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1 Introduction and preliminaries
The notion of metric space was introduced by Fréchet [] in . In almost all fields of
quantitative sciences which require the use of analysis, metric spaces play a major role.
Internet search engines, image classification, protein classification (see, e.g., []) can be
listed as examples in which metric spaces have been extensively used to solve major prob-
lems. It is conceivable that metric spaces will be needed to explore new problems that will
arise in quantitative sciences in the future. Therefore, it is necessary to consider various
generalizations of metrics and metric spaces to broaden the scope of applied sciences. In
this respect, cone metric spaces, fuzzy metric spaces, partial metric spaces, quasi-metric
spaces and b-metric spaces can be given as the main examples. Applications of these dif-
ferent approaches to metrics and metric spaces make it evident that fixed point theorems
are important not only for the branches of mainstream mathematics, but also for many
divisions of applied sciences.
Inspired by this motivation Mustafa and Sims [] introduced the notion of a G-metric

space in  (see also [–]). In their introductory paper, the authors investigated ver-
sions of the celebrated theorems of the fixed point theory such as the Banach contrac-
tion mapping principle [] from the point of view of G-metrics. Another fundamental
aspect in the theory of existence and uniqueness of fixed points was considered by Ran
and Reurings [] in partially ordered metric spaces. After Ran and Reurings’ pioneering
work, several authors have focused on the fixed points in ordered metric spaces and have
used the obtained results to discuss the existence and uniqueness of solutions of differ-
ential equations, more precisely, of boundary value problems (see, e.g., [–]). Upon
the introduction of the notion of coupled fixed points by Guo and Laksmikantham [],
Gnana-Bhaskar and Lakshmikantham [] obtained interesting results related to differ-
ential equations with periodic boundary conditions by developing the mixed monotone
property in the context of partially ordered metric spaces. As a continuation of this trend,
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many authors conducted research on the coupled fixed point theory and many results in
this direction were published (see, for example, [–]).
In this paper, we prove the theorem that amalgamates these three seminal approaches in

the study of fixed point theory, the so called G-metrics, coupled fixed points and partially
ordered spaces.
We shall start with some necessary definitions and a detailed overview of the fundamen-

tal results developed in the remarkable worksmentioned above. Throughout this paper,N
andN* denote the set of non-negative integers and the set of positive integers respectively.

Definition  (See []) Let X be a non-empty set, G : X × X × X → R
+ be a function

satisfying the following properties:
(G) G(x, y, z) =  if x = y = z,
(G) G(x,x, y) >  for all x, y ∈ X with x �= y,
(G) G(x,x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y �= z,
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables),
(G) G(x, y, z) ≤ G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality).

Then the function G is called a generalized metric or, more specially, a G-metric on X,
and the pair (X,G) is called a G-metric space.

It can be easily verified that every G-metric on X induces a metric dG on X given by

dG(x, y) =G(x, y, y) +G(y,x,x), for all x, y ∈ X. (.)

Trivial examples of G-metric are as follows.

Example  Let (X,d) be a metric space. The function G : X ×X ×X → [, +∞), defined
by

G(x, y, z) =max
{
d(x, y),d(y, z),d(z,x)

}
,

or

G(x, y, z) = d(x, y) + d(y, z) + d(z,x),

for all x, y, z ∈ X, is a G-metric on X.

The concepts of convergence, continuity, completeness and Cauchy sequence have also
been defined in [].

Definition  (See []) Let (X,G) be aG-metric space, and let {xn} be a sequence of points
of X. We say that {xn} is G-convergent to x ∈ X if limn,m→+∞ G(x,xn,xm) = , that is, if for
any ε > , there exists N ∈ N such that G(x,xn,xm) < ε for all n,m ≥ N . We call x the limit
of the sequence and write xn → x or limn→+∞ xn = x.

