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1. Introduction
Most of the problems in various disciplines of science are nonlinear in nature. There-

fore, translating linear version of a known problem into its equivalent nonlinear ver-

sion is of paramount interest. Furthermore, investigation of numerous problems in

spaces without linear structure has its own importance in pure and applied sciences.

Several attempts have been made to introduce a convex structure on a metric space.

One such convex structure is available in a hyperbolic space. Throughout the article,

we work in the setting of hyperbolic spaces introduced by Kohlenbach [1], which is

restrictive than the hyperbolic type introduced in [2] and more general than the con-

cept of hyperbolic space in [3]. Spaces like CAT(0) and Banach are special cases of

hyperbolic space. The class of hyperbolic spaces also contains Hadamard manifolds,

Hilbert ball equipped with the hyperbolic metric [4], ℝ-trees and Cartesian products of

Hilbert balls, as special cases.

Recent developments in fixed point theory reflect that the iterative construction of

fixed points is vigorously proposed and analyzed for various classes of maps in differ-

ent spaces. Implicit algorithms provide better approximation of fixed points than expli-

cit algorithms. The number of steps of an algorithm also plays an important role in

iterative approximation methods. The case of two maps has a direct link with the

minimization problem [5].

The pioneering work of Xu and Ori [6] deals with weak convergence of one-step

implicit algorithm for a finite family of nonexpansive maps. They also posed an open

question about necessary and sufficient conditions required for strong convergence of
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the algorithm. Since then many articles have been published on weak and strong con-

vergence of implicit algorithms (see [7-10] and references therein).

It is worth mentioning that introducing and analyzing a general iterative algorithm in

a more general setup is a problem of interest in theoretical numerical analysis. Very

recently, Khan et al. [11] proposed and analyzed a general algorithm for strong conver-

gence results in CAT(0) spaces. We do not know whether their work can be extended

to hyperbolic spaces. The purpose of this article is to investigate Δ- convergence as

well as strong convergence through a two-step implicit algorithm for two finite families

of nonexpansive maps in the more general setup of hyperbolic spaces. Our results can

be viewed as refinement and generalization of several well-known results in CAT(0)

spaces and uniformly convex Banach spaces.

2. Preliminaries and lemmas
Let (X, d) be a metric space and K be a nonempty subset of X. Let T be a selfmap on

K. Denote by F(T) = {x Î K : T(x) = x}, the set of fixed points of T. A selfmap T on K

is said to be nonexpansive if d(Tx, Ty) ≤ d(x, y). Takahashi [12] introduced a convex

structure on a metric space to obtain nonlinear version of some known fixed point

results on Banach spaces.

We now describe an other convex structure on a metric space.

A hyperbolic space [1] is a metric space (X, d) together with a map W : X2 × [0, 1]

® X satisfying:

(1) d(u, W(x, y, α)) ≤ (1 − α)d(u, x) + αd(u, y)

(2) d(W(x, y, α), W(x, y, β)) = |α − β|d(x, y)
(3) W(x, y, α) = W(y, x, (1 − α))

(4) d(W(x, z, α), W(y, w, α)) ≤ (1 − α)d(x, y) + αd(z, w)

for all x, y, z, w Î X and a, b Î [0, 1]. We denote the above defined hyperbolic space

by (X, d, W); if it satisfies only (1), then it coincides with the convex metric space

introduced by Takahashi [12]. A subset K of a hyperbolic space X is convex if W(x, y,

a) Î K for all x, y Î K and a Î [0, 1].

A hyperbolic space (X, d, W) is said to be:

(i) strictly convex [12] if for any x, y Î X and l Î [0, 1], there exists a unique ele-

ment z Î X such that

d(z, x) = λd(x, y) and d(z, y) = (1 − λ)d(x, y);

(ii) uniformly convex [13] if for all u, x, y Î X, r >0 and ε Î (0, 2], there exists a δ Î
(0, 1] such that

d(x, u) ≤ r
d(y, u) ≤ r
d(x, y) ≥ εr

⎫⎬
⎭ ⇒ d

(
W(x, y,

1
2
), u

)
≤ (1 − δ)r.

