \rightarrow X$ be mappings satisfying (3.1), (3.2), (3.3) and let there exist elements $x_{1}, x_{2}, \ldots x_{k}$ in X satisfying (3.4). If f and T are weakly compatible, then f and T have a unique common fixed point. Moreover if $x_{1}, x_{2}, \ldots, x_{k}$ are arbitrary points in X and for $n \in N, y_{n+k}=f\left(x_{n+k}\right)=T\left(x_{n}\right.$, $\left.x_{n+1}, \ldots x_{n+k-1}\right), n=1,2, \ldots$, then the sequence $<y_{n}>$ is convergent and lim $y_{n}=f$ (lim $\left.y_{n}\right)=T\left(\lim y_{n}, \lim y_{n}, \ldots\right.$, lim $\left.y_{n}\right)$.

Proof. As proved in Theorem 3.1, there exists $v, u \in X$ such that $\lim _{n \rightarrow \infty} y_{n}=v=f$ $(u)=T(u, u, u \ldots u)$. Also since f and T are weakly compatible $f(T(u, u, \ldots u)=T(f u, f u$, $f u$... fu). By (3.2) we have,

```
d(ffu,fu)=d(fT(u,u,\ldotsu),T(u,u,\ldotsu))=d(T(fu,fu,fu,\ldotsfu),T(u,u,\ldotsu))
\leqd(T(fu,fu,fu,\ldotsfu),T(fu,fu,\ldotsfu,u))+d(T(fu,fu,\ldotsfu,u),
T(fu,fu,\ldots,u,u))+\cdots+d(T(fu,u,\ldotsu,u),T(u,u,\ldotsu))
\leq\lambda\phi(d(ffu,ffu),\ldotsd(ffu,ffu),d(ffu,fu))+\lambda\phi(d(ffu,ffu),\ldotsd(ffu,fu),
d(fu,fu))+\cdots\lambda\phi(d(ffu,fu),\ldotsd(fu,fu),d(fu,fu))
=\lambda\phi(0,0,0,\ldotsd(ffu,fu))+\lambda\phi(0,0\ldots0,d(ffu,fu),0)+\cdots.\lambda\phi(d(ffu,fu),0,0\ldots0)=k\lambdad(ffu,fu).
```

Repeating this process n times we get, $d(f f u, f u)<k^{n} \lambda^{n} d(f f u, f u)$. So $k^{n} \lambda^{n} d(f f u, f u)$ - $d(f f u, f u) \in P$ for all $n \geq 1$. Since $k^{n} \lambda^{n} \rightarrow 0$ as $n \rightarrow \infty$ and P is closed, $-d(f f u, f u) \in$ P, but $P \cap(-P)=\{0\}$. Therefore, $d(f f u, f u)=0$ and so $f f u=f u$. Hence, we have, $f u=f$ $f u=f(T(u, u, \ldots u))=T(f u, f u, f u \ldots f u)$, i.e. $f u$ is a common fixed point of f and T, and $\lim y_{n}=f\left(\lim y_{n}\right)=T\left(\lim y_{n}, \lim y_{n}, \ldots \lim y_{n}\right)$. Now suppose x, y be two fixed points of f and T. Then,

$$
\begin{aligned}
& d(x, y)=d(T(x, x, x \ldots x), T(y, y, y \ldots y)) \\
& \leq d(T(x, x, \ldots x), T(x, x, \ldots x, y))+d(T(x, x, \ldots x, y), T(x, x, x \ldots x, y, y)) \\
& +\cdots+d(T(x, y, y, \ldots y), T(y, y, \ldots y)) \\
& \leq \lambda \phi\{d(f x, f x), d(f x, f x), \ldots, d(f x, f y)\} \\
& +\lambda \phi\{d(f x, f x), d(f x, f x), \ldots d(f x, f y), d(f y, f y)\} \\
& +\cdots+\lambda \phi\{d(f x, f y), d(f y, f y), \ldots d(f y, f y)\} . \\
& =\lambda \phi(0,0, \ldots, d(f x, f y))+\lambda \phi(0,0, \ldots d(f x, f y), 0)+\cdots+\lambda \phi(d(f x, f y), 0,0,0, \ldots 0)) . \\
& =k \lambda d(f x, f y)=k \lambda d(x, y) .
\end{aligned}
$$

Repeating this process n times we get as above, $d(x, y) \leq k^{n} \lambda^{n} d(x, y)$ and so as $n \rightarrow$ $\propto d(x, y)=0$, which implies $x=y$. Hence, the common fixed point is unique. \square
Remark 3.3. Theorem 3.2 is a proper extension and generalisation of Theorems 1.1 and 1.2.

