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Abstract
We set up a new variant of cyclic generalized contractive mappings for a map in a
metric space and present existence and uniqueness results of fixed points for such
mappings. Our results generalize or improve many existing fixed point theorems in
the literature. To illustrate our results, we give some examples. At the same time as
applications of the presented theorems, we prove an existence theorem for solutions
of a class of nonlinear integral equations.
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1 Introduction and preliminaries
All theway through this paper, byR+, we designate the set of all real nonnegative numbers,
while N is the set of all natural numbers.
The celebrated Banach’s [] contraction mapping principle is one of the cornerstones in

the development of nonlinear analysis. This principle has been extended and improved
in many ways over the years (see, e.g., [–]). Fixed point theorems have applications
not only in various branches of mathematics but also in economics, chemistry, biology,
computer science, engineering, and other fields. In particular, such theorems are used to
demonstrate the existence and uniqueness of a solution of differential equations, integral
equations, functional equations, partial differential equations, and others. Owing to the
magnitude, generalizations of the Banach fixed point theorem have been explored heavily
by many authors. This celebrated theorem can be stated as follows.

Theorem . ([]) Let (X,d) be a complete metric space and T be amapping of X into itself
satisfying

d(Tx,Ty) ≤ kd(x, y), ∀x, y ∈ X, ()

where k is a constant in (, ). Then T has a unique fixed point x* ∈ X.

Inequality () implies the continuity of T . A natural question is whether we can find
contractive conditions which will imply the existence of a fixed point in a complete metric
space but will not imply continuity.
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On the other hand, cyclic representations and cyclic contractions were introduced by
Kirk et al. []. A mapping T : A ∪ B → A ∪ B is called cyclic if T(A) ⊆ B and T(B) ⊆ A,
where A, B are nonempty subsets of a metric space (X,d). Moreover, T is called a cyclic
contraction if there exists k ∈ (, ) such that d(Tx,Ty) ≤ kd(x, y) for all x ∈ A and y ∈ B.
Notice that although a contraction is continuous, a cyclic contraction need not to be. This
is one of the important gains of this theorem.

Definition . (See [, ]) Let (X,d) be a metric space. Let p be a positive integer,
A,A, . . . ,Ap be nonempty subsets of X, Y =

⋃p
i=Ai, and T : Y → Y . Then Y is said to

be a cyclic representation of Y with respect to T if
(i) Ai, i = , , . . . ,p are nonempty closed sets, and
(ii) T(A)⊆ A, . . . ,T(Ap–)⊆ Ap,T(Ap) ⊆ A.

Following the paper in [], a number of fixed point theorems on a cyclic representation
of Y with respect to a self-mapping T have appeared (see, e.g., [, –]).
In this paper, we introduce a new class of cyclic generalized (F ,ψ ,L)-contractive map-

pings, and then investigate the existence and uniqueness of fixed points for such map-
pings. Our main result generalizes and improves many existing theorems in the literature.
We supply appropriate examples to make obvious the validity of the propositions of our
results. To end with, as applications of the presented theorems, we achieve fixed point re-
sults for a generalized contraction of integral type and we prove an existence theorem for
solutions of a system of integral equations.

2 Main results
In this section, we introduce two new notions of a cyclic contraction and establish new
results for such mappings.
In the sequel, we fixed the set of functions by F ,ψ : [, +∞) → [, +∞) such that
(i) F is nondecreasing, continuous, and F () =  <F (t) for every t > ;
(ii) ψ is nondecreasing, right continuous, and ψ(t) < t for every t > .
Define F = {F :F satisfies (i)} and � = {ψ :ψ satisfies (ii)}.
We state the notion of a cyclic generalized (F ,ψ ,L)-contraction as follows.

