RESEARCH

Fixed Point Theory and Applications a SpringerOpen Journal

Open Access

Stability of the Ishikawa iteration scheme with errors for two strictly hemicontractive operators in Banach spaces

Nawab Hussain¹, Arif Rafiq^{2*} and Ljubomir B Ciric³

*Correspondence: aarafiq@gmail.com ²Hajvery University, 43-52 Industrial Area, Gulberg-III, Lahore, Pakistan Full list of author information is available at the end of the article

Abstract

The main purpose of this paper is to establish the convergence, almost common-stability and common-stability of the Ishikawa iteration scheme with error terms in the sense of Xu (J. Math. Anal. Appl. 224:91-101, 1998) for two Lipschitz strictly hemicontractive operators in arbitrary Banach spaces.

Keywords: Ishikawa iteration scheme with errors; strictly hemicontractive operators; Lipschitz operators; Banach space

1 Preliminaries

Let *K* be a nonempty subset of an arbitrary Banach space *E* and *E*^{*} be its dual space. The symbols D(T), R(T) and F(T) stand for the domain, the range and the set of fixed points of *T* respectively (for a single-valued map $T : X \to X$, $x \in X$ is called a fixed point of *T* iff T(x) = x). We denote by *J* the normalized duality mapping from *E* to 2^{E^*} defined by

$$J(x) = \left\{ f^* \in E^* : \langle x, f^* \rangle = \|x\|^2 = \|f^*\|^2 \right\}$$

Let T be a self-mapping of K.

Definition 1 Then *T* is called *Lipshitzian* if there exists L > 0 such that

$$\|Tx - Ty\| \le L\|x - y\| \tag{1.1}$$

for all $x, y \in K$. If L = 1, then T is called *non-expansive*, and if $0 \le L < 1$, T is called *contraction*.

Definition 2 [2, 3]

1. The mapping T is said to be *pseudocontractive* if the inequality

$$\|x - y\| \le \|x - y + t((I - T)x - (I - T)y)\|$$
(1.2)

holds for each $x, y \in K$ and for all t > 0. As a consequence of a result of Kato [4], it follows from the inequality (1.2) that *T* is *pseudocontractive* if and only if there exists $j(x - y) \in I$

© 2012 Hussain et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

J(x - y) such that

$$\langle Tx - Ty, j(x - y) \rangle \le ||x - y||^2$$
 (1.3)

for all $x, y \in K$.

2. *T* is said to be strongly pseudocontractive if there exists a t > 1 such that

$$\|x - y\| \le \left\| (1 + r)(x - y) - rt(Tx - Ty) \right\|$$
(1.4)

for all $x, y \in D(T)$ and r > 0.

3. *T* is said to be local strongly pseudocontractive if, for each $x \in D(T)$, there exists a $t_x > 1$ such that

$$\|x - y\| \le \|(1 + r)(x - y) - rt_x(Tx - Ty)\|$$
(1.5)

for all $y \in D(T)$ and r > 0.

4. *T* is said to be strictly hemicontractive if $F(T) \neq \varphi$ and if there exists a t > 1 such that

$$\|x - q\| \le \|(1 + r)(x - q) - rt(Tx - q)\|$$
(1.6)

for all $x \in D(T)$, $q \in F(T)$ and r > 0.

It is easy to verify that an iteration scheme $\{x_n\}_{n=0}^{\infty}$ which is *T*-stable on *K* is almost *T*-stable on *K*. Osilike [5] proved that an iteration scheme which is almost *T*-stable on *X* may fail to be *T*-stable on *X*.

Clearly, each strongly pseudocontractive operator is local strongly pseudocontractive.

Chidume [6] established that the Mann iteration sequence converges strongly to the unique fixed point of *T* in case *T* is a Lipschitz strongly pseudo-contractive mapping from a bounded closed convex subset of L_p (or l_p) into itself. Afterwards, several authors generalized this result of Chidume in various directions. Chidume [7] proved a similar result by removing the restriction $\lim_{n\to\infty} \alpha_n = 0$. Tan and Xu [8] extended that result of Chidume to the Ishikawa iteration scheme in a *p*-uniformly smooth Banach space. Chidume and Os-ilike [2] improved the result of Chidume [6] to strictly hemicontractive mappings defined on a real uniformly smooth Banach space.

Recently, some researchers have generalized the results to real smooth Banach spaces, real uniformly smooth Banach spaces, real Banach spaces; or to the Mann iteration method, the Ishikawa iteration method; or to strongly pseudocontractive operators, local strongly pseudocontractive operators, strictly hemicontractive operators [9–19].

The main purpose of this paper is to establish the convergence, almost common-stability and common-stability of the Ishikawa iteration scheme with error terms in the sense of Xu [1] for two Lipschitz strictly hemicontractive operators in arbitrary Banach spaces. Our results extend, improve and unify the corresponding results in [2, 3, 10, 11, 15–18, 20–25].

2 Main results

We need the following results.

Lemma 3 [26] Let $\{\alpha_n\}_{n=0}^{\infty}, \{\beta_n\}_{n=0}^{\infty}, \{\gamma_n\}_{n=0}^{\infty}$ and $\{\omega_n\}_{n=0}^{\infty}$ be nonnegative real sequences such that

$$\alpha_{n+1} \leq (1-\omega_n)\alpha_n + \omega_n\beta_n + \gamma_n, \quad n \geq 0,$$

with $\{\omega_n\}_{n=0}^{\infty} \subset [0,1]$, $\sum_{n=0}^{\infty} \omega_n = \infty$, $\sum_{n=0}^{\infty} \gamma_n < \infty$ and $\lim_{n\to\infty} \beta_n = 0$. Then $\lim_{n\to\infty} \alpha_n = 0$.

Lemma 4 [27] Let $\{a_n\}_{n=0}^{\infty}, \{b_n\}_{n=0}^{\infty}$ be sequences of nonnegative real numbers and $0 \le \theta < 1$, so that

$$a_{n+1} \leq \theta a_n + b_n$$
, for all $n \geq 0$.