A map h : (0, ∞) × (0, 2] ® (0, 1] which provides such a δ = h(r, ε) for given r >0

and ε Î (0, 2], is called modulus of uniform convexity. We call h monotone if it

decreases with r (for a fixed ε). A uniformly convex hyperbolic space is strictly convex

(see [14]).

Lemma 2.1. [15]Let (X, d, W) be a uniformly convex hyperbolic space with monotone

modulus of uniform convexity h. For r >0, ε Î (0, 2], a, x, y Î X, the inequalities
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d(x, a) ≤ r, d(y, a) ≤ r and d(x, y) ≥ εr

imply

d(W(x, y, λ), a) ≤ (1 − 2λ(1 − λ)η(s, ε))r,

where l Î [0, 1] and s ≥ r.

The concept of Δ-convergence in a metric space was introduced by Lim [16] and its

analogue in CAT(0) spaces has been investigated by Dhompongsa and Panyanak [17].

In this article, we continue the investigation of Δ-convergence in the general setup of

hyperbolic spaces.

For this, we collect some basic concepts.

Let {xn} be a bounded sequence in a hyperbolic space X. For x Î X, define a continu-

ous functional r(., {xn}): X ® [0, ∞) by:

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r = r({xn}) of {xn} is given by:

ρ = inf{r(x, {xn}) : x ∈ X}.

The asymptotic center of a bounded sequence {xn} with respect to a subset K of X is

defined as follows:

AK({xn}) = {x ∈ X : r(x, {xn}) ≤ r(y, {xn}) for any y ∈ K}.

If the asymptotic center is taken with respect to X, then it is simply denoted by A

({xn}). It is known that uniformly convex Banach spaces and even CAT(0) spaces enjoy

the property that “bounded sequences have unique asymptotic centers with respect to

closed convex subsets”. The following lemma is due to Leustean [15] and ensures that

this property also holds in a complete uniformly convex hyperbolic space.

Lemma 2.2. [15]Let (X, d, W) be a complete uniformly convex hyperbolic space with

monotone modulus of uniform convexity. Then every bounded sequence {xn} in × has a

unique asymptotic center with respect to any nonempty closed convex subset K of X.

Recall that a sequence {xn} in X is said to Δ-converge to x Î X if x is the unique

asymptotic center of {un} for every subsequence {un} of {xn}. In this case, we write Δ -

limn xn = x and call x as Δ - limit of {xn}.

Iterative construction by means of classical algorithms like:

(i) xn+1 = αnxn + (1 − αn)Txn, n ≥ 0, [18],

(ii) xn+1 = αnxn + (1 − αn)T(βnxn + (1 − βn)Txn, ), n ≥ 0, [19],

are vigorously analyzed for approximation of fixed points of various maps under sui-

table conditions imposed on the control sequences. The algorithm (i) exhibits weak

convergence even in the setting of Hilbert space. Moreover, Chidume and Mutanga-

dura [20] constructed an example for Lipschitz pseudocontractive map with a unique

fixed point for which the algorithm (i) fails to converge.

Kirk [21] proved a fixed point theorem using Browder’s type implicit algorithm (i.e.,

xt = (1 - t)x + tT(xt)) in a complete CAT (0) space. More precisely, he proved the fol-

lowing result:
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Theorem 2.3. [21] Let K be a bounded closed convex subset of a complete CAT(0)

space X and f : K ® K be a nonexpansive map. Fix x Î K and for each t Î [0, 1) let xt
be the unique fixed point such that

xt ∈ [x, Txt] and d(x, xt) = td(x, Txt).

Then {xt} converges as t ® 1- to the unique fixed point of f which is nearest to x.