Proposition  (See []) Let (X,G) be a G-metric space. The following statements are
equivalent:
() {xn} is G-convergent to x,
() G(xn,xn,x) →  as n→ +∞,
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() G(xn,x,x)→  as n→ +∞,
() G(xn,xm,x)→  as n,m → +∞.

Definition  (See []) Let (X,G) be aG-metric space. A sequence {xn} is calledG-Cauchy
sequence if for any ε > , there is N ∈ N such that G(xn,xm,xl) < ε for all m,n, l ≥ N , that
is, G(xn,xm,xl)→  as n,m, l → +∞.

Proposition  (See []) Let (X,G) be a G-metric space. The following statements are
equivalent:
() The sequence {xn} is G-Cauchy.
() For any ε > , there exists N ∈N such that G(xn,xm,xm) < ε, for all m,n≥ N .

Definition  (See []) A G-metric space (X,G) is called G-complete if every G-Cauchy
sequence is G-convergent in (X,G).

Definition  Let (X,G) be a G-metric space. A mapping F : X ×X ×X → X is said to be
continuous if for any three G-convergent sequences {xn}, {yn} and {zn} converging to x, y
and z respectively, {F(xn, yn, zn)} is G-convergent to F(x, y, z).

We define below g-ordered complete G-metric spaces.

Definition  Let (X,�) be a partially ordered set, (X,G) be a G-metric space and g : X →
X be a mapping. A partially ordered G-metric space, (X,G,�), is called g-ordered com-
plete if for each G-convergent sequence {xn}∞n= ⊂ X, the following conditions hold:

(OC) If {xn} is a non-increasing sequence in X such that xn → x∗, then gx∗ � gxn ∀n ∈N.
(OC) If {xn} is a non-decreasing sequence in X such that xn → x∗, then gx∗ � gxn ∀n ∈N.

In particular, if g is the identity mapping in (OC) and (OC), the partially ordered
G-metric space, (X,G,�), is called ordered complete.
We next recall some basic notions from the coupled fixed point theory. In  Guo

and Lakshmikantham [] defined the concept of a coupled fixed point. In , in order
to prove the existence and uniqueness of the coupled fixed point of an operator F : X ×
X → X on a partially ordered metric space, Gnana-Bhaskar and Lakshmikantham []
reconsidered the notion of a coupled fixed point via the mixed monotone property.

Definition  ([]) Let (X,�) be a partially ordered set and F : X×X → X. Themapping
F is said to have the mixed monotone property if F(x, y) is monotone non-decreasing in x
and is monotone non-increasing in y, that is, for any x, y ∈ X,

x � x ⇒ F(x, y) � F(x, y), for x,x ∈ X,

and

y � y ⇒ F(x, y)� F(x, y), for y, y ∈ X.

Definition  ([]) An element (x, y) ∈ X ×X is called a coupled fixed point of the map-
ping F : X ×X → X if

x = F(x, y) and y = F(y,x).
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The results in [] were extended by Lakshmikantham and Ćirić in [] by defining the
mixed g-monotone property.

Definition  Let (X,�) be a partially ordered set, F : X × X → X and g : X → X. The
function F is said to have mixed g-monotone property if F(x, y) is monotone g-non-
decreasing in x and is monotone g-non-increasing in y, that is, for any x, y ∈ X,

g(x) � g(x) ⇒ F(x, y) � F(x, y), for x,x ∈ X, (.)

and

g(y) � g(y) ⇒ F(x, y) � F(x, y), for y, y ∈ X. (.)

It is clear that Definition  reduces to Definition  when g is the identity mapping.

Definition  An element (x, y) ∈ X×X is called a coupled coincidence point of themap-
pings F : X ×X → X and g : X → X if

F(x, y) = g(x), F(y,x) = g(y),

and a common coupled fixed point of F and g if

F(x, y) = g(x) = x, F(y,x) = g(y) = y.

Definition  The mappings F : X ×X → X and g : X → X are said to commute if

g
(
F(x, y)

)
= F

(
g(x), g(y)

)
, for all x, y ∈ X.