- (i) If $\lim_{n\to\infty} b_n = 0$, then $\lim_{n\to\infty} a_n = 0$.
- (ii) If $\sum_{n=0}^{\infty} b_n < \infty$, then $\sum_{n=0}^{\infty} a_n < \infty$.

Lemma 5 [4] Let $x, y \in X$. Then $||x|| \le ||x + ry||$ for every r > 0 if and only if there is $f \in J(x)$ such that $\operatorname{Re}\langle y, f \rangle \ge 0$.

Lemma 6 [2] Let $T : D(T) \subseteq X \to X$ be an operator with $F(T) \neq \emptyset$. Then T is strictly hemicontractive if and only if there exists t > 1 such that for all $x \in D(T)$ and $q \in F(T)$, there exists $j \in J(x - q)$ satisfying

$$\operatorname{Re}\langle x - Tx, j(x - q) \rangle \ge \left(1 - \frac{1}{t}\right) ||x - q||^2.$$

Lemma 7 [24] *Let X be an arbitrary normed linear space and* $T : D(T) \subseteq X \rightarrow X$ *be an operator.*

- (i) If T is a local strongly pseudocontractive operator and $F(T) \neq \emptyset$, then F(T) is a singleton and T is strictly hemicontractive.
- (ii) If T is strictly hemicontractive, then F(T) is a singleton.

In the sequel, let $k = \frac{t-1}{t} \in (0,1)$, where *t* is the constant appearing in (1.6). Further *L* denotes the common Lipschitz constant of *T* and *S*, and *I* denotes the identity mapping on an arbitrary Banach space *X*.

Definition 8 Let *K* be a nonempty convex subset of *X* and *T*, *S* : *K* \rightarrow *K* be two operators. Assume that $x_o \in K$ and $x_{n+1} = f(T, S, x_n)$ defines an iteration scheme which produces a sequence $\{x_n\}_{n=0}^{\infty} \subset K$. Suppose, furthermore, that $\{x_n\}_{n=0}^{\infty}$ converges strongly to $q \in F(T) \cap F(S) \neq \varphi$. Let $\{y_n\}_{n=0}^{\infty}$ be any bounded sequence in *K* and put $\varepsilon_n = ||y_{n+1} - f(T, S, y_n)||$.

- (i) The iteration scheme $\{x_n\}_{n=0}^{\infty}$ defined by $x_{n+1} = f(T, S, x_n)$ is said to be common-stable on *K* if $\lim_{n\to\infty} \varepsilon_n = 0$ implies that $\lim_{n\to\infty} y_n = q$.
- (ii) The iteration scheme $\{x_n\}_{n=0}^{\infty}$ defined by $x_{n+1} = f(T, S, x_n)$ is said to be almost common-stable on *K* if $\sum_{n=0}^{\infty} \varepsilon_n < \infty$ implies that $\lim_{n\to\infty} y_n = q$.

We now establish our main results.

Theorem 9 Let K be a nonempty closed convex subset of an arbitrary Banach space X and $T, S: K \to K$ be two Lipschitz strictly hemicontractive operators. Suppose that $\{u_n\}_{n=0}^{\infty}$, $\{v_n\}_{n=0}^{\infty}$ are arbitrary bounded sequences in K, and $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$, $\{c_n\}_{n=0}^{\infty}$, $\{a'_n\}_{n=0}^{\infty}$, $\{b'_n\}_{n=0}^{\infty}$ and $\{c'_n\}_{n=0}^{\infty}$ are any sequences in [0,1] satisfying

- (i) $a_n + b_n + c_n = 1 = a'_n + b'_n + c'_n$,
- (ii) $c'_n = o(b'_n)$,
- (iii) $\lim_{n\to\infty}c_n=0,$
- (iv) $\sum_{n=0}^{\infty} b'_n = \infty$,

(v)
$$L[(1+L)^2b'_n + c'_n + (1+L)(b_n + c_n)] + \frac{c_n}{b'_n} \le k(k-s), n \ge 0,$$

where s is a constant in (0, k). Suppose that $\{x_n\}_{n=0}^{\infty}$ is the sequence generated from an arbitrary $x_0 \in K$ by

$$x_{n+1} = a'_n x_n + b'_n T z_n + c'_n v_n,$$

$$z_n = a_n x_n + b_n S x_n + c_n u_n, \quad n \ge 0.$$
(2.1)

Let $\{y_n\}_{n=0}^{\infty}$ be any sequence in K and define $\{\varepsilon_n\}_{n=0}^{\infty}$ by

$$\varepsilon_n = \|y_{n+1} - p_n\|, \quad n \ge 0,$$

where

$$p_{n} = a'_{n}y_{n} + b'_{n}Tw_{n} + c'_{n}v_{n},$$

$$w_{n} = a_{n}y_{n} + b_{n}Sy_{n} + c_{n}u_{n}, \quad n \ge 0.$$
(2.2)

Then

(a) the sequence $\{x_n\}_{n=0}^{\infty}$ converges strongly to the common fixed point q of T and S. Also,

$$\begin{aligned} \|x_{n+1} - q\| &\leq (1 - sb'_n) \|x_n - q\| \\ &+ L(1 + L)k^{-1}b'_n c_n \|u_n - q\| + (1 + L)k^{-1}c'_n \|v_n - q\|, \quad n \geq 0, \end{aligned}$$

(b)

$$\begin{aligned} \|y_{n+1} - q\| &\leq \left(1 - sb'_n\right) \|y_n - q\| \\ &+ L(1+L)k^{-1}b'_n c_n \|u_n - q\| + (1+L)k^{-1}c'_n \|v_n - q\| + \varepsilon_n, \quad n \geq 0, \end{aligned}$$

- (c) $\sum_{n=0}^{\infty} \varepsilon_n < \infty$ implies that $\lim_{n\to\infty} y_n = q$, so that $\{x_n\}_{n=0}^{\infty}$ is almost common-stable on K,
- (d) $\lim_{n\to\infty} y_n = q$ implies that $\lim_{n\to\infty} \varepsilon_n = 0$.

