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Abstract
The main purpose of this paper is to establish the convergence, almost
common-stability and common-stability of the Ishikawa iteration scheme with error
terms in the sense of Xu (J. Math. Anal. Appl. 224:91-101, 1998) for two Lipschitz
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1 Preliminaries
Let K be a nonempty subset of an arbitrary Banach space E and E∗ be its dual space. The
symbols D(T), R(T) and F(T) stand for the domain, the range and the set of fixed points
of T respectively (for a single-valued map T : X → X, x ∈ X is called a fixed point of T iff
T(x) = x). We denote by J the normalized duality mapping from E to E∗ defined by

J(x) =
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖ = ∥∥f ∗∥∥}.

Let T be a self-mapping of K .

Definition  Then T is called Lipshitzian if there exists L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖ (.)

for all x, y ∈ K . If L = , then T is called non-expansive, and if  ≤ L < , T is called con-
traction.

Definition  [, ]
. The mapping T is said to be pseudocontractive if the inequality

‖x – y‖ ≤ ∥∥x – y + t
(
(I – T)x – (I – T)y

)∥∥ (.)

holds for each x, y ∈ K and for all t > . As a consequence of a result of Kato [], it follows
from the inequality (.) that T is pseudocontractive if and only if there exists j(x – y) ∈
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J(x – y) such that

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖ (.)

for all x, y ∈ K .
. T is said to be strongly pseudocontractive if there exists a t >  such that

‖x – y‖ ≤ ∥∥( + r)(x – y) – rt(Tx – Ty)
∥∥ (.)

for all x, y ∈ D(T) and r > .
. T is said to be local strongly pseudocontractive if, for each x ∈ D(T), there exists a

tx >  such that

‖x – y‖ ≤ ∥∥( + r)(x – y) – rtx(Tx – Ty)
∥∥ (.)

for all y ∈D(T) and r > .
. T is said to be strictly hemicontractive if F(T) �= ϕ and if there exists a t >  such that

‖x – q‖ ≤ ∥∥( + r)(x – q) – rt(Tx – q)
∥∥ (.)

for all x ∈D(T), q ∈ F(T) and r > .

It is easy to verify that an iteration scheme {xn}∞n= which is T-stable on K is almost
T-stable on K . Osilike [] proved that an iteration scheme which is almost T-stable on X
may fail to be T-stable on X.
Clearly, each strongly pseudocontractive operator is local strongly pseudocontractive.
Chidume [] established that the Mann iteration sequence converges strongly to the

unique fixed point of T in case T is a Lipschitz strongly pseudo-contractive mapping from
a bounded closed convex subset of Lp (or lp) into itself. Afterwards, several authors gener-
alized this result of Chidume in various directions. Chidume [] proved a similar result by
removing the restriction limn→∞ αn = . Tan and Xu [] extended that result of Chidume
to the Ishikawa iteration scheme in a p-uniformly smooth Banach space. Chidume andOs-
ilike [] improved the result of Chidume [] to strictly hemicontractive mappings defined
on a real uniformly smooth Banach space.
Recently, some researchers have generalized the results to real smooth Banach spaces,

real uniformly smooth Banach spaces, real Banach spaces; or to the Mann iteration
method, the Ishikawa iteration method; or to strongly pseudocontractive operators, lo-
cal strongly pseudocontractive operators, strictly hemicontractive operators [–].
Themain purpose of this paper is to establish the convergence, almost common-stability

and common-stability of the Ishikawa iteration scheme with error terms in the sense of
Xu [] for two Lipschitz strictly hemicontractive operators in arbitrary Banach spaces. Our
results extend, improve and unify the corresponding results in [, , , , –, –].

2 Main results
We need the following results.
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Lemma [] Let {αn}∞n=, {βn}∞n=, {γn}∞n= and {ωn}∞n= be nonnegative real sequences such
that

αn+ ≤ ( –ωn)αn +ωnβn + γn, n≥ ,

with {ωn}∞n= ⊂ [, ],
∑∞

n= ωn = ∞,
∑∞

n= γn < ∞ and limn→∞ βn = .Then limn→∞ αn = .

Lemma [] Let {an}∞n=, {bn}∞n= be sequences of nonnegative real numbers and  ≤ θ < ,
so that

an+ ≤ θan + bn, for all n ≥ .

