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Abstract

In this paper, the concepts of a set-valued contraction of Mizoguchi-Takahashi type
in the context of topological vector space (tvs)-cone metric spaces are introduced
and a fixed point theorem in the context of tvs-cone metric spaces with respect to a
solid cone is proved. We obtained results which extend and generalize the main
results of S. H. Cho with J. S. Bae, Mizoguchi with Takahashi and S. B. Nadler Jr. Two
examples are given to illustrate the usability of our results.
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Introduction and preliminaries
Huang and Zhang introduced in [1] the concept of cone metric spaces as a generaliza-

tion of metric spaces. They have replaced the real numbers (as the co-domain of a

metric) by an ordered Banach space. They described the convergence in cone metric

spaces, introduced their completeness and proved some fixed point theorems for con-

tractive mappings on cone metric spaces. The concept of cone metric space in the

sense of Huang-Zhang is characterized by Al-Rawashdeh, Shatanawi and Khandaqji in

[2]. Indeed (X, d) is a cone metric space if and only if (X, dE) is an E-metric space,

where E is a normed ordered space, with Int(E+) ≠ ∅ ([2], Theorem 3.8). Recently in

[3-28] many authors proved fixed point theorems in cone metric spaces.

Du in [13] introduced the concept of topological vector space (tvs)-cone metric and

tvs-cone metric space to improve and extend the concept of cone metric space in the

sense of Huang and Zhang [1]. In [7,9,13,14] the authors tried to generalize this

approach using cones in tvs instead of Banach spaces. However, it should be noted

that an old result shows that if the underlying cone of an ordered tvs is solid and nor-

mal, then such tvs must be an ordered normed space. Thus, proper generalizations

when passing from norm-valued cone metric spaces to tvs-valued cone metric spaces

can be obtained only in the case of nonnormal cones (for more details see [14]).

We recall some definitions and results from [14,15], which will be needed in the

sequel.

Let E be a tvs with its zero vector θ. A nonempty subset P of E is called a convex

cone if P + P ⊆ P and lP ⊆ P for l ≥ 0. A convex cone P is said to be pointed (or

proper) if P ∩ (−P) = {θ}; and P is a normal (or saturated) if E has a base of
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neighborhoods of zero consists of order-convex subsets. For a given cone P ⊆ E, we

define a partial ordering ≼ with respect to P by x ≼ y if and only if y −x Î P; x ≺ y will

stand for x ≼ y and x ≠ y, while x ≪ y stand for y − x Î intP, where intP denotes the

interior of P. The cone P is said to be solid if it has a nonempty interior.

In the sequel, E will be a locally convex Hausdorff tvs with its zero vector θ, P is a

proper, closed and convex pointed cone in E with intP ≠ ∅ and ≼ denotes the induced

partial ordering with respect to P .

Definition 1.1. [7,13,14] Let X be a nonempty set and (E, P ) be an ordered tvs. A

vector-valued function d : X × X ® E is said to be a tvs-cone metric, if the following

conditions hold:

(C1) θ ≼ d(x, y) for all x, y Î X and d(x, y) = θ if and only if x = y;

(C2) d(x, y) = d(y, x) for all x, y Î X;

(C3) d(x, z) ≼ d(x, y) + d(y, z) for all x, y, z Î X.

The pair (X, d) is then called a tvs-cone metric space.

Remark 1.2. The concept of a cone metric space [1] (E is a real Banach space and d :

X ×X ® E satisfies (C1), (C2) and (C3)) is more general than that of a metric space,

because each metric space is a cone metric space, where E = R and P = [0, +∞) (see

[1, Example 1]). Clearly, a cone metric space in the sense of Huang and Zhang is a

special case of tvs-cone metric spaces when (X, d) is tvs-cone metric space with respect

to a normal cone P.

Definition 1.3. [7,13,14] Let (X, d) be a tvs-cone metric space, x Î X and let {xn} be

a sequence in X. Then

(i) {xn} tvs-cone converges to x whenever for every c Î E with θ ≪ c there is a nat-

ural number n0 such that d(xn, x) ≪ c, for all n ≥ n0. We denote this by cone− limn®∞

xn = x;

(ii) {xn} is a tvs-cone Cauchy sequence whenever for every c Î E with θ ≪ c there is

a natural number n0 such that d(xn, xm) ≪ c, for all n, m ≥ n0;

(iii) (X, d) is tvs-cone complete if every tvs-cone Cauchy sequence in X is tvs-cone

convergent.