Proof From (ii), we have $c'_n = t_n b'_n$, where $t_n \to 0$ as $n \to \infty$. It follows from Lemma 7 that $F(T) \cap F(S)$ is a singleton; that is, $F(T) \cap F(S) = \{q\}$ for some $q \in K$. Set

$$M = \max\left\{\sup_{n\geq 0} \{\|u_n - q\|\}, \sup_{n\geq 0} \{\|v_n - q\|\}\right\}.$$

Since T is strictly hemicontractive, it follows form Lemma 6 that

$$\operatorname{Re}\langle x - Tx, j(x - q) \rangle \geq k ||x - q||^2, \quad \forall x \in K,$$

$$\operatorname{Re}\langle (I-T-kI)x-(I-T-kI)q, j(x-q)\rangle \geq 0, \quad \forall x \in K.$$

In view of Lemma 5, we have

$$\|x - q\| \le \|x - q + r[(I - T - kI)x - (I - T - kI)q]\|, \quad \forall x \in K, \forall r > 0.$$
(2.3)

Also,

$$(1 - b'_n)x_n = (1 - (1 - k)b'_n)x_{n+1} + b'_n(I - T - kI)x_{n+1} + b'_n(Tx_{n+1} - Tz_n) - c'_n(v_n - x_n),$$
(2.4)

and

$$(1 - b'_n)q = (1 - (1 - k)b'_n)q + b'_n(I - T - kI)q.$$
(2.5)

From (2.4) and (2.5), we infer that for all $n \ge 0$,

$$\begin{split} (1-b'_n) \|x_n-q\| &\geq \left\| \left(1-(1-k)b'_n\right)(x_{n+1}-q) + b'_n(I-T-kI)(x_{n+1}-q) \right\| \\ &\quad -b'_n \|Tx_{n+1} - Tz_n\| - c'_n \|v_n - x_n\| \\ &= \left(1-(1-k)b'_n\right) \left\| x_{n+1} - q + \frac{b'_n}{1-(1-k)b'_n}(I-T-kI)(x_{n+1}-q) \right\| \\ &\quad -b'_n \|Tx_{n+1} - Tz_n\| - c'_n \|v_n - x_n\| \\ &\geq \left(1-(1-k)b'_n\right) \|x_{n+1} - q\| - b'_n \|Tx_{n+1} - Tz_n\| \\ &\quad -c'_n \|v_n - x_n\|, \end{split}$$

which implies that for all $n \ge 0$,

$$\|x_{n+1} - q\| \leq \frac{1 - b'_n}{1 - (1 - k)b'_n} \|x_n - q\|$$

$$+ \frac{b'_n}{1 - (1 - k)b'_n} \|Tx_{n+1} - Tz_n\| + \frac{c'_n}{1 - (1 - k)b'_n} \|v_n - x_n\|$$

$$\leq (1 - kb'_n) \|x_n - q\| + k^{-1}b'_n\|Tx_{n+1} - Tz_n\| + k^{-1}c'_n\|v_n - x_n\|$$

$$\leq (1 - kb'_n) \|x_n - q\| + k^{-1}Lb'_n\|x_{n+1} - z_n\| + k^{-1}c'_n\|v_n - x_n\|$$

$$\leq (1 - kb'_n) \|x_n - q\| + k^{-1}Lb'_n\|x_{n+1} - z_n\|$$

$$+ k^{-1}c'_n(\|v_n - q\| + \|x_n - q\|)$$

$$= (1 - kb'_n + k^{-1}c'_n) \|x_n - q\| + k^{-1}Lb'_n\|x_{n+1} - z_n\|$$

$$+ k^{-1}c'_n(\|v_n - q\|], \qquad (2.6)$$

$$\|x_{n+1} - z_n\| \leq \|b'_n(Tz_n - x_n) + c'_n(v_n - x_n)\|$$

$$\leq b'_{n} \|x_{n} - Tz_{n}\| + c'_{n} \|v_{n} - x_{n}\| + b_{n} \|x_{n} - Sx_{n}\| + c_{n} \|u_{n} - x_{n}\| \leq b'_{n} (\|x_{n} - q\| + \|q - Tz_{n}\|) + c'_{n} (\|v_{n} - q\| + \|x_{n} - q\|) + b_{n} (\|x_{n} - q\| + \|q - Sx_{n}\|) + c_{n} (\|u_{n} - q\| + \|x_{n} - q\|) \leq b'_{n} (\|x_{n} - q\| + L\|z_{n} - q\|) + c'_{n} (\|v_{n} - q\| + \|x_{n} - q\|) + b_{n} (\|x_{n} - q\| + L\|x_{n} - q\|) + c_{n} (\|u_{n} - q\| + \|x_{n} - q\|) = [b'_{n} + c'_{n} + (1 + L)b_{n} + c_{n}] \|x_{n} - q\| + Lb'_{n} \|z_{n} - q\| + c'_{n} \|v_{n} - q\| + c_{n} \|u_{n} - q\|,$$

$$(2.7)$$

$$\begin{aligned} \|z_n - q\| &= \|x_n - q - b_n(x_n - Sx_n) + c_n(u_n - x_n)\| \\ &\leq \|x_n - q\| + b_n \|x_n - Sx_n\| + c_n \|u_n - x_n\| \\ &\leq \|x_n - q\| + b_n (\|x_n - q\| + \|q - Sx_n\|) \\ &+ c_n (\|u_n - q\| + \|x_n - q\|) \\ &\leq \|x_n - q\| + b_n (\|x_n - q\| + L\|x_n - q\|) \\ &+ c_n (\|u_n - q\| + \|x_n - q\|) \\ &= [1 + (1 + L)b_n + c_n] \|x_n - q\| + c_n \|u_n - q\|. \end{aligned}$$

$$(2.8)$$

Substituting (2.8) in (2.7), we have

$$||x_{n+1} - z_n|| \le [b'_n + c'_n + (1+L)b_n + c_n]||x_n - q|| + Lb'_n[[1 + (1+L)b_n + c_n]||x_n - q|| + c_n||u_n - q||] + c'_n||v_n - q|| + c_n||u_n - q|| = [(1+L)b'_n + L(1+L)b_nb'_n + (1+L)b_n + c'_n + (1+Lb'_n)c_n]||x_n - q|| + c'_n||v_n - q|| + (1+Lb'_n)c_n||u_n - q||.$$
(2.9)