(i) If limn→∞ bn = , then limn→∞ an = .
(ii) If

∑∞
n= bn < ∞, then

∑∞
n= an < ∞.

Lemma  [] Let x, y ∈ X. Then ‖x‖ ≤ ‖x+ ry‖ for every r >  if and only if there is f ∈ J(x)
such that Re〈y, f 〉 ≥ .

Lemma  [] Let T : D(T) ⊆ X → X be an operator with F(T) �= ∅. Then T is strictly
hemicontractive if and only if there exists t >  such that for all x ∈ D(T) and q ∈ F(T),
there exists j ∈ J(x – q) satisfying

Re
〈
x – Tx, j(x – q)

〉 ≥
(
 –


t

)
‖x – q‖.

Lemma  [] Let X be an arbitrary normed linear space and T : D(T) ⊆ X → X be an
operator.

(i) If T is a local strongly pseudocontractive operator and F(T) �= ∅, then F(T) is a
singleton and T is strictly hemicontractive.

(ii) If T is strictly hemicontractive, then F(T) is a singleton.

In the sequel, let k = t–
t ∈ (, ), where t is the constant appearing in (.). Further L

denotes the common Lipschitz constant of T and S, and I denotes the identity mapping
on an arbitrary Banach space X.

Definition  Let K be a nonempty convex subset of X and T ,S : K → K be two operators.
Assume that xo ∈ K and xn+ = f (T ,S,xn) defines an iteration scheme which produces a
sequence {xn}∞n= ⊂ K . Suppose, furthermore, that {xn}∞n= converges strongly to q ∈ F(T)∩
F(S) �= ϕ. Let {yn}∞n= be any bounded sequence in K and put εn = ‖yn+ – f (T ,S, yn)‖.

(i) The iteration scheme {xn}∞n= defined by xn+ = f (T ,S,xn) is said to be
common-stable on K if limn→∞ εn =  implies that limn→∞ yn = q.

(ii) The iteration scheme {xn}∞n= defined by xn+ = f (T ,S,xn) is said to be almost
common-stable on K if

∑∞
n= εn < ∞ implies that limn→∞ yn = q.

We now establish our main results.

Theorem  Let K be a nonempty closed convex subset of an arbitrary Banach space X
and T ,S : K → K be two Lipschitz strictly hemicontractive operators. Suppose that {un}∞n=,
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{vn}∞n= are arbitrary bounded sequences in K , and {an}∞n=, {bn}∞n=, {cn}∞n=, {a′
n}∞n=, {b′

n}∞n=
and {c′n}∞n= are any sequences in [, ] satisfying

(i) an + bn + cn =  = a′
n + b′

n + c′n,
(ii) c′n = o(b′

n),
(iii) limn→∞ cn = ,
(iv)

∑∞
n= b′

n = ∞,
(v) L[( + L)b′

n + c′n + ( + L)(bn + cn)] + c′n
b′
n

≤ k(k – s), n≥ ,
where s is a constant in (,k). Suppose that {xn}∞n= is the sequence generated from an arbi-
trary x ∈ K by

xn+ = a′
nxn + b′

nTzn + c′nvn,

zn = anxn + bnSxn + cnun, n≥ .
(.)

Let {yn}∞n= be any sequence in K and define {εn}∞n= by

εn = ‖yn+ – pn‖, n≥ ,

where

pn = a′
nyn + b′

nTwn + c′nvn,

wn = anyn + bnSyn + cnun, n≥ .
(.)

Then
(a) the sequence {xn}∞n= converges strongly to the common fixed point q of T and S. Also,

‖xn+ – q‖ ≤ (
 – sb′

n
)‖xn – q‖

+ L( + L)k–b′
ncn‖un – q‖ + ( + L)k–c′n‖vn – q‖, n ≥ ,

(b)

‖yn+ – q‖ ≤ (
 – sb′

n
)‖yn – q‖

+ L( + L)k–b′
ncn‖un – q‖ + ( + L)k–c′n‖vn – q‖ + εn, n≥ ,

(c)
∑∞

n= εn < ∞ implies that limn→∞ yn = q, so that {xn}∞n= is almost common-stable
on K ,

(d) limn→∞ yn = q implies that limn→∞ εn = .