Definition . Let (X,d) be a metric space. Let p be a positive integer, A,A, . . . ,Ap be
nonempty subsets of X and Y =

⋃p
i=Ai. An operator T : Y → Y is said to be a cyclic

generalized (F ,ψ ,L)-contraction for some ψ ∈ �, F ∈ F, and L ≥  if
(a) Y =

⋃p
i=Ai is a cyclic representation of Y with respect to T ;

(b) for any (x, y) ∈ Ai ×Ai+, i = , , . . . ,p (with Ap+ = A),

F
(
d(Tx,Ty)

) ≤ ψ
(
F

(
�(x, y)

))
+ LF

(
�(x, y)

)
,

where

�(x, y) =max

{
d(x, y),d(x,Tx),d(y,Ty),

d(x,Ty) + d(y,Tx)


}

and

�(x, y) =min
{
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
.

Our first main result is the following.
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Theorem . Let (X,d) be a complete metric space, p ∈ N, A,A, . . . ,Ap be nonempty
closed subsets of X, and Y =

⋃p
i=Ai. Suppose T : Y → Y is a cyclic generalized (F ,ψ ,L)-

contraction mapping for some ψ ∈ � andF ∈ F. Then T has a unique fixed point.More-
over, the fixed point of T belongs to

⋂p
i=Ai.

Proof Let x ∈ A (such a point exists since A 
= ∅). Define the sequence {xn} in X by

xn+ = Txn, n = , , , . . . .

We shall prove that

lim
n→∞d(xn,xn+) = . ()

If, for some k, we have xk+ = xk , then () follows immediately. So, we can suppose that
d(xn,xn+) >  for all n. From the condition (a), we observe that for all n, there exists i =
i(n) ∈ {, , . . . ,p} such that (xn,xn+) ∈ Ai ×Ai+. Then, from the condition (b), we have

F
(
d(xn,xn+)

) ≤ ψ
(
F

(
�(xn–,xn)

))
+ LF

(
�(xn–,xn)

)
, n = , , . . . . ()

On the other hand, we have

�(xn–,xn) = max

{
d(xn–,xn),d(xn+,xn),



d(xn–,xn+)

}

= max
{
d(xn–,xn),d(xn,xn+)

}

and

�(xn–,xn) =min
{
d(xn–,xn),d(xn,xn+),d(xn–,xn+),d(xn,xn)

}
= .

Suppose that max{d(xk–,xk),d(xk ,xk+)} = d(xk ,xk+) for some k ∈ N. Then �(xk–,xk) =
d(xk ,xk+), so

F
(
d(xk ,xk+)

) ≤ ψ
(
F

(
d(xk ,xk+)

))
<F

(
d(xk ,xk+)

)
,

a contradiction. Hence,

�(xn–,xn) = d(xn–,xn),

and thus

F
(
d(xn,xn+)

) ≤ ψ
(
F

(
d(xn–,xn)

))
<F

(
d(xn–,xn)

)
. ()

Similarly, we have

F
(
d(xn–,xn)

)
<F

(
d(xn–,xn–)

)
. ()
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Thus, from () and (), we get

F
(
d(xn+,xn)

)
<F

(
d(xn,xn–)

)

for all n ∈N. Now, from

F
(
d(xn+,xn)

) ≤ ψ
(
F

(
d(xn,xn–)

))
< · · · <ψn(F(

d(x,x)
))

and the property of ψ , we obtain limn→∞ F (d(xn+,xn)) = , and consequently () holds.
Now, we shall prove that {xn} is a Cauchy sequence in (X,d). Suppose, on the contrary,

that {xn} is not a Cauchy sequence. Then there exists ε >  for which we can find two
sequences of positive integers {m(k)} and {n(k)} such that for all positive integers k,

m(k) > n(k)≥ k, d(xm(k),xn(k)) ≥ ε. ()

Further, corresponding to n(k), we can choose m(k) in such a way that it is the smallest
integer with m(k) > n(k) ≥ k satisfying (). Then we have

d(xm(k)–,xn(k)) < ε. ()

Using (), (), and the triangular inequality, we get

ε ≤ d(xn(k),xm(k))

≤ d(xn(k),xm(k)–) + d(xm(k)–,xm(k))

< ε + d(xm(k)–,xm(k)).

Thus, we have

ε ≤ d(xn(k),xm(k)) < ε + d(xm(k)–,xm(k)).