Substituting (2.9) in (2.6), we get

$$\begin{aligned} \|x_{n+1} - q\| &\leq \left(1 - kb'_n + k^{-1}c'_n\right) \|x_n - q\| + k^{-1}Lb'_n \left[\left[(1+L)b'_n + L(1+L)b_nb'_n + (1+L)b_n + c'_n + (1+Lb'_n)c_n \right] \|x_n - q\| \right] \\ &+ L(1+L)b_nb'_n + (1+Lb'_n)c_n \|u_n - q\| + k^{-1}c'_n \|v_n - q\| \\ &= \left[1 - b'_n \left[k - k^{-1}L((1+L)b'_n + L(1+L)b_nb'_n + (1+L)b_n + c'_n + (1+Lb'_n)c_n - k^{-1}t_n \right] \right] \|x_n - q\| \\ &+ k^{-1}Lb'_n (1+Lb'_n)c_n \|u_n - q\| + k^{-1}(1+Lb'_n)c'_n \|v_n - q\| \\ &\leq \left[1 - b'_n \left[k - k^{-1}L((1+L)^2b'_n + (1+L)b_n + c'_n + (1+L)b_n + (1+L)b_n + (1+L)b_n + (1+L)b_n + c'_n + (1+L)c_n \right] \right] \|x_n - q\| \end{aligned}$$

$$\begin{aligned} &+ k^{-1}L(1+L)b'_{n}c_{n}\|u_{n}-q\|+k^{-1}(1+L)c'_{n}\|v_{n}-q\|\\ &\leq \left(1-sb'_{n}\right)\|x_{n}-q\|+k^{-1}L(1+L)b'_{n}c_{n}\|u_{n}-q\|\\ &+ k^{-1}(1+L)c'_{n}\|v_{n}-q\|\\ &\leq \left(1-sb'_{n}\right)\|x_{n}-q\|+k^{-1}L(1+L)b'_{n}c_{n}M+k^{-1}(1+L)b'_{n}t_{n}M\\ &= \left(1-sb'_{n}\right)\|x_{n}-q\|+k^{-1}(1+L)Mb'_{n}(Lc_{n}+t_{n}).\end{aligned}$$

Put

$$\alpha_n = \|x_n - q\|,$$

$$\omega_n = sb'_n,$$

$$\beta_n = s^{-1}k^{-1}(1 + L)M(Lc_n + t_n),$$

$$\gamma_n = 0,$$

we have

$$\alpha_{n+1} \leq (1-\omega_n)\alpha_n + \omega_n\beta_n + \gamma_n, \quad n \geq 0.$$

Observe that $\sum_{n=0}^{\infty} \omega_n = \infty$, $\omega_n \in [0,1]$ and $\lim_{n\to\infty} \beta_n = 0$. It follows from Lemma 3 that $\lim_{n\to\infty} ||x_n - q|| = 0$.

We also have

$$(1 - b'_n)y_n = (1 - (1 - k)b'_n)p_n + b'_n(I - T - kI)p_n + b'_n(Tp_n - Tw_n) - c'_n(v_n - y_n).$$
(2.10)

From (2.5) and (2.10), it follows that for all $n \ge 0$,

$$\begin{aligned} (1-b'_n) \|y_n - q\| &\geq \left\| \left(1 - (1-k)b'_n \right)(p_n - q) + b'_n (I - T - kI)(p_n - q) \right\| \\ &\quad - b'_n \|Tp_n - Tw_n\| - c'_n \|v_n - y_n\| \\ &= \left(1 - (1-k)b'_n \right) \left\| p_n - q \right. \\ &\quad + \frac{b'_n}{1 - (1-k)b'_n} (I - T - kI)(p_n - q) \right\| \\ &\quad - b'_n \|Tp_n - Tw_n\| - c'_n \|v_n - y_n\| \\ &\geq \left(1 - (1-k)b'_n \right) \|p_n - q\| - b'_n \|Tp_n - Tw_n\| \\ &\quad - c'_n \|v_n - y_n\|, \end{aligned}$$

which implies that for all $n \ge 0$,

$$\begin{split} \|p_n - q\| &\leq \frac{1 - b'_n}{1 - (1 - k)b'_n} \|y_n - q\| \\ &+ \frac{b'_n}{1 - (1 - k)b'_n} \|Tp_n - Tw_n\| + \frac{c'_n}{1 - (1 - k)b'_n} \|v_n - y_n\| \end{split}$$

$$\leq (1 - kb'_{n}) \|y_{n} - q\| + k^{-1}b'_{n}\|Tp_{n} - Tw_{n}\| + k^{-1}c'_{n}\|v_{n} - y_{n}\|$$

$$\leq (1 - kb'_{n})\|y_{n} - q\| + k^{-1}Lb'_{n}\|p_{n} - w_{n}\| + k^{-1}c'_{n}\|v_{n} - y_{n}\|$$