Proof From (ii), we have c′n = tnb′
n, where tn →  as n→ ∞. It follows from Lemma  that

F(T)∩ F(S) is a singleton; that is, F(T)∩ F(S) = {q} for some q ∈ K . Set

M =max
{
sup
n≥

{‖un – q‖}, sup
n≥

{‖vn – q‖}}.

Since T is strictly hemicontractive, it follows form Lemma  that

Re
〈
x – Tx, j(x – q)

〉 ≥ k‖x – q‖, ∀x ∈ K ,

http://www.fixedpointtheoryandapplications.com/content/2012/1/160
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which implies that

Re
〈
(I – T – kI)x – (I – T – kI)q, j(x – q)

〉 ≥ , ∀x ∈ K .

In view of Lemma , we have

‖x – q‖ ≤ ∥∥x – q + r
[
(I – T – kI)x – (I – T – kI)q

]∥∥, ∀x ∈ K ,∀r > . (.)

Also,

(
 – b′

n
)
xn =

(
 – ( – k)b′

n
)
xn+ + b′

n(I – T – kI)xn+

+ b′
n(Txn+ – Tzn) – c′n(vn – xn), (.)

and

(
 – b′

n
)
q =

(
 – ( – k)b′

n
)
q + b′

n(I – T – kI)q. (.)

From (.) and (.), we infer that for all n≥ ,

(
 – b′

n
)‖xn – q‖ ≥ ∥∥(

 – ( – k)b′
n
)
(xn+ – q) + b′

n(I – T – kI)(xn+ – q)
∥∥

– b′
n‖Txn+ – Tzn‖ – c′n‖vn – xn‖

=
(
 – ( – k)b′

n
)∥∥∥∥xn+ – q +

b′
n

 – ( – k)b′
n
(I – T – kI)(xn+ – q)

∥∥∥∥
– b′

n‖Txn+ – Tzn‖ – c′n‖vn – xn‖
≥ (

 – ( – k)b′
n
)‖xn+ – q‖ – b′

n‖Txn+ – Tzn‖
– c′n‖vn – xn‖,

which implies that for all n≥ ,

‖xn+ – q‖ ≤  – b′
n

 – ( – k)b′
n
‖xn – q‖

+
b′
n

 – ( – k)b′
n
‖Txn+ – Tzn‖ + c′n

 – ( – k)b′
n
‖vn – xn‖

≤ (
 – kb′

n
)‖xn – q‖ + k–b′

n‖Txn+ – Tzn‖ + k–c′n‖vn – xn‖
≤ (

 – kb′
n
)‖xn – q‖ + k–Lb′

n‖xn+ – zn‖ + k–c′n‖vn – xn‖
≤ (

 – kb′
n
)‖xn – q‖ + k–Lb′

n‖xn+ – zn‖
+ k–c′n

(‖vn – q‖ + ‖xn – q‖)
=

(
 – kb′

n + k–c′n
)‖xn – q‖ + k–Lb′

n‖xn+ – zn‖
+ k–c′n‖vn – q‖, (.)

‖xn+ – zn‖ ≤ ∥∥b′
n(Tzn – xn) + c′n(vn – xn)

∥∥
+

∥∥bn(xn – Sxn) – cn(un – xn)
∥∥

http://www.fixedpointtheoryandapplications.com/content/2012/1/160
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≤ b′
n‖xn – Tzn‖ + c′n‖vn – xn‖

+ bn‖xn – Sxn‖ + cn‖un – xn‖
≤ b′

n
(‖xn – q‖ + ‖q – Tzn‖

)
+ c′n

(‖vn – q‖ + ‖xn – q‖)
+ bn

(‖xn – q‖ + ‖q – Sxn‖
)
+ cn

(‖un – q‖ + ‖xn – q‖)
≤ b′

n
(‖xn – q‖ + L‖zn – q‖) + c′n

(‖vn – q‖ + ‖xn – q‖)
+ bn

(‖xn – q‖ + L‖xn – q‖) + cn
(‖un – q‖ + ‖xn – q‖)

=
[
b′
n + c′n + ( + L)bn + cn

]‖xn – q‖ + Lb′
n‖zn – q‖

+ c′n‖vn – q‖ + cn‖un – q‖, (.)