Passing to the limit as k → ∞ in the above inequality and using (), we obtain

lim
k→∞

d(xn(k),xm(k)) = ε+. ()

On the other hand, for all k, there exists j(k) ∈ {, . . . ,p} such that n(k) –m(k) + j(k) ≡ [p].
Then xm(k)–j(k) (for k large enough, m(k) > j(k)) and xn(k) lie in different adjacently labeled
sets Ai and Ai+ for certain i ∈ {, . . . ,p}. Using (b), we obtain

F
(
d(xm(k)–j(k)+,xn(k)+)

) ≤ ψ
(
F

(
�(xm(k)–j(k),xn(k))

))
+ LF

(
�(xm(k)–j(k),xn(k))

)
()

for all k. Now, we have

�(xm(k)–j(k),xn(k)) = max

{
d(xm(k)–j(k),xn(k)),d(xm(k)–j(k)+,xm(k)–j(k)),d(xn(k)+,xn(k)),

d(xm(k)–j(k),xn(k)+) + d(xn(k),xm(k)–j(k)+)


}
, ()
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and

�(xm(k)–j(k),xn(k)) = min
{
d(xm(k)–j(k)+,xm(k)–j(k)),d(xn(k)+,xn(k)),

d(xm(k)–j(k),xn(k)+),d(xn(k),xm(k)–j(k)+)
}

()

for all k. Using the triangular inequality, we get

∣∣d(xm(k)–j(k),xn(k)) – d(xn(k),xm(k))
∣∣

≤ d(xm(k)–j(k),xm(k))

≤
j(k)–∑
l=

d(xm(k)–j(k)+l,xm(k)–j(k)+l+)

≤
p–∑
l=

d(xm(k)–j(k)+l,xm(k)–j(k)+l+) →  as k → ∞ (
from ()

)
,

which implies from () that

lim
k→∞

d(xm(k)–j(k),xn(k)) = ε. ()

Using (), we have

lim
k→∞

d(xm(k)–j(k)+,xm(k)–j(k)) =  ()

and

lim
k→∞

d(xn(k)+,xn(k)) = . ()

Again, using the triangular inequality, we get

∣∣d(xm(k)–j(k),xn(k)+) – d(xm(k)–j(k),xn(k))
∣∣ ≤ d(xn(k),xn(k)+).

Passing to the limit as k → ∞ in the above inequality, using () and (), we get

lim
k→∞

d(xm(k)–j(k),xn(k)+) = ε. ()

Similarly, we have

∣∣d(xn(k),xm(k)–j(k)+) – d(xm(k)–j(k),xn(k))
∣∣ ≤ d(xm(k)–j(k),xm(k)–j(k)+).

Passing to the limit as k → ∞, using () and (), we obtain

lim
k→∞

d(xn(k),xm(k)–j(k)+) = ε. ()

Similarly, we have

lim
k→∞

d(xm(k)–j(k)+,xn(k)+) = ε. ()

http://www.fixedpointtheoryandapplications.com/content/2012/1/217
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Now, it follows from ()-() and the continuity of ϕ that

lim
k→∞

�(xm(k)–j(k),xn(k)) =max{ε, } = ε ()

and

lim
k→∞

�(xm(k)–j(k),xn(k)) =min{,, ε, ε} = . ()

Passing to the limit as k → ∞ in (), using (), (), (), and the condition (ii), we obtain

F (ε) ≤ ψ
(
F (ε)

)
+ L ·  <F (ε),

which is a contradiction. Thus, we proved that {xn} is a Cauchy sequence in (X,d).
Since (X,d) is complete, there exists x* ∈ X such that

lim
n→∞xn = x*. ()

We shall prove that

x* ∈
p⋂
i=

Ai. ()

From the condition (a), and since x ∈ A, we have {xnp}n≥ ⊆ A. Since A is closed, from
(), we get that x* ∈ A. Again, from the condition (a), we have {xnp+}n≥ ⊆ A. Since A

is closed, from (), we get that x* ∈ A. Continuing this process, we obtain ().
Now, we shall prove that x* is a fixed point of T . Indeed, from (), since for all n there

exists i(n) ∈ {, , . . . ,p} such that xn ∈ Ai(n), applying (b) with x = x* and y = xn, we obtain