$$\leq (1 - kb'_{n})\|y_{n} - q\| + k^{-1}Lb'_{n}\|p_{n} - w_{n}\|$$

$$+ k^{-1}c'_{n}(\|v_{n} - q\| + \|y_{n} - q\|)$$

$$= (1 - kb'_{n} + k^{-1}c'_{n})\|y_{n} - q\| + k^{-1}Lb'_{n}\|p_{n} - w_{n}\|$$

$$+ k^{-1}c'_{n}\|v_{n} - q\|, \qquad (2.11)$$

$$\begin{split} \|p_{n} - w_{n}\| &\leq \left\| b_{n}'(Tw_{n} - y_{n}) + c_{n}'(v_{n} - y_{n}) \right\| \\ &+ \left\| b_{n}(y_{n} - Sy_{n}) - c_{n}(u_{n} - y_{n}) \right\| \\ &\leq b_{n}'\|y_{n} - Tw_{n}\| + c_{n}'\|v_{n} - y_{n}\| \\ &+ b_{n}\|y_{n} - Sy_{n}\| + c_{n}\|u_{n} - y_{n}\| \\ &\leq b_{n}'(\|y_{n} - q\| + \|q - Tw_{n}\|) + c_{n}'(\|v_{n} - q\| + \|y_{n} - q\|) \\ &+ b_{n}(\|y_{n} - q\| + \|q - Sy_{n}\|) + c_{n}(\|u_{n} - q\| + \|y_{n} - q\|) \\ &\leq b_{n}'(\|y_{n} - q\| + L\|w_{n} - q\|) + c_{n}'(\|v_{n} - q\| + \|y_{n} - q\|) \\ &+ b_{n}(\|y_{n} - q\| + L\|y_{n} - q\|) + c_{n}(\|u_{n} - q\| + \|y_{n} - q\|) \\ &= \left[b_{n}' + c_{n}' + (1 + L)b_{n} + c_{n} \right] \|y_{n} - q\| + Lb_{n}'\|w_{n} - q\| \\ &+ c_{n}'\|v_{n} - q\| + c_{n}\|u_{n} - q\|, \end{split}$$

$$(2.12)$$

$$\|w_{n} - q\| = \|(y_{n} - q) - b_{n}(y_{n} - Sy_{n}) + c_{n}(u_{n} - y_{n})\|$$

$$\leq \|y_{n} - q\| + b_{n}\|y_{n} - Sy_{n}\| + c_{n}\|u_{n} - y_{n}\|$$

$$\leq \|y_{n} - q\| + b_{n}(\|y_{n} - q\| + \|q - Sy_{n}\|)$$

$$+ c_{n}(\|u_{n} - q\| + \|y_{n} - q\|)$$

$$\leq \|y_{n} - q\| + b_{n}(\|y_{n} - q\| + L\|y_{n} - q\|)$$

$$+ c_{n}(\|u_{n} - q\| + \|y_{n} - q\|)$$

$$= [1 + (1 + L)b_{n} + c_{n}]\|y_{n} - q\| + c_{n}\|u_{n} - q\|. \qquad (2.13)$$

Substituting (2.13) in (2.12), we have

$$\begin{split} \|p_{n} - w_{n}\| &\leq \left[b'_{n} + c'_{n} + (1+L)b_{n} + c_{n}\right]\|y_{n} - q\| \\ &+ Lb'_{n}\left[\left[1 + (1+L)b_{n} + c_{n}\right]\|y_{n} - q\| \\ &+ c_{n}\|u_{n} - q\|\right] + c'_{n}\|v_{n} - q\| + c_{n}\|u_{n} - q\| \\ &= \left[(1+L)b'_{n} + L(1+L)b_{n}b'_{n} + (1+L)b_{n} + c'_{n} \\ &+ (1+Lb'_{n})c_{n}\right]\|y_{n} - q\| \\ &+ c'_{n}\|v_{n} - q\| + (1+Lb'_{n})c_{n}\|u_{n} - q\|. \end{split}$$
(2.14)

Substituting (2.14) in (2.11), we get

$$\begin{split} \|p_{n} - q\| &\leq \left(1 - kb'_{n} + k^{-1}c'_{n}\right)\|y_{n} - q\| + k^{-1}Lb'_{n}\left[\left[(1 + L)b'_{n} + L(1 + L)b_{n}b'_{n} + (1 + L)b_{n} + c'_{n} + (1 + Lb'_{n})c_{n}\right]\|y_{n} - q\| + L(1 + L)b_{n}b'_{n} + (1 + L)b'_{n}c_{n}\|u_{n} - q\|\right] + k^{-1}c'_{n}\|v_{n} - q\| \\ &= \left[1 - b'_{n}\left[k - k^{-1}L((1 + L)b'_{n} + L(1 + L)b_{n}b'_{n} + (1 + L)b_{n} + c'_{n} + (1 + Lb'_{n})c_{n}\right] - k^{-1}t_{n}\right]\right]\|y_{n} - q\| \\ &+ k^{-1}Lb'_{n}(1 + Lb'_{n})c_{n}\|u_{n} - q\| + k^{-1}(1 + Lb'_{n})c'_{n}\|v_{n} - q\| \\ &\leq \left[1 - b'_{n}\left[k - k^{-1}L((1 + L)^{2}b'_{n} + (1 + L)b_{n} + c'_{n} + (1 + L)c_{n}\right] - k^{-1}t_{n}\right]\right]\|y_{n} - q\| \\ &+ k^{-1}L(1 + L)c'_{n}n - q\| + k^{-1}(1 + L)c'_{n}\|v_{n} - q\| \\ &\leq \left(1 - sb'_{n}\right)\|y_{n} - q\| + k^{-1}L(1 + L)b'_{n}c_{n}\|u_{n} - q\| \\ &+ k^{-1}(1 + L)c'_{n}\|v_{n} - q\| \end{aligned}$$

$$(2.15)$$

for any $n \ge 0$. Thus (2.15) implies that

$$\|y_{n+1} - q\| \le \|y_{n+1} - p_n\| + \|p_n - q\|$$

$$\le (1 - sb'_n)\|y_n - q\| + k^{-1}L(1 + L)b'_nc_n\|u_n - q\|$$

$$+ k^{-1}(1 + L)c'_n\|v_n - q\| + \varepsilon_n$$

$$= (1 - \omega_n)\|y_n - q\| + \omega_n\beta_n + \gamma_n.$$
(2.16)

With

$$\begin{split} &\alpha_n = \|y_n - q\|,\\ &\omega_n = sb'_n,\\ &\beta_n = s^{-1}k^{-1}(1+L)M(Lc_n + t_n),\\ &\gamma_n = \varepsilon_n, \quad \forall n \geq 0, \end{split}$$

we have

$$\alpha_{n+1} \leq (1-\omega_n)\alpha_n + \omega_n\beta_n + \gamma_n, \quad n \geq 0.$$

Observe that $\sum_{n=0}^{\infty} \omega_n = \infty$, $\omega_n \in [0,1]$ and $\lim_{n\to\infty} \beta_n = 0$. It follows from Lemma 3 that $\lim_{n\to\infty} \|y_n - q\| = 0$.