Throughout the rest of the paper, we shall use the notation gx instead of g(x), where
g : X → X and x ∈ X, for brevity. In [], Nashine proved the following theorems.

Theorem  Let (X,G,�) be a partially ordered G-metric space. Let F : X × X → X and
g : X → X be mappings such that F has the mixed g-monotone property, and let there exist
x, y ∈ X such that gx � F(x, y) and F(y,x) � gy. Suppose that there exists k ∈ [,  )
such that for all x, y,u, v,w, z ∈ X the following holds:

G
(
F(x, y),F(u, v),F(w, z)

) ≤ k
[
G(gx, gu, gw) +G(gy, gv, gz)

]
, (.)

for all gw � gu� gx and gy� gv � gz,where either gu �= gz or gv �= gw.Assume the following
hypotheses:

(i) F(X ×X) ⊆ g(X),
(ii) g(X) is G-complete,
(iii) g is G-continuous and commutes with F .

Then F and g have a coupled coincidence point, that is, there exists (x, y) ∈ X × X such
that gx = F(x, y) and gy = F(y,x). If gu = gz and gv = gw, then F and g have a common fixed
point, that is, there exists x ∈ X such that gx = F(x,x) = x.
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Theorem  If in the above theorem, we replace the condition (ii) by the assumption that
X is g-ordered complete, then we have the conclusions of Theorem .

We next give the definition ofG-compatiblemappings inspired by the definition of com-
patible mappings in [].

Definition  Let (X,G) be a G-metric space. The mappings F : X × X → X, g : X → X
are said to be G-compatible if

lim
n→∞G

(
gF(xn, yn), gF(xn, yn),F(gxn, gyn)

)

=  = lim
n→∞G

(
gF(xn, yn),F(gxn, gyn),F(gxn, gyn)

)

and

lim
n→∞G

(
gF(yn,xn), gF(yn,xn),F(gyn, gxn)

)

=  = lim
n→∞G

(
gF(yn,xn),F(gyn, gxn),F(gyn, gxn)

)
,

where {xn} and {yn} are sequences in X such that limn→∞ F(xn, yn) = limn→∞ gxn = x and
limn→∞ F(yn,xn) = limn→∞ gyn = y for all x, y ∈ X are satisfied.

In this paper, we aim to extend the results on coupled fixed points mentioned above.
Our results improve, enrich and extend some existing theorems in the literature. We also
give examples to illustrate our results. This paper can also be considered as a continuation
of the works of Berinde [, ].

2 Main results
We start with an example which shows the weakness of Theorem .

Example  Let X =R. Define G : X ×X ×X → [,∞) by

G(x, y, z) = |x – y| + |x – z| + |y – z|

for all x, y, z ∈ X. Let � be usual order. Then (X,G) is a G-metric space. Define a map
F : X ×X → X by F(x, y) = 

x+

y and g : X → X by g(x) = x

 for all x, y ∈ X. Let x = u = z.
Then we have

G
(
F(x, y),F(u, v),F(z,w)

)
= G

(


x +



y,


u +



v,


z +



w

)

=


|v – y| + 


|w – y| + 


|w – v|, (.)

and

G(gx, gu, gz) +G(gy, gv, gw) = G
(
x

,
u

,
z


)
+G

(
y

,
v

,
w


)

=


[|y – v| + |y –w| + |v –w|]. (.)
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It is clear that there is no k ∈ [,  ) for which the statement (.) of Theorem  holds.
Notice, however, that (, ) is the unique coupled coincidence point of F and g . In fact, it
is a common fixed point of F and g , that is, F(, ) = g = .

We now state our first result which successively guarantees the existence of a coupled
coincidence point.