‖zn – q‖ = ∥∥xn – q – bn(xn – Sxn) + cn(un – xn)
∥∥

≤ ‖xn – q‖ + bn‖xn – Sxn‖ + cn‖un – xn‖
≤ ‖xn – q‖ + bn

(‖xn – q‖ + ‖q – Sxn‖
)

+ cn
(‖un – q‖ + ‖xn – q‖)

≤ ‖xn – q‖ + bn
(‖xn – q‖ + L‖xn – q‖)

+ cn
(‖un – q‖ + ‖xn – q‖)

=
[
 + ( + L)bn + cn

]‖xn – q‖ + cn‖un – q‖. (.)

Substituting (.) in (.), we have

‖xn+ – zn‖ ≤ [
b′
n + c′n + ( + L)bn + cn

]‖xn – q‖
+ Lb′

n
[[
 + ( + L)bn + cn

]‖xn – q‖
+ cn‖un – q‖] + c′n‖vn – q‖ + cn‖un – q‖

=
[
( + L)b′

n + L( + L)bnb′
n + ( + L)bn + c′n

+
(
 + Lb′

n
)
cn

]‖xn – q‖
+ c′n‖vn – q‖ + (

 + Lb′
n
)
cn‖un – q‖. (.)

Substituting (.) in (.), we get

‖xn+ – q‖ ≤ (
 – kb′

n + k–c′n
)‖xn – q‖ + k–Lb′

n
[[
( + L)b′

n

+ L( + L)bnb′
n + ( + L)bn + c′n +

(
 + Lb′

n
)
cn

]‖xn – q‖
+ c′n‖vn – q‖ + (

 + Lb′
n
)
cn‖un – q‖] + k–c′n‖vn – q‖

=
[
 – b′

n
[
k – k–L

(
( + L)b′

n + L( + L)bnb′
n

+ ( + L)bn + c′n +
(
 + Lb′

n
)
cn

)
– k–tn

]]‖xn – q‖
+ k–Lb′

n
(
 + Lb′

n
)
cn‖un – q‖ + k–

(
 + Lb′

n
)
c′n‖vn – q‖

≤ [
 – b′

n
[
k – k–L

(
( + L)b′

n + ( + L)bn

+ c′n + ( + L)cn
)
– k–tn

]]‖xn – q‖

http://www.fixedpointtheoryandapplications.com/content/2012/1/160
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+ k–L( + L)b′
ncn‖un – q‖ + k–( + L)c′n‖vn – q‖

≤ (
 – sb′

n
)‖xn – q‖ + k–L( + L)b′

ncn‖un – q‖
+ k–( + L)c′n‖vn – q‖

≤ (
 – sb′

n
)‖xn – q‖ + k–L( + L)b′

ncnM + k–( + L)b′
ntnM

=
(
 – sb′

n
)‖xn – q‖ + k–( + L)Mb′

n(Lcn + tn).

Put

αn = ‖xn – q‖,
ωn = sb′

n,

βn = s–k–( + L)M(Lcn + tn),

γn = ,

we have

αn+ ≤ ( –ωn)αn +ωnβn + γn, n≥ .

Observe that
∑∞

n= ωn = ∞, ωn ∈ [, ] and limn→∞ βn = . It follows from Lemma  that
limn→∞ ‖xn – q‖ = .
We also have

(
 – b′

n
)
yn =

(
 – ( – k)b′

n
)
pn + b′

n(I – T – kI)pn

+ b′
n(Tpn – Twn) – c′n(vn – yn). (.)

From (.) and (.), it follows that for all n≥ ,

(
 – b′

n
)‖yn – q‖ ≥ ∥∥(

 – ( – k)b′
n
)
(pn – q) + b′

n(I – T – kI)(pn – q)
∥∥

– b′
n‖Tpn – Twn‖ – c′n‖vn – yn‖

=
(
 – ( – k)b′

n
)∥∥∥∥pn – q

+
b′
n

 – ( – k)b′
n
(I – T – kI)(pn – q)