Furthermore, he posed an open question: whether Theorem 2.3 can be extended to

spaces of nonpositive curvature.

Denote the set {1, 2, 3, . . . N} by I.

In 2001, Xu and Ori [6] obtained weak convergence result using an implicit algo-

rithm for a finite family of nonexpansive maps as follows:

Theorem 2.4. [6]Let {Ti : i Î I} be a family of nonexpansive selfmaps on a closed

convex subset C of a Hilbert space with ∩N
i=1F(Ti) 	= ∅, let x0 Î C and let {an} be a

sequence in (0, 1) such that limn®∞ an = 0. Then the sequence xn = anxn-1 + (1 - an)

Tnxn, where n ≥ 1 and Tn = Tn(mod N) (here the mod N function takes values in I), con-

verges weakly to a point in F.

In 2007, Plubtieng et al. [9] generalized the algorithm of Xu and Ori [6] for two

finite families {Ti : i Î I} and {Si : i Î I} of nonexpansive maps and studied its weak

and strong convergence. Given x0 in K(a subset of Banach space), their algorithm reads

as follows:

xn = αnxn−1 + (1 − αn)Tn[βnxn + (1 − βn)Snxn] (2:1)

where {an} and {bn} are two sequences in (0, 1).

Inspired and motivated by the work of Kirk [21], Xu and Ori [6] and Plubtieng et al.

[9], we investigate Δ-convergence as well as strong convergence through a two-step

implicit algorithm for two finite families of nonexpansive maps in the more general

setup of hyperbolic spaces.

The two-step algorithm (2.1) can be defined in a hyperbolic space as:

xn = W(xn−1, Tnyn, αn),

yn = W(xn, Snxn, βn), n ≥ 1
(2:2)

where Tn = Tn(mod N) and Sn = Sn(mod N).

In order to establish that algorithm (2.2) exists, we define a map G1 : K ® K by: G1x

= W(x0, T1W (x, S1x, bi), ai). For a given x0 Î K, the existence of x1 = W(x0, T1W (x1,

S1x1, b1), a1) is guaranteed if G1 has a fixed point. Now for any u, v Î K and making

use of (4), we have

d(G1u, G1v) = d(W(x0, T1W(u, S1u, β1), α1), W(x0, T1W(v, S1v, β1), α1)

≤ α1d(T1W(u, S1u, β1), T1W(v, S1v, β1))

≤ α1d(W(u, S1u, β1), W(v, S1v, β1))

≤ α1[(1 − β1)d(u, v) + β1d(S1u, S1v)]

≤ α1[(1 − β1)d(u, v) + β1d(u, v)]

≤ α1d(u, v).

Since a1 Î (0, 1), therefore G1 is a contraction. By Banach contraction principle, G1

has a unique fixed point. Thus the existence of x1 is established. Continuing in this
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way, we can establish the existence of x2, x3 and so on. Thus the implicit algorithm

(2.2) is well defined.

In 2010, Laowang and Panyanak [22] obtained a generalized version of Lemma 1.3 of

Schu [23] in a uniformly convex hyperbolic space where the proof relies on the fact

that modulus of uniform convexity h increases with r (for a fixed ε).

We prove the generalized version of Lemma 1.3 of Schu [23] in a uniformly convex

hyperbolic space with monotone modulus of uniform convexity.

Lemma 2.5. Let (X, d, W) be a uniformly convex hyperbolic space with monotone

modulus of uniform convexity h. Let × Î X and {an} be a sequence in [b, c] for some b,

c Î (0, 1). If {xn} and {yn} are sequences in × such that lim supn®∞ d(xn, x) ≤ r, lim

supn®∞ d(yn, x) ≤ r and limn®∞ d(W (xn, yn, an), x) = r for some r ≥ 0, then limn®∞ d

(xn, yn) = 0.