Theorem  Let (X,�) be a partially ordered set and (X,G) be a G-complete G-metric
space. Let F : X × X → X and g : X → X be two mappings such that F has the mixed
g-monotone property on X and

G
(
F(x, y),F(u, v),F(w, z)

)
+G

(
F(y,x),F(v,u),F(z,w)

)
≤ k

[
G(gx, gu, gw) +G(gy, gv, gz)

]
(.)

for all x, y,u, v, z,w ∈ X with gx� gu� gw, gy� gv � gz. Assume that F(X ×X)⊂ g(X), g is
G-continuous and that F and g are G-compatible mappings. Suppose further that either
(a) F is continuous or
(b) (X,G,�) is g-ordered complete.

Suppose also that there exist x, y ∈ X such that gx � F(x, y) and F(y,x) � gy. If
k ∈ [, ), then F and g have a coupled coincidence point, that is, there exists (x, y) ∈ (X×X)
such that g(x) = F(x, y) and g(y) = F(y,x).

Proof Let x, y ∈ X be such that gx � F(x, y) and F(y,x) � gy. Using the fact that
F(X ×X) ⊂ g(X), we can construct two sequences {xn} and {yn} in X in the following way:

gxn+ = F(xn, yn), gyn+ = F(yn,xn), n ∈N. (.)

We shall prove that for all n≥ ,

gxn � gxn+ and gyn � gyn+. (.)

Since gx � F(x, y) and F(y,x) � gy and gx = F(x, y) and F(y,x) = gy, we have
gx � gx and gy � gy, that is, (.) holds for n = . Assume that (.) holds for some
n > . Since F has the mixed g-monotone property, from (.), we have

gxn+ = F(xn, yn) � F(xn+, yn) � F(xn+, yn+) = gxn+, (.)

and

gyn+ = F(yn,xn) � F(yn+,xn) � F(yn+,xn+) = gyn+. (.)

By mathematical induction, it follows that (.) holds for all n≥ , that is,

gx � gx � gx � · · · � gxn � gxn+ � gxn+ · · · , (.)

and

gy � gy � gy � · · · � gyn � gyn+ � gyn+ · · · . (.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/174
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If there exists n ∈N such that (gxn+, gyn+) = (gxn , gyn ), then F and g have a coupled
coincidence point. Indeed, in that case we would have

(gxn+, gyn+) =
(
F(xn , yn ),F(yn ,xn )

)
= (gxn , gyn )

⇐⇒ F(xn , yn ) = gxn and F(yn ,xn ) = gyn .

We suppose that (gxn+, gyn+) �= (gxn, gyn) for all n ∈ N. More precisely, we assume that
either gxn+ = F(xn, yn) �= gxn or gyn+ = F(yn,xn) �= gyn.
For n ∈N, we set

tn =G(gxn+, gxn+, gxn) +G(gyn+, gyn+, gyn).

Then by using (.) and (.), for each n ∈N, we have

tn = G(gxn+, gxn+, gxn) +G(gyn+, gyn+, gyn)

= G
(
F(xn, yn),F(xn, yn),F(xn–, yn–)

)
+G

(
F(yn,xn),F(yn,xn),F(yn–,xn–)

)
≤ k

[
G(gxn, gxn, gxn–) +G(gyn, gyn, gyn–)

]
= ktn–,

which yields that

tn ≤ knt, n ∈N. (.)

Now, for allm,n ∈ Nwithm > n, by using rectangle inequality (G) ofG-metric and (.),
we get

G(gxm, gxm, gxn) +G(gym, gym, gyn)

=G(gxn, gxm, gxm) +G(gyn, gym, gym)

≤ G(gxn, gxn+, gxn+) +G(gxn+, gxm, gxm)

+G(gyn, gyn+, gyn+) +G(gyn+, gym, gym)

≤ G(gxn, gxn+, gxn+) +G(gxn+, gxn+, gxn+) +G(gxn+, gxm, gxm)

+G(gyn, gxn+, gyn+) +G(gyn+, gyn+, gyn+) +G(gyn+, gym, gym)

...