Remark 3.4. If we take $k=1$ in Theorem, 3.2, we get the extended and generalised versions of the result of [3]and [4].
Example 3.5. Let $E=R^{2}, P=\{(x, y) \in \mathrm{E} \backslash x, y \geq 0\}, X=[0,2]$ and $d: X \times X \rightarrow E$ such that $d(x, y)=(|x-y|,|x-y|)$. Then, d is a cone metric on X. Let $T: X^{2} \rightarrow X$ and $f: X$ $\rightarrow X$ be defined as follows:

$$
\begin{aligned}
& T(x, y)=\frac{\left(x^{2}+y^{2}\right)}{4}+\frac{1}{2} \text { if }(x, y) \in[0,1] \times[0,1] \\
& T(x, y)=\frac{(x+y)}{4}+\frac{1}{2} \text { if }(x, y) \in[1,2] \times[1,2] \\
& T(x, y)=\frac{\left(x^{2}+y\right)}{4}+\frac{1}{2} \text { if }(x, y) \in[0,1] \times[1,2] \\
& T(x, y)=\frac{\left(x+y^{2}\right)}{4}+\frac{1}{2} \text { if }(x, y) \in[1,2] \times[0,1] \\
& f(x)=x^{2} \text { if } x \in[0,1] \\
& f(x)=x \text { if } x \in[1,2]
\end{aligned}
$$

T and f satisfies condition (3.2) as follows:
Case 1. $x, y, z \in[0,1]$

$$
\begin{aligned}
& d(T(x, y), T(y, z))=(|T(x, y)-T(y, z)|,|T(x, y)-T(y, z)|) \\
& =\left(\left|\frac{x^{2}-z^{2}}{4}\right|,\left|\frac{x^{2}-z^{2}}{4}\right|\right) \\
& \leq\left(\left|\frac{x^{2}-z^{2}}{4}\right|+\left|\frac{y^{2}-z^{2}}{4}\right|,\left|\frac{x^{2}-y^{2}}{4}\right|+\left|\frac{y^{2}-z^{2}}{4}\right|\right) \\
& \leq \frac{1}{2} \cdot \max \{d(f x, f y), d(f y, f z)\}
\end{aligned}
$$

Case 2. $x, y \in[0,1]$ and $\mathrm{z} \in[1,2]$

$$
\begin{aligned}
& d(T(x, y), T(y, z))=\left(\left|\frac{x^{2}+y^{2}}{4}-\frac{y^{2}+z}{4}\right|,\left|\frac{x^{2}+y^{2}}{4}-\frac{y^{2}+z}{4}\right|\right) \\
& \leq\left(\left|\frac{x^{2}-y^{2}}{4}\right|+\left|\frac{y^{2}-z}{4}\right|,\left|\frac{x^{2}-y^{2}}{4}\right|+\left|\frac{y^{2}-z}{4}\right|\right) \\
& \leq \frac{1}{2} \cdot \max \{(f x, f y), d(f y, f z)\}
\end{aligned}
$$

Case 3. $x \in[0,1]$ and $y ; z \in[1,2]$

$$
\begin{aligned}
& d(T(x, y), T(y, z))=\left(\left|\frac{x^{2}+y}{4}-\frac{y+z}{4}\right|,\left|\frac{x^{2}+y}{4}-\frac{y+z}{4}\right|\right) \\
& =\left(\left|\frac{x^{2}-z}{4}\right|,\left|\frac{x^{2}-z}{4}\right|\right) \\
& \leq\left(\left|\frac{x^{2}-y}{4} 1\right|+\left|\frac{y-z}{4}\right|,\left|\frac{x^{2}-y}{4}\right|+\left|\frac{y-z}{4}\right|\right) \\
& \leq \frac{1}{. \mid 2} \cdot \max \{d(f x, f y), d(f y, f z)\}
\end{aligned}
$$

Case 4. $x, y, z \in[1,2]$

$$
\begin{aligned}
& d(T(x, y), T(y, z))=\left(\left|\frac{x+y}{4}-\frac{y+z}{4}\right|,\left|\frac{x+y}{4}-\frac{y+z}{4}\right|\right) \\
& \leq\left(\left|\frac{x-y}{4}\right|+\left|\frac{y-z}{4}\right|,\left|\frac{x-y}{4}\right|+\left|\frac{y-z}{4}\right|\right) \\
& \leq \frac{1}{2} \cdot \max \{(f x, f y), d(f y, f z)\} .
\end{aligned}
$$