Proof. The case r = 0 is trivial. Suppose r >0 and assume limn®∞ d(xn, yn) ≠ 0. If n1
Î N, then d(xn, yn) ≥ λ

2 > 0 for some l >0 and for n ≥ n1. Since lim supn®∞ d(xn, x)

≤ r and lim supn®∞ d(yn, x) ≤ r, we have:

(i) d(xn, x) ≤ r + 1
n;

(ii) d(yn, x) ≤ r + 1
n for each n ≥ 1.

Moreover, d(xn, yn) ≥ λ
2 ≥ (

r + 1
n

)
λ

2(r+1), where
λ

2(r+1) ≤ 1. So it follows from Lemma

2.1, that

d(W(xn, yn, αn), x) ≤
(
1 − 2αn(1 − αn)η

(
r +

1
n
,

λ

2(r + 1)

))(
r +

1
n

)

≤
(
1 − 2αn(1 − αn)η

(
r + 1,

λ

2(r + 1)

))(
r +

1
n

)

≤
(
1 − 2b(1 − c)η

(
r + 1,

λ

2(r + 1)

))(
r +

1
n

)
.

Thus, by letting n ® ∞, we obtain

lim
n→∞ d(W(xn, yn, αn), x) ≤

(
1 − 2b(1 − c)η

(
r + 1,

λ

2(r + 1)

))
r < r,

a contradiction to the fact that limn®∞ d(W (xn, yn, an), x) = r for some r ≥ 0. □
We now prove a metric version of a result due to Bose and Laskar [24] which plays a

crucial role in proving Δ-convergence of the algorithm (2.2).

Lemma 2.6. Let K be a nonempty closed convex subset of a uniformly convex hyper-

bolic space and {xn} a bounded sequence in K such that A({xn}) = {y} and r({xn}) = r. If
{ym} is another sequence in K such that

limm®∞r(ym, {xn}) = r, then limm®∞ym = y.

Proof. If ym ↛ y, then there exist a subsequence {ymj} of {ym} and M >0 such that

d(ymj , y) ≥ M
2

for all j.

Observe that the inequality:

(ρ + ε)
(
1 − η

(
ρ + 1,

M
2(ρ + 1)

))
< ρ (2:3)

holds when ε ® 0, where ε Î (0, 1] and r is the asymptotic radius of {xn}.
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Since A({xn}) = {y}, so for every ε Î (0, 1] there exists an integer N1 such that d(y, xn)

≤ r+ε, for all n ≥ N1. Since limm→∞r(ym, {xn}) = ρ = limj→∞r(ymj , {xn}), so there

exists an integer j* such that r(ymj , {xn}) ≤ ρ +
ε

2
for all j ≥ j*. Hence there exists an

integer N2 such that d(ymj , xn) ≤ ρ + ε for all n ≥ N2.

That is,

d(y, xn) ≤ ρ + ε ≤ ρ + 1 and d(ymj , xn) ≤ ρ + ε ≤ ρ + 1,

for all n ≥ N = max{N1, N2}.

Using Lemma 2.1, we have

d
(
W

(
y, ymj ,

1
2

)
, xn

)
≤

(
1 − η

(
ρ + ε,

M
2(ρ + 1)

))
(ρ + ε)

≤
(
1 − η

(
ρ + 1,

M
2(ρ + 1)

))
(ρ + ε),

so that letting n ® ∞, we have

r
(
W(y, ymj ,

1
2
), {xn}

)
≤

(
1 − η

(
ρ + 1,

M
2(ρ + 1)

))
(ρ + ε).

Now let ε ® 0 and use (2.3) to conclude that r(W(y, ymj ,
1
2 ), {xn}) <r which contra-

dicts the fact that r is the asymptotic radius of {xn}. Hence limm®∞ ym = y. □
From now on for two finite families {Ti : i Î I} and {Si : i Î I} of maps, we set

F = ∩N
i=1(F(Ti) ∩ F(Si)) 	= φ

Lemma 2.7. Let K be a nonempty closed convex subset of a hyperbolic space × and

let {Ti : i Î I} and {Si : i Î I} be two finite families of nonexpansive selfmaps on K such

that F ≠ j. Then for the sequence {xn} defined implicitly in (2.2), we have limn®∞ d(xn,

p) exists for each p Î F.