Suppose that $\lim_{n\to\infty} y_n = q$. It follows from equation (2.15) that

$$\begin{split} \varepsilon_n &\leq \|y_{n+1} - q\| + \|p_n - q\| \\ &\leq \left(1 - sb'_n\right)\|y_n - q\| + k^{-1}L(1 + L)b'_nc_n\|u_n - q\| \\ &+ k^{-1}(1 + L)c'_n\|v_n - q\| + \|y_{n+1} - q\| \to 0, \end{split}$$

as $n \to \infty$; that is, $\varepsilon_n \to 0$ as $n \to \infty$.

Using the techniques in the proof of Theorem 9, we have the following results.

Theorem 10 Let X, K, T, S, s, $\{u_n\}_{n=0}^{\infty}, \{v_n\}_{n=0}^{\infty}, \{x_n\}_{n=0}^{\infty}, \{z_n\}_{n=0}^{\infty}, \{w_n\}_{n=0}^{\infty}, \{y_n\}_{n=0}^{\infty} and \{p_n\}_{n=0}^{\infty}$ be as in Theorem 9. Suppose that $\{a_n\}_{n=0}^{\infty}, \{b_n\}_{n=0}^{\infty}, \{c_n\}_{n=0}^{\infty}, \{a'_n\}_{n=0}^{\infty}, \{b'_n\}_{n=0}^{\infty} and \{c'_n\}_{n=0}^{\infty} are sequences in [0,1] satisfying conditions (i), (iii)-(v) of Theorem 9 with$

$$\sum_{n=0}^{\infty} c'_n < \infty.$$

Then the conclusions of Theorem 9 hold.

Theorem 11 Let X, K, T, S, s, $\{u_n\}_{n=0}^{\infty}, \{v_n\}_{n=0}^{\infty}, \{x_n\}_{n=0}^{\infty}, \{z_n\}_{n=0}^{\infty}, \{w_n\}_{n=0}^{\infty}, \{y_n\}_{n=0}^{\infty}, and \{p_n\}_{n=0}^{\infty}\}$ be as in Theorem 9. Suppose that $\{a_n\}_{n=0}^{\infty}, \{b_n\}_{n=0}^{\infty}, \{c_n\}_{n=0}^{\infty}, \{a'_n\}_{n=0}^{\infty}, \{b'_n\}_{n=0}^{\infty}, and \{c'_n\}_{n=0}^{\infty}$ are sequences in [0,1] satisfying condition (i), (iii) and (v) of Theorem 9 with

$$\lim_{n \to \infty} c'_n = 0,$$

$$b'_n \ge m > 0, \quad \forall n \ge 0,$$

where m is a constant. Then

(a) the sequence $\{x_n\}_{n=0}^{\infty}$ converges strongly to the common fixed point q of T and S. Also,

$$||x_{n+1}-q|| \le (1-sm)||x_n-q|| + C, \quad \forall n \ge 0,$$

where

$$C = k^{-1}(1+L) \left[L \sup_{n \ge 0} \{ c_n \| u_n - q \| \} + \sup_{n \ge 0} \{ c'_n \| v_n - q \| \} \right],$$

(b)

$$\|y_{n+1} - q\| \le (1 - sm)\|y_n - q\| + k^{-1}L(1 + L)c_n\|u_n - q\|$$
$$+ k^{-1}(1 + L)c'_n\|v_n - q\| + \varepsilon_n, \quad \forall n \ge 0,$$

(c) $\lim_{n\to\infty} y_n = q$ implies that $\lim_{n\to\infty} \varepsilon_n = 0$.

Proof As in the proof of Theorem 9, we conclude that $F(T) \cap F(S) = \{q\}$ and

$$\begin{aligned} \|x_{n+1} - q\| &\leq (1 - sb'_n) \|x_n - q\| + k^{-1}L(1 + L)b'_n c_n \|u_n - q\| \\ &+ k^{-1}(1 + L)c'_n \|v_n - q\| \\ &\leq (1 - sm) \|x_n - q\| + k^{-1}L(1 + L)c_n \|u_n - q\| \\ &+ k^{-1}(1 + L)c'_n \|v_n - q\| \\ &\leq (1 - sm) \|x_n - q\| + C, \quad \forall n \geq 0. \end{aligned}$$

Let

 $a_n = \|x_n - q\|,$

$$\theta = sm,$$

$$b_n = (sm)^{-1}k^{-1}(1+L)[Lc_n ||u_n - x^*|| + c'_n ||v_n - x^*||], \quad \forall n \ge 0.$$

Observe that $0 \le \theta < 1$ and $\lim_{n\to\infty} b_n = 0$. It follows from Lemma 4 that $\lim_{n\to\infty} ||x_n - q|| = 0$.