Similarly in all other cases $d(T(x, y), T(y, z)) \leq \frac{1}{2} \cdot \max \{(f x, f y), d(f y, f z)\}$. Thus, f and T satisfy condition (3.2) with $\varphi\left(x_{1}, x_{2}\right)=\max \left\{x_{1}, x_{2}\right\}$. We see that $C(f, T)=1, f$ and T commute at 1. Finally, 1 is the unique common fixed point of f and T.

4. An application to markov process

Let $\Delta_{n-1}=\left\{x \in R_{+}^{n}: \Sigma_{i=1}^{n} x_{i}=1\right\}$ denote the $n-1$ dimensional unit simplex. Note that any $x \in \Delta_{n-1}$ may be regarded as a probability over the n possible states. A random process in which one of the n states is realised in each period $t=1,2, \ldots$ with the probability conditioned on the current realised state is called Markov Process. Let $a_{i j}$ denote the conditional probability that state i is reached in succeeding period starting in state j. Then, given the prior probability vector x^{t} in period t, the posterior probability in period $t+1$ is given by $x_{i}^{t+1}=\sum a_{i j} x_{j}^{t}$ for each $i=1,2, \ldots$. To express this in matrix notation, we let x^{t} denote a column vector. Then, $x^{t+1}=A x^{t}$. Observe that the properties of conditional probability require each $a_{i j} \geq 0$ and $\sum_{i=1}^{n} a_{i j}=1$ for each j. If for any period $t, x^{t+1}=x^{t}$ then x^{t} is a stationary distribution of the Markov Process. Thus, the problem of finding a stationary distribution is equivalent to the fixed point problem $A x^{t}=x^{t}$.

For each i, let $\varepsilon_{i}=\min _{j} a_{i j}$ and define $\varepsilon=\sum_{i=1}^{n} \varepsilon_{i}$.
Theorem 4.1. Under the assumption $a_{i, j}>0$, a unique stationary distribution exist for the Markov process.

Proof. Let $d: \Delta_{n-1} \times \Delta_{n-1} \rightarrow R^{2}$ be given by $d(x, y)=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|, \alpha \sum_{i=1}^{n}\left|x_{i}-y_{i}\right|\right)$ for all $x, y \in \Delta_{n-1}$ and some $\alpha \geq 0$.
Clearly $d(x, y) \geq(0,0)$ for all $x, y \in \Delta_{n-1}$ and $d(x, y)=(0,0) \Rightarrow\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|, \alpha \sum_{i=1}^{n}\left|x_{i}-y_{i}\right|\right)=(0,0) \Rightarrow\left|x_{i}-y_{i}\right|=0$ for all $i \Rightarrow x$ $=y$. Also $x=y \Rightarrow x_{i}=y_{i}$ for all $i \Rightarrow\left|x_{i}-y_{i}\right|=0 \Rightarrow \sum_{i=1}^{n}\left|x_{i}-y_{i}\right|=0 \Rightarrow d(x, y)=(0,0)$

$$
\begin{aligned}
& d(x, y)=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|, \alpha \sum_{i=1}^{n}\left|x_{i}-y_{i}\right|\right) \\
& =\left(\sum_{i=1}^{n}\left|y_{i}-x_{i}\right|, \alpha \sum_{i=1}^{n}\left|y_{i}-x_{i}\right|\right)=d(y, x) \\
& d(x, y)=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|, \alpha \sum_{i=1}^{n}\left|x_{i}-y_{i}\right|\right) \\
& =\left(\sum_{i=1}^{n}\left|\left(x_{i}-z_{i}\right)+\left(z_{i}-y_{i}\right)\right|, \alpha \sum_{i=1}^{n}\left|\left(x_{i}-z_{i}\right)\right|+\left|\left(z_{i}-y_{i}\right)\right|\right) \\
& \leq\left(\sum_{i=1}^{n}\left|\left(x_{i}-z_{i}\right)\right|+\left|\left(z_{i}-y_{i}\right)\right|, \alpha \sum_{i=1}^{n}\left|\left(x_{i}-z_{i}\right)\right|+\left|\left(z_{i}-y_{i}\right)\right|\right) \\
& =\left(\sum_{i=1}^{n}\left|\left(x_{i}-z_{i}\right)\right|, \alpha \sum_{i=1}^{n}\left|\left(x_{i}-z_{i}\right)\right|\right)+\left(\sum_{i=1}^{n}\left|\left(z_{i}-y_{i}\right)\right|, \alpha \sum_{i=1}^{n}\left|\left(z_{i}-y_{i}\right)\right|\right) \\
& =d(x, z)+d(z, x) .
\end{aligned}
$$