Let (X, d) be a tvs-cone metric space. The following properties are often used, parti-

cularly in the case when the underlying cone is nonnormal. The only assumption is

that the cone P has a nonempty interior (i.e. P is a solid). For more details about these

properties see [14] and [15].

(p1) If u ≼ v and v ≪ w, then u ≪ w.

(p2) If u ≪ v and v ≼ w, then u ≪ w.

(p3) If u ≪ v and v ≪ w, then u ≪ w.

(p4) If θ ≼ u ≪ c for each c Î intP, then u = θ.

(p5) If a ≼ b + c, for each c Î intP, then a ≼ b.

(p6) If E is a tvs cone metric space with a cone P, and if a ≼ la, where a Î P and 0 ≤

l < 1, then a = θ.

(p7) If c Î intP, an Î E and an ® θ in locally convex Hausdorff tvs E, then there

exists an n0 such that, for all n >n0, we have an ≪ c.

In [11], the concept of a set-valued contraction of Mizoguchi-Takahashi type was

introduced and a fixed point theorem in setting of a normal cone was proved. In this

article, we prove the same theorem in the setting of a tvs-cone metric space. We gen-

eralize results of [11], by omitting the assumption of normality in the results, that is
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the normality of P is not a necessary. We use only the definition of convergence in

terms of the relation “≪”. The only assumption is that the interior of the cone P in

locally convex Hausdorff tvs E is nonempty, so we neither use continuity of the vector

metric d, nor Sandwich Theorem. In such a way, we generalize results of [11,29,30].

Main results
Let E be a locally convex Hausdorff tvs with its zero vector θ, P a proper, closed and

convex pointed cone in E with intP ≠ ∅ and ≼ be a partial ordering with respect to P.

Let (X, d) be a tvs-cone metric space with a solid cone P and let A be a collection of

nonempty subsets of X. According to [11], we denote

s(p) = {q ∈ E : p � q}

for p Î E, and

s(a, B) =
⋃
b∈B

s(d(a, b))

for a Î X and B Î A . For A, B Î A , we denote

s(A, B) =
(⋂
a∈A

s(a, B)
)

∩
(⋂
b∈B

s(b, A)
)
.

The following lemma will be used to prove Theorem 2.3.

Lemma 2.1. Let (X, d) be a tvs-cone metric space with a solid cone P in ordered

locally convex space E, and let A be a collection of nonempty subsets of X. Then we

have:

(1) For all p, q Î E. If p ≼ q, then s(q) ⊂ s(p).

(2) For all x Î X and A ∈ A . If θ Î s(x, A), then x Î A.

(3) For all q Î P and A,B ∈ A and a Î A. If q Î s(A, B), then q Î s(a, B).

(4) For all q Î P and A,B ∈ A . Then q Î s(A, B) if and only if there exist a Î A and

b Î B such that d(a, b) ≼ q.

Remark 2.2. Let (X, d) be a tvs-cone metric space. If E = R and P = [0, +∞), then (X,

d) is a metric space. Moreover, for A, B Î CB(X), H(A, B) = inf s(A, B) is the Haus-

dorff distance induced by d. Also, s({x}, {y}) = s(d(x, y)), for all x, y Î X.

Now let us prove the following main results of this article.

Theorem 2.3. Let (X, d) be a tvs-cone complete metric space with a solid cone

P,A �= ∅ be a collection of nonempty closed subsets of x and T : X → A be a multi-

valued map. If there exists a function � : P ® [0, 1) such that

lim
n→∞ ϕ(cn) < 1 (1)

for any decreasing sequence {cn} in P, and if

ϕ(d(x, y)) d (x, y) ∈ s(Tx, Ty) (2)

for all x, y Î X (x ≠ y), then T has a fixed point in X.

Proof. Let x0 Î X, x1 Î Tx0 and assume x0 ∉ Tx0. Then from (2), we have

ϕ(d(x0, x1)) d (x0, x1) ∈ s(Tx0, Tx1).
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Now by Lemma 2.1(3), we have �(d(x0, x1))d(x0, x1) Î s(x1, Tx1). By definition, we

can take x2 Î Tx1 such that �(d(x0, x1))d(x0, x1) Î s(d(x1, x2)). So, d(x1, x2) ≼ �(d(x0,

x1))d(x0, x1).

Inductively, we can construct a sequence {xn} in X such that for all n ∈ N , we have

d(xn, xn+1) � ϕ(d(xn−1, xn)) d (xn−1, xn), xn+1 ∈ Txn. (3)

If xn = xn+1 for some n ∈ N , then T has a fixed point.