F
(
d
(
Tx*,xn+

))
=F

(
d
(
Tx*,Txn

)) ≤ ψ
(
F

(
�

(
x*,xn

)))
+ LF

(
�

(
x*,xn

))
()

for all n. On the other hand, we have

�
(
x*,xn

)
=max

{
d
(
x*,xn

)
,d

(
x*,Tx*

)
,d(xn,xn+),

d(x*,xn+) + d(xn,Tx*)


}

and

�
(
x*,xn

)
=min

{
d
(
x*,Tx*

)
,d(xn,xn+),d

(
x*,xn+

)
,d

(
xn,Tx*

)}
.

Passing to the limit as n→ ∞ in the above inequality and using (), we obtain that

lim
n→∞�

(
x*,xn

)
=max

{
d
(
x*,Tx*

)
,


d
(
x*,Tx*

)}
and lim

n→∞�
(
x*,xn

)
= . ()

Passing to the limit as n→ ∞ in (), using () and (), we get

F
(
d
(
x*,Tx*

)) ≤ ψ

(
F

(
max

{
d
(
x*,Tx*

)
,


d
(
x*,Tx*

)}))
.
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Suppose that d(x*,Tx*) > . In this case, we have

max

{
d
(
x*,Tx*

)
,
d(x*,Tx*)



}
= d

(
x*,Tx*

)
,

which implies that

F
(
d
(
x*,Tx*

)) ≤ ψ
(
F

(
d
(
x*,Tx*

)))
<F

(
d
(
x*,Tx*

))
,

a contradiction. Then we have d(x*,Tx*) = , that is, x* is a fixed point of T .
Finally, we prove that x* is the unique fixed point of T . Assume that y* is another fixed

point of T , that is, Ty* = y*. From the condition (a), this implies that y* ∈ ⋂p
i=Ai. Then we

can apply (b) for x = x* and y = y*. We obtain

F
(
d
(
x*, y*

))
=F

(
d
(
Tx*,Ty*

)) ≤ ψ
(
F

(
�

(
x*, y*

)))
+ LF

(
�

(
x*, y*

))
.

Since x* and y* are fixed points of T , we can show easily that �(x*, y*) = d(x*, y*) and
�(x*, y*) = . If d(x*, y*) > , we get

F
(
d
(
x*, y*

))
= F

(
d
(
Tx*,Ty*

)) ≤ ψ
(
F

(
�

(
x*, y*

)))
= ψ

(
F

(
d
(
x*, y*

)))
<F

(
d
(
x*, y*

))
,

a contradiction. Then we have d(x*, y*) = , that is, x* = y*. Thus, we proved the uniqueness
of the fixed point. �

In the following, we deduce some fixed point theorems from our main result given by
Theorem ..
If we take p =  and A = X in Theorem ., then we get immediately the following fixed

point theorem.

Corollary . Let (X,d) be a complete metric space and T : X → X satisfy the following
condition: there exist ψ ∈ �, F ∈ F, and L ≥  such that

F
(
d(Tx,Ty)

) ≤ ψ

(
F

(
max

{
d(x, y),d(Tx,x),d(y,Ty),

d(x,Ty) + d(y,Tx)


}))

+ LF
(
min

{
d(x, y),d(Tx,x),d(y,Ty),d(x,Ty),d(y,Tx)

})

for all x, y ∈ X. Then T has a unique fixed point.

Remark . Corollary . extends and generalizes many existing fixed point theorems in
the literature [, –].

Corollary . Let (X,d) be a complete metric space, p ∈ N, A,A, . . . ,Ap be nonempty
closed subsets of X,Y =

⋃p
i=Ai, andT : Y → Y . Suppose that there existψ ∈ � andF ∈ F

such that

(a′) Y =
⋃p

i=Ai is a cyclic representation of Y with respect to T ;

http://www.fixedpointtheoryandapplications.com/content/2012/1/217
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(b′) for any (x, y) ∈ Ai ×Ai+, i = , , . . . ,p (with Ap+ = A),

F
(
d(Tx,Ty)

) ≤ ψ
(
F

(
d(x, y)

))
.