∥∥∥∥
– b′

n‖Tpn – Twn‖ – c′n‖vn – yn‖
≥ (

 – ( – k)b′
n
)‖pn – q‖ – b′

n‖Tpn – Twn‖
– c′n‖vn – yn‖,

which implies that for all n≥ ,

‖pn – q‖ ≤  – b′
n

 – ( – k)b′
n
‖yn – q‖

+
b′
n

 – ( – k)b′
n
‖Tpn – Twn‖ + c′n

 – ( – k)b′
n
‖vn – yn‖

http://www.fixedpointtheoryandapplications.com/content/2012/1/160
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≤ (
 – kb′

n
)‖yn – q‖ + k–b′

n‖Tpn – Twn‖ + k–c′n‖vn – yn‖
≤ (

 – kb′
n
)‖yn – q‖ + k–Lb′

n‖pn –wn‖ + k–c′n‖vn – yn‖
≤ (

 – kb′
n
)‖yn – q‖ + k–Lb′

n‖pn –wn‖
+ k–c′n

(‖vn – q‖ + ‖yn – q‖)
=

(
 – kb′

n + k–c′n
)‖yn – q‖ + k–Lb′

n‖pn –wn‖
+ k–c′n‖vn – q‖, (.)

‖pn –wn‖ ≤ ∥∥b′
n(Twn – yn) + c′n(vn – yn)

∥∥
+

∥∥bn(yn – Syn) – cn(un – yn)
∥∥

≤ b′
n‖yn – Twn‖ + c′n‖vn – yn‖

+ bn‖yn – Syn‖ + cn‖un – yn‖
≤ b′

n
(‖yn – q‖ + ‖q – Twn‖

)
+ c′n

(‖vn – q‖ + ‖yn – q‖)
+ bn

(‖yn – q‖ + ‖q – Syn‖
)
+ cn

(‖un – q‖ + ‖yn – q‖)
≤ b′

n
(‖yn – q‖ + L‖wn – q‖) + c′n

(‖vn – q‖ + ‖yn – q‖)
+ bn

(‖yn – q‖ + L‖yn – q‖) + cn
(‖un – q‖ + ‖yn – q‖)

=
[
b′
n + c′n + ( + L)bn + cn

]‖yn – q‖ + Lb′
n‖wn – q‖

+ c′n‖vn – q‖ + cn‖un – q‖, (.)

‖wn – q‖ = ∥∥(yn – q) – bn(yn – Syn) + cn(un – yn)
∥∥

≤ ‖yn – q‖ + bn‖yn – Syn‖ + cn‖un – yn‖
≤ ‖yn – q‖ + bn

(‖yn – q‖ + ‖q – Syn‖
)

+ cn
(‖un – q‖ + ‖yn – q‖)

≤ ‖yn – q‖ + bn
(‖yn – q‖ + L‖yn – q‖)

+ cn
(‖un – q‖ + ‖yn – q‖)

=
[
 + ( + L)bn + cn

]‖yn – q‖ + cn‖un – q‖. (.)

Substituting (.) in (.), we have

‖pn –wn‖ ≤ [
b′
n + c′n + ( + L)bn + cn

]‖yn – q‖
+ Lb′

n
[[
 + ( + L)bn + cn

]‖yn – q‖
+ cn‖un – q‖] + c′n‖vn – q‖ + cn‖un – q‖

=
[
( + L)b′

n + L( + L)bnb′
n + ( + L)bn + c′n

+
(
 + Lb′

n
)
cn

]‖yn – q‖
+ c′n‖vn – q‖ + (

 + Lb′
n
)
cn‖un – q‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/160
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Substituting (.) in (.), we get

‖pn – q‖ ≤ (
 – kb′

n + k–c′n
)‖yn – q‖ + k–Lb′

n
[[
( + L)b′

n

+ L( + L)bnb′
n + ( + L)bn + c′n +

(
 + Lb′

n
)
cn

]‖yn – q‖
+ c′n‖vn – q‖ + (

 + Lb′
n
)
cn‖un – q‖] + k–c′n‖vn – q‖

=
[
 – b′

n
[
k – k–L

(
( + L)b′

n + L( + L)bnb′
n

+ ( + L)bn + c′n +
(
 + Lb′

n
)
cn

)
– k–tn

]]‖yn – q‖
+ k–Lb′

n
(
 + Lb′

n
)
cn‖un – q‖ + k–

(
 + Lb′

n
)
c′n‖vn – q‖

≤ [
 – b′

n
[
k – k–L

(
( + L)b′

n + ( + L)bn

+ c′n + ( + L)cn
)
– k–tn

]]‖yn – q‖
+ k–L( + L)b′

ncn‖un – q‖ + k–( + L)c′n‖vn – q‖
≤ (

 – sb′
n
)‖yn – q‖ + k–L( + L)b′

ncn‖un – q‖
+ k–( + L)c′n‖vn – q‖ (.)

for any n≥ . Thus (.) implies that

‖yn+ – q‖ ≤ ‖yn+ – pn‖ + ‖pn – q‖
≤ (

 – sb′
n
)‖yn – q‖ + k–L( + L)b′

ncn‖un – q‖
+ k–( + L)c′n‖vn – q‖ + εn

= ( –ωn)‖yn – q‖ +ωnβn + γn. (.)