Also, from (2.15), we have

$$\begin{aligned} \|y_{n+1} - q\| &\leq (1 - sb'_n) \|y_n - q\| + k^{-1}L(1 + L)b'_n c_n \|u_n - q\| \\ &+ k^{-1}(1 + L)c'_n \|v_n - q\| + \varepsilon_n \\ &\leq (1 - sm) \|y_n - q\| + k^{-1}L(1 + L)c_n \|u_n - q\| \\ &+ k^{-1}(1 + L)c'_n \|v_n - q\| + \varepsilon_n. \end{aligned}$$

Suppose that $\lim_{n\to\infty} y_n = q$. It follows from equation (2.15) that

$$\begin{split} \varepsilon_n &\leq \|y_{n+1} - q\| + \|p_n - q\| \\ &\leq (1 - sm)\|y_n - q\| + k^{-1}L(1 + L)c_n\|u_n - q\| \\ &\quad + k^{-1}(1 + L)c'_n\|v_n - q\| + \|y_{n+1} - q\| \to 0, \end{split}$$

as $n \to \infty$; that is, $\varepsilon_n \to 0$ as $n \to \infty$.

Conversely, suppose that $\lim_{n\to\infty} \varepsilon_n = 0$. Put

$$\begin{aligned} a_n &= \|y_n - q\|, \\ \theta &= sm, \\ b_n &= (sm)^{-1}k^{-1}(1+L) \big[Lc_n \big\| u_n - x^* \big\| + c'_n \big\| v_n - x^* \big\| \big] + \varepsilon_n, \quad \forall n \ge 0, \\ \gamma_n &= \varepsilon_n, \quad \forall n \ge 0. \end{aligned}$$

Observe that $0 \le \theta < 1$ and $\lim_{n\to\infty} b_n = 0$. It follows from Lemma 4 that $\lim_{n\to\infty} \|y_n - q\| = 0$.

As an immediate consequence of Theorems 9 and 11, we have the following:

Corollary 12 Let K be a nonempty closed convex subset of an arbitrary Banach space X and T, S : $K \to K$ be two Lipschitz strictly hemicontractive operators. Suppose that $\{\alpha_n\}_{n=0}^{\infty}$, $\{\beta_n\}_{n=0}^{\infty}$ are any sequences in [0,1] satisfying

(vi)
$$\sum_{n=0}^{\infty} \alpha_n = \infty$$

(vii) $L[(1+L)^2\alpha_n + (1+L)\beta_n] \le k(k-s), n \ge 0,$

where s is a constant in (0, k). Suppose that $\{x_n\}_{n=0}^{\infty}$ is the sequence generated from an arbitrary $x_0 \in K$ by

$$\begin{aligned} x_{n+1} &= (1 - \alpha_n) x_n + \alpha_n T z_n, \\ z_n &= (1 - \beta_n) x_n + \beta_n S x_n, \quad n \geq 0. \end{aligned}$$

Let $\{y_n\}_{n=0}^{\infty}$ be any sequence in K and define $\{\varepsilon_n\}_{n=0}^{\infty}$ by

$$\varepsilon_n = \|y_{n+1} - p_n\|, \quad n \ge 0,$$

where

$$p_n = (1 - \alpha_n) y_n + \alpha_n T w_n,$$

and

$$w_n = (1 - \beta_n)y_n + \beta_n Sy_n, \quad n \ge 0.$$

Then

- (a) the sequence $\{x_n\}_{n=0}^{\infty}$ converges strongly to the common fixed point q of T and S,
- (b) $\sum_{n=0}^{\infty} \varepsilon_n < \infty$ implies that $\lim_{n\to\infty} y_n = q$, so that $\{x_n\}_{n=0}^{\infty}$ is almost common-stable on K,
- (c) $\lim_{n\to\infty} y_n = q$ implies that $\lim_{n\to\infty} \varepsilon_n = 0$.

Corollary 13 Let X, K, T, S, s, $\{x_n\}_{n=0}^{\infty}, \{z_n\}_{n=0}^{\infty}, \{w_n\}_{n=0}^{\infty}, \{y_n\}_{n=0}^{\infty}$ and $\{p_n\}_{n=0}^{\infty}$ be as in Theorem 9. Suppose that $\{\alpha_n\}_{n=0}^{\infty}, \{\beta_n\}_{n=0}^{\infty}$ are sequences in [0,1] satisfying conditions (vi)-(vii) and (iii) of Theorem 9 with

$$\alpha_n \ge m > 0, \quad \forall n \ge 0,$$

where m is a constant. Then

(a) the sequence $\{x_n\}_{n=0}^{\infty}$ converges strongly to the common fixed point q of T and S. Also,

$$||x_{n+1}-q|| \le (1-sm)||x_n-q||, \quad \forall n \ge 0,$$

(b)

$$\|y_{n+1}-q\| \le (1-sm)\|y_n-q\| + \varepsilon_n, \quad \forall n \ge 0,$$

(c) $\lim_{n\to\infty} y_n = q$ implies that $\lim_{n\to\infty} \varepsilon_n = 0$.

Example 14 Let \mathbb{R} denote the set of real numbers with the usual norm, $K = \mathbb{R}$, and define $T, S : \mathbb{R} \to \mathbb{R}$ by

$$Tx = \frac{2}{5}\sin^2 x$$
, and $Sx = \frac{4}{5}x$.

Set $L = \frac{4}{5}$, $t = \frac{5}{4}$, $s = \frac{1}{400}$. Clearly, $F(T) \cap F(S) = \{0\}$ and

$$|Tx - Ty| \le \frac{2}{5} |\sin x - \sin y| |\sin x + \sin y| \le L|x - y|, \quad \forall x, y \in \mathbb{R}.$$

Clearly both *T* and *S* are Lipschitz operators on \mathbb{R} .