Then T has a unique fixed point.Moreover, the fixed point of T belongs to
⋂p

i=Ai.

Remark . Corollary . is similar to Theorem . in [].

Remark . Taking in Corollary . ψ(t) = kt with k ∈ (, ), we obtain a generalized ver-
sion of Theorem . in [].

Corollary . Let (X,d) be a complete metric space, p ∈ N, A,A, . . . ,Ap be nonempty
closed subsets of X,Y =

⋃p
i=Ai, andT : Y → Y . Suppose that there existψ ∈ � andF ∈ F

such that

(a′) Y =
⋃p

i=Ai is a cyclic representation of Y with respect to T ;
(b′) for any (x, y) ∈ Ai ×Ai+, i = , , . . . ,p (with Ap+ = A),

F
(
d(Tx,Ty)

) ≤ ψ

(
F

(
d(x,Ty) + d(y,Tx)



))
.

Then T has a unique fixed point.Moreover, the fixed point of T belongs to
⋂p

i=Ai.

Remark . Taking in Corollary . ψ(t) = kt with k ∈ (, ), we obtain a generalized
version of Theorem  in [].

Corollary . Let (X,d) be a complete metric space, p ∈ N, A,A, . . . ,Ap be nonempty
closed subsets of X,Y =

⋃p
i=Ai, andT : Y → Y . Suppose that there existψ ∈ � andF ∈ F

such that

(a′) Y =
⋃p

i=Ai is a cyclic representation of Y with respect to T ;
(b′) for any (x, y) ∈ Ai ×Ai+, i = , , . . . ,p (with Ap+ = A),

F
(
d(Tx,Ty)

) ≤ ψ
(
F

(
max

{
d(x,Tx),d(y,Ty)

}))
.

Then T has a unique fixed point.Moreover, the fixed point of T belongs to
⋂p

i=Ai.

Remark . Taking in Corollary . ψ(t) = kt with k ∈ (, ), we obtain a generalized
version of Theorem  in [].

Corollary . Let (X,d) be a complete metric space, p ∈ N, A,A, . . . ,Ap be nonempty
closed subsets of X,Y =

⋃p
i=Ai, andT : Y → Y . Suppose that there existψ ∈ � andF ∈ F

such that

(a) Y =
⋃p

i=Ai is a cyclic representation of Y with respect to T ;
(b) for any (x, y) ∈ Ai ×Ai+, i = , , . . . ,p (with Ap+ = A),

F
(
d(Tx,Ty)

) ≤ ψ
(
F

(
max

{
d(x, y),d(x,Tx),d(y,Ty)

}))
.

Then T has a unique fixed point.Moreover, the fixed point of T belongs to
⋂p

i=Ai.

http://www.fixedpointtheoryandapplications.com/content/2012/1/217
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We provide some examples to illustrate our obtained Theorem ..

Example . Let X = R with the usual metric. Suppose A = [–, ] and A = [, ] and
Y =

⋃
i=Ai. Define T : Y → Y such that Tx = –x

 for all x ∈ Y . It is clear that
⋃

i=Ai is a
cyclic representation of Y with respect to T . Letψ ∈ � be defined byψ(t) = t

 andF ∈ F

of the form F (t) = kt, k > . For all x, y ∈ Y and L≥ , we have

F
(
d(Tx,Ty)

)
= kd(Tx,Ty)

=
k|x – y|



≤ k|x – y|


≤ k(�(x, y))


≤ k(�(x, y))


+ Lk�(x, y)

= ψ
(
F

(
�(x, y)

))
+ LF

(
�(x, y)

)
.

So, T is a cyclic generalized (F ,ψ ,L)-contraction for any L ≥ . Therefore, all conditions
of Theorem . are satisfied (p = ), and so T has a unique fixed point (which is x* =  ∈⋂

i=Ai).

Example . Let X = R with the usual metric. Suppose A = [–π/, ] and A = [,π/]
and Y =

⋃
i=Ai. Define the mapping T : Y → Y by

Tx =

⎧⎨
⎩
– 

x| cos(/x)| if x ∈ [–π/, )∪ (,π/],

 if x = .