With

αn = ‖yn – q‖,
ωn = sb′

n,

βn = s–k–( + L)M(Lcn + tn),

γn = εn, ∀n≥ ,

we have

αn+ ≤ ( –ωn)αn +ωnβn + γn, n≥ .

Observe that
∑∞

n= ωn = ∞, ωn ∈ [, ] and limn→∞ βn = . It follows from Lemma  that
limn→∞ ‖yn – q‖ = .
Suppose that limn→∞ yn = q. It follows from equation (.) that

εn ≤ ‖yn+ – q‖ + ‖pn – q‖
≤ (

 – sb′
n
)‖yn – q‖ + k–L( + L)b′

ncn‖un – q‖
+ k–( + L)c′n‖vn – q‖ + ‖yn+ – q‖ → ,

as n→ ∞; that is, εn →  as n→ ∞. �
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Using the techniques in the proof of Theorem , we have the following results.

Theorem Let X,K ,T , S, s, {un}∞n=, {vn}∞n=, {xn}∞n=, {zn}∞n=, {wn}∞n=, {yn}∞n= and {pn}∞n=
be as in Theorem . Suppose that {an}∞n=, {bn}∞n=, {cn}∞n=, {a′

n}∞n=, {b′
n}∞n= and {c′n}∞n= are

sequences in [, ] satisfying conditions (i), (iii)-(v) of Theorem  with

∞∑
n=

c′n < ∞.

Then the conclusions of Theorem  hold.

Theorem Let X,K ,T , S, s, {un}∞n=, {vn}∞n=, {xn}∞n=, {zn}∞n=, {wn}∞n=, {yn}∞n= and {pn}∞n=
be as in Theorem . Suppose that {an}∞n=, {bn}∞n=, {cn}∞n=, {a′

n}∞n=, {b′
n}∞n= and {c′n}∞n= are

sequences in [, ] satisfying condition (i), (iii) and (v) of Theorem  with

lim
n→∞ c′n = ,

b′
n ≥ m > , ∀n≥ ,

where m is a constant. Then
(a) the sequence {xn}∞n= converges strongly to the common fixed point q of T and S. Also,

‖xn+ – q‖ ≤ ( – sm)‖xn – q‖ +C, ∀n≥ ,

where

C = k–( + L)
[
L sup
n≥

{
cn‖un – q‖} + sup

n≥

{
c′n‖vn – q‖}],

(b)

‖yn+ – q‖ ≤ ( – sm)‖yn – q‖ + k–L( + L)cn‖un – q‖
+ k–( + L)c′n‖vn – q‖ + εn, ∀n≥ ,

(c) limn→∞ yn = q implies that limn→∞ εn = .

Proof As in the proof of Theorem , we conclude that F(T)∩ F(S) = {q} and

‖xn+ – q‖ ≤ (
 – sb′

n
)‖xn – q‖ + k–L( + L)b′

ncn‖un – q‖
+ k–( + L)c′n‖vn – q‖

≤ ( – sm)‖xn – q‖ + k–L( + L)cn‖un – q‖
+ k–( + L)c′n‖vn – q‖

≤ ( – sm)‖xn – q‖ +C, ∀n≥ .

Let

an = ‖xn – q‖,
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θ = sm,

bn = (sm)–k–( + L)
[
Lcn

∥∥un – x∗∥∥ + c′n
∥∥vn – x∗∥∥]

, ∀n≥ .

Observe that  ≤ θ <  and limn→∞ bn = . It follows from Lemma  that
limn→∞ ‖xn – q‖ = .
Also, from (.), we have

‖yn+ – q‖ ≤ (
 – sb′

n
)‖yn – q‖ + k–L( + L)b′

ncn‖un – q‖
+ k–( + L)c′n‖vn – q‖ + εn

≤ ( – sm)‖yn – q‖ + k–L( + L)cn‖un – q‖
+ k–( + L)c′n‖vn – q‖ + εn.