We may assume that xn ≠ xn+1, for all n ∈ N . From (3), {d(xn, xn+1)} s a decreasing

sequence in P. Hence, from (1), there exists r Î 0, 1) such that

lim
n→∞ ϕ(d(xn, xn+1)) = r.

Thus, for any l Î (r, 1), there exists n0 ∈ N such that for all n ≥ n0, we have �(d(xn,

xn+1)) <l. Then we get, for n ≥ n0,

d(xn, xn+1) � ϕ(d(xn−1, xn)) d (xn−1, xn) ≺ λd(xn−1, xn) ≺ λn−n0d(xn0 , xn0+1).

For m >n ≥ n0, we have

d(xn, xm) � d(xn, xn+1) + d(xn+1, xn+2) + · · · + d (xm−1, xm)

� (λn−n0 + λn+1−n0 + · · · + λm−1−n0 ) d (xn0 , xn0+1)

� λn
[

1
λn0 (1 − λ)

]
d(xn0 , xn0+1).

Since ln ® 0 as n ® ∞, we obtain that λn
[

1
λn0 (1−λ)

]
d(xn0 , xn0+1) → θ in the locally

convex space E, as n ® ∞. Now, according to (p7) and (p1), we can conclude that for

every c Î E with θ ≪ c there is a natural number n1 such that d (xn, xm) ≪ c for all

m, n ≥ max {n0, n1} , so {xn} is a tvs-cone Cauchy sequence. Since (X, d) is tvs-cone

complete, then {xn} is tvs-cone convergent in X and cone-limn®∞ xn = x, that is, for

every c Î E with θ ≪ c, there is a natural number k such that d(xn, x) ≪ c for all n ≥

k.

We now show that x Î Tx. Indeed, from (2) we have � (d (xn, x)) d (xn, x) Î s (Txn,

Tx) = s (xn+1, Tx) for n ∈ N . By Lemma 2.1(3), there exists yn Î Tx such that

ϕ(d(xn, x)) d (xn, x) ∈ s(d(xn+1, yn)).

Hence, d (xn+1, yn) ≼ � (d (xn, x)) d (xn, x) ≼ d (xn, x) . Moreover, for a given c Î
intP, we have

d(x, yn) � d(x, xn+1) + d (xn+1, yn)

� d (x, xn+1) + d(xn, x)

	 c
2
+
c
2
= c, for n ≥ k = k(c).

Hence, according to Definition 1.3(i), we have that cone-limn®∞ yn = x. As Tx is

closed, then x Î Tx, hence x is a fixed point of T and this ends the proof. □
The next example shows that Theorem 2.3 is a proper generalization of the main

result from [11]. Indeed, as in Example 2.4, the cone P is nonnormal, so Theorem 2.1

of [11] is not applicable.
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Example 2.4. Let X = [0, 1] and E = C[0, 1] be endowed with the strongest locally

convex topology τ(E, E*), and let P = {x Î E :, x(t) ≥ 0, t 0[1]}. Then the cone P is a

normal cone with respect to the norm of the space E with a coefficient of normality K

= 1. Also, P is a solid cone. Since τ(E, E*) is stronger than a norm-topology, then the

interior of P is nonempty with respect to τ(E, E*). Thus, P is τ(E, E*)-solid. This cone is

nonnormal with respect to the topology τ(E, E*). Indeed, if it were normal, then

according to Theorem 2.1 of [14], the space (E, τ (E, E )) would be normed, which is

impossible as an infinite-dimensional space with the strongest locally convex topology

cannot be metrizable (see [31]). Let us define the tvs-cone metric with d : X × X ® E,

by d(x, y)(t):= |x − y|et. Let A be a family of nonempty closed subsets of X of the

form A = {[0, x]; x ∈ X} . Consider a mapping T : X → A defined by T(x) = [0, x
3 ]. Let

ϕ(c) = 1
2 for all c Î P. Obviously, the hypothesis (1) is satisfied. We now show that (2)

is also a satisfied. Moreover, for x, y Î X(x ≠ y) we have,

ϕ(d(x, y)) d (x, y) ∈ s(Tx, Ty) ⇔ 1
2
d(x, y) ∈ s(Tx, Ty)

⇔ 1
2
d(x, y) ∈

⎛
⎝⋂

a∈T

⋃
xb∈Ty

s(d(a, b))

⎞
⎠ ∩

⎛
⎝ ⋂

b∈Tya

⋃
∈Tx

s(d(a, b))

⎞
⎠

⇔ (∃a ∈ Tx) (∃b ∈ Ty)
1
2
d(x, y) ∈ s(d(a, b))

⇔ d(a, b) � 1
2
d(x, y).