Clearly, we have T(A) ⊆ A and T(A) ⊆ A. Moreover, A and A are nonempty closed
subsets of X. Therefore,

⋃
i=Ai is a cyclic representation of Y with respect to T .

Now, let (x, y) ∈ A ×A with x 
=  and y 
= , we have

d(Tx,Ty) = |Tx – Ty|

=
∣∣∣∣ x

∣∣cos(/x)∣∣ + 

y
∣∣cos(/y)∣∣

∣∣∣∣
=



∣∣|x|∣∣cos(/x)∣∣ + |y|∣∣cos(/y)∣∣∣∣

≤ 

(|x| + |y|).

On the other hand, we have

|x| = –x ≤ –x +


∣∣x cos(/x)∣∣ = –x –



x
∣∣cos(/x)∣∣ ≤

∣∣∣∣x + 

x
∣∣cos(/x)∣∣

∣∣∣∣ = d(x,Tx)

and

|y| = y≤ y +


∣∣y cos(/y)∣∣ =

∣∣∣∣y + 

y
∣∣cos(/y)∣∣

∣∣∣∣ = d(y,Ty).

http://www.fixedpointtheoryandapplications.com/content/2012/1/217
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Then we have

d(Tx,Ty) ≤ 

max

{
d(x,Tx),d(y,Ty)

}

≤ 

max

{
d(x, y),d(x,Tx),d(y,Ty),

(
d(x,Ty) + d(y,Tx)



)}
.

Define the function ψ : [,∞) → [,∞) by ψ(t) = t
 , for all t ≥  and F ∈ F of the form

F (t) = kt, k >  and L ≥ . Then we have

F
(
d(Tx,Ty)

) ≤ ψ
(
F

(
�(x, y)

))
+ LF

(
�(x, y)

)
. ()

Moreover, we can show that () holds if x =  or y = . Similarly, we also get () holds
for (x, y) ∈ A ×A.
Now, all the conditions of Theorem . are satisfied (with p = ), we deduce that T has

a unique fixed point x* ∈ A ∩A = {}.

3 An application to an integral equation
In this section, we apply the result given byTheorem. to study the existence and unique-
ness of solutions to a class of nonlinear integral equations.
We consider the nonlinear integral equation

u(t) =
∫ T


G(t, s)f

(
s,u(s)

)
ds for all t ∈ [,T], ()

where T > , f : [,T]×R→R andG : [,T]× [,T]→ [,∞) are continuous functions.
Let X = C([,T]) be the set of real continuous functions on [,T]. We endow X with the

standard metric

d∞(u, v) = max
t∈[,T]

∣∣u(t) – v(t)
∣∣ for all u, v ∈ X.

It is well known that (X,d∞) is a complete metric space.
Let (α,β) ∈ X, (α,β) ∈R

 such that

α ≤ α(t)≤ β(t)≤ β for all t ∈ [,T]. ()

We suppose that for all t ∈ [,T], we have

α(t)≤
∫ T


G(t, s)f

(
s,β(s)

)
ds ()

and

β(t)≥
∫ T


G(t, s)f

(
s,α(s)

)
ds. ()

We suppose that for all s ∈ [,T], f (s, ·) is a decreasing function, that is,

x, y ∈R, x≥ y =⇒ f (s,x)≤ f (s, y). ()

http://www.fixedpointtheoryandapplications.com/content/2012/1/217
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We suppose that

sup
t∈[,T]

∫ T


G(t, s)ds≤ . ()

Finally, we suppose that, for all s ∈ [,T], for all x, y ∈ Rwith (x≤ β and y≥ α) or (x≥ α

and y ≤ β),

∣∣f (s,x) – f (s, y)
∣∣ ≤ ψ

(
max

{
|x – y|, |x – Tx|, |y – Ty|, |x – Ty| + |y – Tx|



})

+ Lmin
{|x – Tx|, |y – Ty|, |x – Ty|, |y – Tx|}, ()

where ψ : [,∞)→ [,∞) is a nondecreasing function that belongs to � and L ≥ .
Now, define the set

C =
{
u ∈ C

(
[,T]

)
: α ≤ u(t) ≤ β for all t ∈ [,T]

}
.