Suppose that limn→∞ yn = q. It follows from equation (.) that

εn ≤ ‖yn+ – q‖ + ‖pn – q‖
≤ ( – sm)‖yn – q‖ + k–L( + L)cn‖un – q‖

+ k–( + L)c′n‖vn – q‖ + ‖yn+ – q‖ → ,

as n→ ∞; that is, εn →  as n→ ∞.
Conversely, suppose that limn→∞ εn = . Put

an = ‖yn – q‖,
θ = sm,

bn = (sm)–k–( + L)
[
Lcn

∥∥un – x∗∥∥ + c′n
∥∥vn – x∗∥∥]

+ εn, ∀n≥ ,

γn = εn, ∀n≥ .

Observe that  ≤ θ <  and limn→∞ bn = . It follows from Lemma  that
limn→∞ ‖yn – q‖ = . �

As an immediate consequence of Theorems  and , we have the following:

Corollary  Let K be a nonempty closed convex subset of an arbitrary Banach space X
and T ,S : K → K be two Lipschitz strictly hemicontractive operators. Suppose that {αn}∞n=,
{βn}∞n= are any sequences in [, ] satisfying

(vi)
∑∞

n= αn = ∞,
(vii) L[( + L)αn + ( + L)βn] ≤ k(k – s), n≥ ,

where s is a constant in (,k). Suppose that {xn}∞n= is the sequence generated from an arbi-
trary x ∈ K by

xn+ = ( – αn)xn + αnTzn,

zn = ( – βn)xn + βnSxn, n≥ .
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Let {yn}∞n= be any sequence in K and define {εn}∞n= by

εn = ‖yn+ – pn‖, n≥ ,

where

pn = ( – αn)yn + αnTwn,

and

wn = ( – βn)yn + βnSyn, n≥ .

Then
(a) the sequence {xn}∞n= converges strongly to the common fixed point q of T and S,
(b)

∑∞
n= εn <∞ implies that limn→∞ yn = q, so that {xn}∞n= is almost common-stable

on K ,
(c) limn→∞ yn = q implies that limn→∞ εn = .

Corollary  Let X, K , T , S, s, {xn}∞n=, {zn}∞n=, {wn}∞n=, {yn}∞n= and {pn}∞n= be as in The-
orem . Suppose that {αn}∞n=, {βn}∞n= are sequences in [, ] satisfying conditions (vi)-(vii)
and (iii) of Theorem  with

αn ≥ m > , ∀n≥ ,

where m is a constant. Then
(a) the sequence {xn}∞n= converges strongly to the common fixed point q of T and S. Also,

‖xn+ – q‖ ≤ ( – sm)‖xn – q‖, ∀n≥ ,

(b)

‖yn+ – q‖ ≤ ( – sm)‖yn – q‖ + εn, ∀n≥ ,

(c) limn→∞ yn = q implies that limn→∞ εn = .

Example  Let R denote the set of real numbers with the usual norm, K =R, and define
T ,S :R→R by

Tx =


sin x, and Sx =



x.

Set L = 
 , t =


 , s =


 . Clearly, F(T)∩ F(S) = {} and

|Tx – Ty| ≤ 

| sinx – sin y|| sinx + sin y| ≤ L|x – y|, ∀x, y ∈R.

Clearly both T and S are Lipschitz operators on R.
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Also, it follows from (.) that

∣∣( + r)(x – y) – rt(Tx – Ty)
∣∣ ≥ ( + r)|x – y| – rt|Tx – Ty|
= |x – y| + r

(|x – y| – t|Tx – Ty|)
≥ |x – y|

for any x, y ∈R and r > . Thus T is strongly pseudocontractive and Lemma  ensures that
T is strictly hemicontractive. Put

b′
n =




√
n + 

,

c′n =


(
√
n + )

,

a′
n =  –

(
b′
n + c′n

)
,

bn = cn =




n + 

,

an =  – (bn + cn), ∀n≥ ,

then it can be easily seen that

L
[
( + L)b′

n + c′n + ( + L)(bn + cn)
]
+
c′n
b′
n

≤ . ≤ ., ∀n≥ .

It follows from Theorem  that the sequence {xn}∞n= defined by (.) converges strongly
to the common fixed point  of T and S in K and the iterative scheme defined by (.) is
T-stable.
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