≤ G(gxn, gxn+, gxn+) +G(gxn+, gxn+, gxn+) + · · · +G(gxm–, gxm, gxm)

+G(gyn, gyn+, gyn+) +G(gyn+, gyn+, gyn+) + · · · +G(gym–, gym, gym)

= tn + tn+ + · · · + tm–

≤ (
kn + kn+ + · · · + km–)t

≤ kn

 – k
t,
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which yields that

lim
n,m→+∞G(gxn, gxm, gxm) +G(gyn, gym, gym) = .

Then by Proposition , we conclude that the sequences {gxn} and {gyn} are G-Cauchy.
Noting that g(X) is G-complete, there exist x, y ∈ g(X) such that {gxn} and {gyn} are

G-convergent to x and y respectively, i.e.,

lim
n→+∞F(xn, yn) = lim

n→+∞ gxn+ = x,

lim
n→+∞F(yn,xn) = lim

n→+∞ gyn+ = y.
(.)

Since F and g are G-compatible mappings, by (.), we have

lim
n→∞G

(
gF(xn, yn),F(gxn, gyn),F(gxn, gyn)

)
= ,

lim
n→∞G

(
gF(yn,xn),F(gyn, gxn),F(gyn, gxn)

)
= .

(.)

Suppose that the condition (a) holds. For all n > , we have

G
(
gx,F(gxn, gyn),F(gxn, gyn)

)
+G

(
gy,F(gyn, gxn),F(gyn, gxn)

)
≤ G

(
gx, gF(xn, yn), gF(xn, yn)

)
+G

(
gF(xn, yn),F(gxn, gyn),F(gxn, gyn)

)
+G

(
gy, gF(yn,xn), gF(yn,xn)

)
+G

(
gF(yn,xn),F(gyn, gxn),F(gyn, gxn)

)
. (.)

Letting n→ ∞ in the above inequality, using (.), (.) and the continuities of F and g ,
we have

lim
n→∞G

(
gx,F(x, y),F(x, y)

)
+G

(
gy,F(y,x),F(y,x)

)
= .

Hence, we derive that gx = F(x, y) and gy = F(y,x), that is, (x, y) ∈ X is a coupled coinci-
dence point of F and g . Suppose that the condition (b) holds. By (.), (.) and (.), we
have

ggx � gx and ggy� gy. (.)

Due to the fact that F and g areG-compatible mappings and g is continuous, by (.) and
(.), we have

lim
n→∞ ggxn = gx = lim

n→∞ gF(xn, yn) = lim
n→∞F(gxn, gyn), (.)

lim
n→∞ ggyn = gy = lim

n→∞ gF(yn,xn) = lim
n→∞F(gyn, gxn). (.)

Keeping (.) and (.) in mind, we consider now

G
(
gx,F(x, y),F(x, y)

)
+G

(
gy,F(y,x),F(y,x)

)
≤ G(gx, ggxn+, ggxn+) +G

(
ggxn+,F(x, y),F(x, y)

)

http://www.fixedpointtheoryandapplications.com/content/2012/1/174
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+G(gy, ggyn+, ggyn+) +G
(
ggyn+,F(y,x),F(y,x)

)
=G(gx, ggxn+, ggxn+) +G

(
gF(xn, yn),F(x, y),F(x, y)

)
+G(gy, ggyn+, ggyn+) +G

(
gF(yn,xn),F(y,x),F(y,x)

)
. (.)

Letting n → ∞ in the above inequality, by using (.), (.) and the continuity of g , we
conclude that

 ≤ G
(
gx,F(x, y),F(x, y)

)
+G

(
gy,F(y,x),F(y,x)

) ≤ . (.)