We have the following result.

Theorem. Under the assumptions ()-(), problem () has one and only one solution
u* ∈ C .

Proof Define the closed subsets of X, A and A, by

A = {u ∈ X : u≤ β}

and

A = {u ∈ X : u ≥ α}.

Define the mapping T : X → X by

Tu(t) =
∫ T


G(t, s)f

(
s,u(s)

)
ds for all t ∈ [,T].

We shall prove that

T(A) ⊆ A and T(A) ⊆ A. ()

Let u ∈ A, that is,

u(s) ≤ β(s) for all s ∈ [,T].

Using condition (), since G(t, s)≥  for all t, s ∈ [,T], we obtain that

G(t, s)f
(
s,u(s)

) ≥ G(t, s)f
(
s,β(s)

)
for all t, s ∈ [,T].
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The above inequality with condition () implies that

∫ T


G(t, s)f

(
s,u(s)

)
ds≥

∫ T


G(t, s)f

(
s,β(s)

)
ds≥ α(t)

for all t ∈ [,T]. Then we have Tu ∈ A.
Similarly, let u ∈ A, that is,

u(s) ≥ α(s) for all s ∈ [,T].

Using condition (), since G(t, s)≥  for all t, s ∈ [,T], we obtain that

G(t, s)f
(
s,u(s)

) ≤ G(t, s)f
(
s,α(s)

)
for all t, s ∈ [,T].

The above inequality with condition () implies that

∫ T


G(t, s)f

(
s,u(s)

)
ds≤

∫ T


G(t, s)f

(
s,α(s)

)
ds≤ β(t)

for all t ∈ [,T]. Then we have Tu ∈ A. Finally, we deduce that () holds.
Now, let (u, v) ∈ A ×A, that is, for all t ∈ [,T],

u(t) ≤ β(t), v(t)≥ α(t).

This implies, from condition (), that for all t ∈ [,T],

u(t) ≤ β, v(t) ≥ α.

Now, using conditions () and (), we can write that for all t ∈ [,T], we have

|Tu – Tv|(t)

≤
∫ T


G(t, s)

∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣ds

≤
∫ T


G(t, s)ψ

(
max

{∣∣u(s) – v(s)
∣∣, ∣∣u(s) – Tu(s)

∣∣, ∣∣v(s) – Tv(s)
∣∣,

|u(s) – Tv(s)| + |v(s) – Tu(s)|


})
ds

+
∫ T


G(t, s)Lmin

{∣∣u(s) – Tu(s)
∣∣, ∣∣v(s) – Tv(s)

∣∣, ∣∣u(s) – Tv(s)
∣∣, ∣∣v(s) – Tu(s)

∣∣}ds

≤ ψ

(
max

{
d∞(u, v),d∞(u,Tu),d∞(v,Tv),

d∞(u,Tv) + d∞(v,Tu)


})∫ T


G(t, s)ds

+ Lmin
{
d∞(u,Tu),d∞(v,Tv),d∞(u,Tv),d∞(v,Tu)

}∫ T


G(t, s)ds

≤ ψ

(
max

{
d∞(u, v),d∞(u,Tu),d∞(v,Tv),

d∞(u,Tv) + d∞(v,Tu)


})

+ Lmin
{
d∞(u,Tu),d∞(v,Tv),d∞(u,Tv),d∞(v,Tu)

}
.
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This implies that

F
(
d∞(Tu,Tv)

) ≤ ψ
(
F

(
�(u, v)

))
+ LF

(
�(u, v)

)
,

where F ∈ F of the form F (t) = t. Using the same technique, we can show that the above
inequality holds also if we take (u, v) ∈ A ×A.
Now, all the conditions of Theorem . are satisfied (with p = ), we deduce that T has

a unique fixed point u* ∈ A ∩A = C , that is, u* ∈ C is the unique solution to (). �
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