Also, it follows from (1.1) that

$$|(1+r)(x-y) - rt(Tx - Ty)| \ge (1+r)|x-y| - rt|Tx - Ty|$$

= $|x-y| + r(|x-y| - t|Tx - Ty|)$
 $\ge |x-y|$

for any $x, y \in \mathbb{R}$ and r > 0. Thus *T* is strongly pseudocontractive and Lemma 7 ensures that *T* is strictly hemicontractive. Put

$$\begin{split} b_n' &= \frac{25}{81} \frac{1}{\sqrt{n} + 100}, \\ c_n' &= \frac{1}{(\sqrt{n} + 100)^2}, \\ a_n' &= 1 - (b_n' + c_n'), \\ b_n &= c_n = \frac{5}{9} \frac{1}{n + 100}, \\ a_n &= 1 - (b_n + c_n), \quad \forall n \ge 0, \end{split}$$

then it can be easily seen that

$$L[(1+L)^{2}b'_{n} + c'_{n} + (1+L)(b_{n} + c_{n})] + \frac{c'_{n}}{b'_{n}} \le 0.456 \le 0.049375, \quad \forall n \ge 0.$$

It follows from Theorem 9 that the sequence $\{x_n\}_{n=0}^{\infty}$ defined by (2.1) converges strongly to the common fixed point 0 of *T* and *S* in *K* and the iterative scheme defined by (2.1) is *T*-stable.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Author details

¹Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia. ²Hajvery University, 43-52 Industrial Area, Gulberg-III, Lahore, Pakistan. ³Faculty of Mechanical Engineering, University in Belgrade, Al. Rudara 12-35, Belgrade, 11 070, Serbia.

Acknowledgements

The first author gratefully acknowledges the support from the Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU) during this research.

Received: 3 March 2012 Accepted: 7 September 2012 Published: 25 September 2012

References

- 1. Xu, Y: Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations. J. Math. Anal. Appl. 224, 91-101 (1998)
- Chidume, CE, Osilike, MO: Fixed point iterations for strictly hemicontractive maps in uniformly smooth Banach spaces. Numer. Funct. Anal. Optim. 15, 779-790 (1994)
- 3. Weng, X: Fixed point iteration for local strictly pseudo-contractive mapping. Proc. Am. Math. Soc. **113**(3), 727-731 (1991)
- 4. Kato, T: Nonlinear semigroups and evolution equations. J. Math. Soc. Jpn. 19, 508-520 (1967)
- Osilike, MO: Stable iteration procedures for strong pseudocontractions and nonlinear operator equations of the accretive type. J. Math. Anal. Appl. 204, 677-692 (1996)

- Chidume, CE: An iterative process for nonlinear Lipschitzian strongly accretive mappings in L_p spaces. J. Math. Anal. Appl. 151, 453-461 (1990)
- Chidume, CE: Iterative solutions of nonlinear equations with strongly accretive operators. J. Math. Anal. Appl. 192, 502-518 (1995)
- 8. Tan, KK, Xu, HK: Iterative solutions to nonlinear equations of strongly accretive operators in Banach spaces. J. Math. Anal. Appl. **178**, 9-21 (1993)
- Chang, SS: Some problems and results in the study of nonlinear analysis. Nonlinear Anal. TMA 30(7), 4197-4208 (1997)
- Chang, SS, Cho, YJ, Lee, BS, Kang, SM: Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudocontractive mappings in Banach spaces. J. Math. Anal. Appl. 224, 149-165 (1998)
- Chidume, CE: Iterative approximation of fixed points of Lipschitzian strictly pseudocontractive mappings. Proc. Am. Math. Soc. 99(2), 283-288 (1987)
- 12. Chidume, CE: Approximation of fixed points of strongly pseudocontractive mappings. Proc. Am. Math. Soc. 120, 545-551 (1994)
- Chidume, CE: Iterative solution of nonlinear equations in smooth Banach spaces. Nonlinear Anal. TMA 26(11), 1823-1834 (1996)
- 14. Chidume, CE, Osilike, MO: Nonlinear accretive and pseudocontractive operator equations in Banach spaces. Nonlinear Anal. **31**, 779-789 (1998)
- 15. Deng, L: On Chidume's open questions. J. Math. Anal. Appl. 174(2), 441-449 (1993)
- 16. Deng, L: An iterative process for nonlinear Lipschitz and strongly accretive mappings in uniformly convex and uniformly smooth Banach spaces. Acta Appl. Math. **32**, 183-196 (1993)
- Deng, L: Iteration processes for nonlinear Lipschitz strongly accretive mappings in L_p spaces. J. Math. Anal. Appl. 188(1), 128-140 (1994)
- Deng, L, Ding, XP: Iterative approximation of Lipschitz strictly pseudocontractive mappings in uniformly smooth Banach spaces. Nonlinear Anal., Theory Methods Appl. 24(7), 981-987 (1995)
- 19. Zeng, LC: Iterative approximation of solutions to nonlinear equations of strongly accretive operators in Banach spaces. Nonlinear Anal. TMA **31**, 589-598 (1998)
- 20. Harder, AM, Hicks, TL: A stable iteration procedure for nonexpansive mappings. Math. Jpn. 33, 687-692 (1988)
- 21. Harder, AM, Hicks, TL: Stability results for fixed point iteration procedures. Math. Jpn. 33, 693-706 (1988)
- 22. Ishikawa, S: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44, 147-150 (1974)
- 23. Liu, LW: Approximation of fixed points of a strictly pseudocontractive mapping. Proc. Am. Math. Soc. 125(5), 1363-1366 (1997)
- 24. Liu, Z, Kang, SM, Shim, SH: Almost stability of the Mann iteration method with errors for strictly hemicontractive operators in smooth Banach spaces. J. Korean Math. Soc. **40**(1), 29-40 (2003)
- Park, JA: Mann iteration process for the fixed point of strictly pseudocontractive mapping in some Banach spaces. J. Korean Math. Soc. 31, 333-337 (1994)
- Liu, LS: Ishikawa and Mann iteration process with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 194(1), 114-125 (1995)
- 27. Berinde, V: Generalized contractions and applications (Romanian). Editura Cub Press 22, Baia Mare (1997)

doi:10.1186/1687-1812-2012-160

Cite this article as: Hussain et al.: Stability of the Ishikawa iteration scheme with errors for two strictly hemicontractive operators in Banach spaces. Fixed Point Theory and Applications 2012 2012:160.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com