So Δ_{n-1} is a cone metric space. For $x \in \Delta_{n-1}$, let $y=A x$. Then each $y_{i}=\sum_{j=1}^{n} a_{i j} x_{j} \geq 0$. Further more, since each $\sum_{i=1}^{n} a_{i j}=1$, we have $\sum_{i=1}^{n} y_{i}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{j}=\sum_{j=1}^{n} x_{j} \sum_{i=1}^{n} a_{i j}=\sum_{j=1}^{n} x_{j}=1$, so $y \in \Delta_{n-1}$. Thus, we see that $A: \Delta_{n-1} \rightarrow \Delta_{n-1}$. We will show that A is a contraction. Let A_{i} denote the i th row of A. Then for any $x, y \in \Delta_{n-1}$, we have

$$
\begin{aligned}
& d(A x, A y)=\left(\sum_{i=1}^{n}\left|(A x)_{i}-(A y)_{i}\right|, \alpha \sum_{i=1}^{n}\left|(A x)_{i}-(A y)_{i}\right|\right) \\
& =\left(\sum_{i=1}^{n}\left|\sum_{j=1}^{n} a_{i j} x_{j}-a_{i j} y_{j}\right|, \alpha \sum_{i=1}^{n}\left|\sum_{j=1}^{n} a_{i j} x_{j}-a_{i j} y_{j}\right|\right) \\
& =\left(\sum_{i=1}^{n}\left|\sum_{j=1}^{n}\left(a_{i j}-\varepsilon_{i}\right)\left(x_{j}-y_{j}\right)+\varepsilon_{i}\left(x_{j}-y_{j}\right)\right|,\right. \\
& \left.\alpha \sum_{i=1}^{n}\left|\sum_{j=1}^{n}\left(a_{i j}-\varepsilon_{i}\right)\left(x_{j}-y_{j}\right)+\varepsilon_{i}\left(x_{j}-y_{j}\right)\right|\right) \\
& \leq\left(\sum_{i=1}^{n}\left(\left|\sum_{j=1}^{n}\left(a_{i j}-\varepsilon_{i}\right)\left(x_{j}-y_{j}\right)\right|+\varepsilon_{i}\left|\sum_{j=1}^{n}\left(x_{j}-y_{j}\right)\right|\right),\right. \\
& \alpha\left(\sum_{i=1}^{n}\left(\left|\sum_{j=1}^{n}\left(a_{i j}-\varepsilon_{i}\right)\left(x_{j}-y_{j}\right)\right|+\varepsilon_{i}\left|\sum_{j=1}^{n}\left(x_{j}-y_{j}\right)\right|\right)\right. \\
& \leq\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left(a_{i j}-\varepsilon_{i}\right)\left|x_{j}-y_{j}\right|, \alpha \sum_{i=1}^{n} \sum_{j=1}^{n}\left(a_{i j}-\varepsilon_{i}\right)\left|x_{j}-y_{j}\right|\right) \\
& \left(\text { Since } \sum_{j=1}^{n}\left(x_{j}-y_{j}\right)=0\right) \\
& =\left(\sum_{j=1}^{n}\left|x_{j}-y_{j}\right| \sum_{i=1}^{n}\left(a_{i j}-\varepsilon_{i}\right),\right. \\
& \alpha \sum_{j=1}^{n}\left|x_{j}-y_{j}\right| \sum_{i=1}^{n}\left(a_{i j}-\varepsilon_{i}\right) \\
& =\left(\sum_{j=1}^{n}\left|x_{j}-y_{j}\right|(1-\varepsilon), \alpha \sum_{j=1}^{n}\left|x_{j}-y_{j}\right|(1-\varepsilon)\right) \\
& \left(\operatorname{Since} \sum_{i=1}^{n} a_{i j}=1 \text { and } \sum_{i=1}^{n} \varepsilon_{i}=\varepsilon\right) \\
& =d(x, y)(1-\varepsilon)
\end{aligned}
$$

which establishes that A is a contraction mapping. Thus, Theorem 3.2 with $k=1$ and f as identity mapping ensures a unique stationary distribution for the Markov Process. Moreover for any $x^{0} \in \Delta_{n-1}$, the sequence $<A^{n} x^{0}>$ converges to the unique stationary distribution. ㅁ

Acknowledgements

The authors would like to thank the learned referees for their valuable comments which helped in bringing this paper to its present form. The first and third authors are supported by Ministry of Education, Kingdom of Saudi Arabia.