Now, taking a = 1
3x , and b = 1

3y , we obtain that the hypothesis (2) is satisfied. Hence

using Theorem 2.3, it follows that T has a fixed point.

Example 2.5. Let E = C1
R
[0, 1] with a norm ||u|| = ||u||∞ + ||u’||∞, u Î E and let P =

{u Î E : u(t) ≥ 0, t Î 0[1]}. It is well known that this cone is solid but it is not normal.

Now consider the space E = C1
R
[0, 1] endowed with the strongest locally convex topol-

ogy t*. Then P is also t* -solid (it has nonempty t*-interior), but not t* -normal. (For

more details, see [31], Example 2.2).

Let X = {a, b, c} and define a tvs-cone metric d : X × X ® P by

d(a, b)(t) := 2 + 3t, d (b, c)(t) := 5 − 3t, d(a, c)(t) := 3,

d(x, y) = d (y, x) and d(x, x) = θ for x, y ∈ X.

Then (X, d) is a complete tvs-cone metric space over the nonnormal cone P . Now,

consider the mapping T : X ® X which is given by Ta = {a, b} , Tb = {a, c} and Tc =

{a, b, c}. Let ϕ(c) = 1
2 , for all c Î P. It is clear that the hypothesis (1) is satisfied. So let

us prove that (2) is also satisfied, that is 1
2d(x, y) ∈ s(Tx, Ty) , for allx, y Î X (x ≠ y).

Now, we have the following:

10 1
2d(a, b) ∈ s(Ta,Tb) = s({a, b} , {a, c}) ⇔ ∃a1 ∈ Ta, ∃b1 ∈ Tb such that

d(a1, b1) � 1
2d(a, b) Take a1 = b1 = a;

20 1
2d(a, c) ∈ s(Ta,Tc) = s({a, b} , {a, b, c}) ⇔ ∃a2 ∈ Ta, ∃b2 ∈ Tc such that

d(a2, b2) � 1
2d(a, b). Take a2 = b2 = a;
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30 1
2d(a, b) ∈ s(Tb, Tc) = s({a, c} , {a, b, c}) ⇔ ∃a3 ∈ Tb, ∃b3 ∈ Tc such that

d(a3, b3) � 1
2d(a, b) . Take a3 = b3 = a.

Therefore, all conditions of Theorem 2.3 are satisfied and hence T has a fixed point.

Precisely, x = a and x = c are the fixed points of T.

Finally, we finish our paper by introducing the following consequence corollaries of

our main theorem. let (X, d) be a given metric space, and let us define the following:

• CB (X) = {A : A is a nonempty closed and bounded subset of X},

• D (a, B) = inf {d (a, b): b Î B • X}, for a Î X,

• H (A, B) = max {sup {D (a, B): a Î A} , sup {D (b, A): b Î B}}.

It is clear that H is a metric on CB (X), which is called the Hausdorff-Pompeu metric

induced by d. A set-valued mapping T : X ® CB(X) is said to be a multi-valued con-

traction mapping, if there exists a fixed real number l, 0 ≤ l < 1 such that,

H(Tx, Ty) ≤ λd(x, y),

for all x, y Î X. A point x Î X is called a fixed point of T , if x Î Tx. Then as a con-

sequence of Theorem 2.3 and in particular by taking E = R , P = [0, +∞), A = CB(X) ,�

(c) = l, for all c Î P , we obtain the following corollary.

Corollary 2.6. (Nadler [30]) Let (X, d) be a complete metric space and let T : X ®
CB(X) be a multi-valued contraction mapping. Then T has a fixed point.

Also, according to Remark 2.2, we obtain the following corollary.

Corollary 2.7. (Mizoguchi-Takahashi [29]) Let (X, d) be a complete metric space and

let T : X ® 2X be a multi-valued mapping such that, Tx is a closed bounded subset of

X, for all x Î X. If there exists a function � : [0, +∞) ® [0, 1) such that,

lim
r→t+

ϕ(r) < 1 for all t ∈ [0, +∞)

and if

H(Tx, Ty) ≤ ϕ(d(x, y))d(x, y),

for all x, y Î X(x ≠ y), then T has a fixed point in X.
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