By (G), we have gx = F(x, y) and gy = F(y,x). Consequently, the element (x, y) ∈ X ×X is a
coupled coincidence point of the mappings F and g . �

Corollary  Let (X,�) be a partially ordered set and (X,G) be a G-metric space such
that (X,G) is G-complete. Let F : X × X → X and g : X → X be two mappings such that F
has the mixed g-monotone property on X and

G
(
F(x, y),F(u, v),F(u, v)

)
+G

(
F(y,x),F(v,u),F(v,u)

)
≤ k

[
G(gx, gu, gu) +G(gy, gv, gv)

]
(.)

for all x, y,u, v ∈ X with gx � gu, gy � gv. Assume that F(X × X) ⊂ g(X), the self-mapping
g is G-continuous and F and g are G-compatible mappings. Suppose that either
(a) F is continuous or
(b) (X,G,�) is g-ordered complete.
Suppose also that there exist x, y ∈ X such that gx � F(x, y) and gy � F(y,x). If

k ∈ [, ), then F and g have a coupled coincidence point.

Proof It is sufficient to take z = u and w = v in Theorem . �

Corollary  Let (X,�) be a partially ordered set and (X,G) be a G-metric space such that
(X,G) is G-complete. Let F : X × X → X and g : X → X be two mappings such that F has
the mixed g-monotone property on X and

G
(
F(x, y),F(u, v),F(w, z)

)
+G

(
F(y,x),F(v,u),F(v,u)

)
≤ k

[
G(gx, gu, gw) +G(gy, gv, gz)

]
(.)

for all x, y,u, v ∈ X with gx � gu� gw, gy� gv� gz. Assume that F(X×X) ⊂ g(X) and that
the self-mapping g is G-continuous and commutes with F . Suppose that either
(a) F is continuous or
(b) (X,G,�) is g-ordered complete.
Suppose further that there exist x, y ∈ X such that gx � F(x, y) and gy � F(y,x).

If k ∈ [, ), then F and g have a coupled coincidence point.

Proof Since g commuteswith F , then F and g areG-compatiblemappings. Thus, the result
follows from Theorem . �
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Corollary  Let (X,�) be a partially ordered set and (X,G) be a G-metric space such
that (X,G) is G-complete. Let F : X × X → X and g : X → X be two mappings such that F
has the mixed g-monotone property on X and

G
(
F(x, y),F(u, v),F(u, v)

)
+G

(
F(y,x),F(v,u),F(v,u)

)
≤ k

[
G(gx, gu, gu) +G(gy, gv, gv)

]
(.)

for all x, y,u, v ∈ X with gx � gu, gy � gv. Assume that F(X × X) ⊂ g(X) and that g is
G-continuous and commutes with F . Suppose that either
(a) F is continuous or
(b) (X,G,�) is g-ordered complete.
Assume also that there exist x, y ∈ X such that gx � F(x, y) and gy � F(y,x). If

k ∈ [, ), then F and g have a coupled coincidence point.

Proof Since g commuteswith F , then F and g areG-compatiblemappings. Thus, the result
follows from Corollary . �

Letting g = I in Theorem  and in Corollary , we get the following results.

Corollary  Let (X,�) be a partially ordered set and (X,G) be a G-metric space such
that (X,G) is G-complete. Let F : X × X → X be a mapping having the mixed monotone
property on X and

G
(
F(x, y),F(u, v),F(w, z)

)
+G

(
F(y,x),F(v,u),F(v,u)

)
≤ k

[
G(x,u,w) +G(y, v, z)

]
(.)

for all x, y,u, v, z,w ∈ X with x � u� w, y� v � z. Suppose that either
(a) F is continuous or
(b) (X,G,�) is ordered complete.
Suppose also that there exist x, y ∈ X such that x � F(x, y) and y � F(y,x). If

k ∈ [, ), then F has a coupled fixed point.