Author details

${ }^{1}$ Department of Mathematics, College of Science, Al-Kharj University, Al-Kharj, Kingdom of Saudi Arabia ${ }^{2}$ Department of Mathematics and Computer Science, St. Thomas College, Ruabandha Bhilai, Durg, Chhattisgarh State, 490006, India

Authors' contributions

RG gave the idea of this work. All authors worked on the proofs and examples. KPR and RR drafted the manuscript. RG read the manuscript and made necessary corrections. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Received: 23 March 2011 Accepted: 23 November 2011 Published: 23 November 2011

References

1. Presic, SB: Sur la convergence des suites, Comptes. Rendus. de 1'Acad des Sci de Paris. 260, 3828-3830 (1965)
2. Ciric, LjB, Presic, SB: On Presic type generalisation of Banach contraction principle. Acta Math Univ Com. LXXVI(2), 143-47 (2007)
3. Huang, LG, Zhang, X: Cone metric spaces and fixed point theorems of contractive mappings. J Math Anal Appl. 332(2), 1468-1476 (2007). doi:10.1016/j.jmaa.2005.03.087
4. Rezapour, S, Hamlbarani, R: Some notes on the paper cone metric spaces and fixed point theorems of contractive mappings. Math Anal Appl. 345(2), 719-724 (2008). doi:10.1016/j.jmaa.2008.04.049
5. Di Bari, C, Vetro, P: 区-pairs and common fixed points in cone metric spaces. Rendiconti del circolo Matematico di Palermo. 57(2), 279-285 (2008). doi:10.1007/s12215-008-0020-9
6. Abbas, M, Jungck, G : Common fixed point results for noncommuting mappings without continuity in cone metric spaces. J Math Anal Appl. 341(1), 416-420 (2008). doi:10.1016/j.jmaa.2007.09.070
7. Abbas, M, Rhodades, BE: Fixed and periodic point results in cone metric spaces. Appl Math Lett. 22(A), 511-515 (2009)
8. Di Bari, C, Vetro, P: Weakly \boxtimes-pairs and common fixed points in cone metric spaces. Rendiconti del circolo Matematico di Palermo. 58(1), 125-132 (2009). doi:10.1007/s12215-009-0012-4
9. Ilic, D, Rakocevic, V: Common fixed points for maps on cone metric space. Math Anal Appl. 341(2), 876-882 (2008). doi:10.1016/j.jmaa.2007.10.065
10. Arandjelovic, I, Kadelburg, Z, Radenovic, S: Boyd-Wong type common fixed point results in cone metric spaces. Appl Math Comput. 217, 7167-7171 (2011)
11. Raja, P, Vaezpour, SM: Some extensions of Banch's contraction principle in complete cone metric spaces. Fixed Point Theory Appl 2008, 11 (2008). Article ID 768294
12. Jankovic, S, Kadelburg, Z, Radenovic, S: On cone metric spaces: a survey. Nonlin Anal. 74, 2591-2601 (2011). doi:10.1016/j.na.2010.12.014
13. Simic, S: A note on Stone's, Baire's, Ky Fan's and Dugundj's theorem in tvs-cone metric spaces. Appl Math Lett. 24, 999-1002 (2011). doi:10.1016/j.aml.2011.01.014
14. Vetro, P: Common fixed points in Cone metric spaces. Rendiconti del circolo Matematico di Palermo, Serie II. 56(3), 464-468 (2007). doi:10.1007/BF03032097
15. Kadelburg, Z, Radenovic, S, Rakocevic, V: A note on the equivalence of some metric and cone fixed point results. Appl Math Lett. 24, 370-374 (2011). doi:10.1016/j.aml.2010.10.030
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

$$
\text { Submit your next manuscript at }>\text { springeropen.com }
$$

[^0]: doi:10.1186/1687-1812-2011-85
 Cite this article as: George et al.: A generalised fixed point theorem of Presic type in cone metric spaces and application to Markov process. Fixed Point Theory and Applications 2011 2011:85.