Corollary  Let (X,�) be a partially ordered set and (X,G) be a G-metric space such
that (X,G) is G-complete. Let F : X × X → X be a mapping having the mixed monotone
property on X and

G
(
F(x, y),F(u, v),F(u, v)

)
+G

(
F(y,x),F(v,u),F(v,u)

)
≤ k

[
G(x,u,u) +G(y, v, v)

]
(.)

for all x, y,u, v ∈ X with x� u, y� v. Suppose that either
(a) F is continuous or
(b) (X,G,�) is ordered complete.
Suppose further that there exist x, y ∈ X such that x � F(x, y) and y � F(y,x). If

k ∈ [, ), then F has a coupled fixed point.

http://www.fixedpointtheoryandapplications.com/content/2012/1/174
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Example  Let us recall Example . We have

G
(
F(x, y),F(u, v),F(z,w)

)
+G

(
F(y,x),F(v,u),F(w, z)

)

=G
(


x +



y,


u +



v,


z +



w

)
+G

(


y +



x,



v +



u,



w +



z
)

≤ 

[(|u – x| + |z – x| + |z – u|) + (|v – y| + |w – y| + |w – v|)] (.)

and

G(gx, gu, gz) +G(gy, gv, gw) = G
(
x

,
u

,
z


)
+G

(
y

,
v

,
w


)

=


[(|u – x| + |z – x| + |z – u|)

+
(|v – y| + |w – y| + |w – v|)]. (.)

It is clear that there any k ∈ [  , ) provides the statement (.) of Theorem .
Notice that (, ) is the unique coupled coincidence point of F and g which is also com-

mon coupled fixed point, that is, F(, ) = g = .

Example  Let X =R. Define G : X ×X ×X → [,∞) by

G(x, y, z) = |x – y| + |x – z| + |y – z|

for all x, y, z ∈ X. Let � be usual order. Then (X,G) is a G-metric space.
Define a map F : X ×X → X by

F(x, y) =


x +



y

and g : X → X by g(x) = x for all x, y ∈ X. Then F(X ×X) = X = g(X). We observe that

G
(
F(x, y),F(u, v),F(z,w)

)
+G

(
F(y,x),F(v,u),F(v,u)

)

=G
(


x +



y,



u +



v,



z +



w

)
+G

(


y +



x,



v +



u,



w +



z

)

=


∣∣v – y

∣∣ + 

∣∣w – y

∣∣ + 

∣∣w – v

∣∣ + 

∣∣u – x

∣∣ + 

∣∣z – x

∣∣ + 

∣∣z – u

∣∣

+


∣∣v – y

∣∣ + 

∣∣w – y

∣∣ + 

∣∣w – v

∣∣ + 

∣∣u – x

∣∣ + 

∣∣z – x

∣∣ + 

∣∣z – u

∣∣

=


[∣∣v – y

∣∣ + ∣∣w – y
∣∣ + ∣∣w – v

∣∣ + ∣∣u – x
∣∣ + ∣∣z – x

∣∣ + ∣∣z – u
∣∣]

and

G(gx, gu, gz) +G(gy, gv, gw) = G
(
x,u, z

)
+G

(
y, v,w)

=
(∣∣x – u

∣∣ + ∣∣x – z
∣∣ + ∣∣u – z

∣∣)
+

(∣∣y – v
∣∣ + ∣∣y –w∣∣ + ∣∣v –w∣∣), (.)

then the statement (.) of Theorem  is satisfied for any k ∈ (  , ) and (, ).
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Notice that if we replace the condition (.) of Theorem  with the condition (.) of
Theorem  [], that is,

G
(
F(x, y),F(u, v),F(w, z)

) ≤ k
[
G(gx, gu, gw) +G(gy, gv, gz)

]
, (.)

where k ∈ [,  ), then the coupled coincidence point exists even though the contractive
condition is not satisfied.
More precisely, consider x = u = z. Then we have

G
(
F(x, y),F(u, v),F(z,w)

)
= G

(


x +



y,



u +



v,



z +



w

)

=


∣∣v – y

∣∣ + 

∣∣w – y

∣∣ + 

∣∣w – v

∣∣ (.)

and

G(gx, gu, gz) +G(gy, gv, gw) = G
(
x,u, z

)
+G

(
y, v,w)

=
∣∣y – v

∣∣ + ∣∣y –w∣∣ + ∣∣v –w∣∣. (.)

It is clear that the condition (.) holds for k > 
 .
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