Proof. For any p Î F, it follows from (2.2) that

d(xn, p) = d(W(xn−1, Tnyn, αn), p)

≤ (1 − αn)d(xn−1, p) + αnd(Tnyn, p)

≤ (1 − αn)d(xn−1, p) + αnd(yn, p)

= (1 − αn)d(xn−1, p) + αnd(W(xn, Snxn, βn), p)

≤ (1 − αn)d(xn−1, p) + αn(1 − βn)d(xn, p) + αnβnd(Snxn, p)

≤ (1 − αn)d(xn−1, p) + αn(1 − βn)d(xn, p) + αnβnd(xn, p)

≤ (1 − αn)d(xn−1, p) + αnd(xn, p).

That is

d(xn, p) ≤ d(xn−1, p). (2:4)

It follows from (2.4) that limn®∞ d(xn, p) exists for each p Î F. Consequently,

limn®∞ d(xn, F)

exists. □
Lemma 2.8. Let K be a nonempty closed convex subset of a uniformly convex hyper-

bolic space × with monotone modulus of uniform convexity h and let {Ti : i Î I} and{Si
: i Î I} be two finite families of nonexpansive selfmaps of K such that F ≠ j. Then for

the sequence {xn} defined implicitly in (2.2), we have
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lim
n→∞ d(xn, Tlxn) = lim

n→∞ d(xn, Slxn) = 0 for each l = 1, 2, · · · , N.

Proof. It follows from Lemma 2.7 that, limn®∞ d(xn, p) exists for each p Î F.

Assume that limn®∞ d(xn, p) = c. The case c = 0 is trivial. Next, we deal with the case

c >0. Note that

d(yn, p) = d(W(xn, Snxn, βn), p)

≤ (1 − βn)d(xn, p) + βnd(Snxn, p)

≤ d(xn, p).

Taking lim sup on both sides in the above estimate, we have

lim sup
n→∞

d(yn, p) ≤ c.

Since Tn is nonexpansive, so lim supn®∞ d(Tnyn, p) ≤ c. Further, lim supn®∞ d(xn-1,

p) ≤ c.

Moreover,

lim
n→∞ d(xn, p) = lim

n→∞ d(W(xn−1, Tnyn, αn), p) = c.

So, by Lemma 2.5, we have

lim
n→∞ d(xn−1, Tnyn) = 0. (2:5)

Next, taking lim sup on both sides in the inequality

d(xn, xn−1) = d(W(xn−1, Tnyn, αn), xn−1)

≤ αnd(Tnyn, xn−1),

we have

lim sup
n→∞

d(xn, xn−1) ≤ 0.

Hence,

lim sup
n→∞

d(xn, xn−1) = 0. (2:6)

Clearly,

d(xn, xn+l) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xn+l−1, xn+l).

Taking lim sup on both sides of the above inequality and using (2.6), we have

lim
n→∞ d(xn, xn+l) = 0 for l < N.

Further, observe that

d(xn, p) ≤ (1 − αn)d(xn−1, p) + αnd(Tnyn, p)

≤ (1 − αn)d(xn−1, Tnyn) + (1 − αn)d(Tnyn, p) + αnd(yn, p)

≤ (1 − αn)d(xn−1, Tnyn) + (1 − αn)d(yn, p) + αnd(yn, p)

≤ (1 − αn)d(xn−1, Tnyn) + d(yn, p).

Combining the inequalities after applying lim inf and lim sup on both sides in the

above estimate and using (2.5), we get
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c ≤ lim inf
n→∞ d(yn, p) ≤ lim sup

n→∞
d(yn, p) ≤ c.

That is,

lim
n→∞ d(W(xn, Snxn, βn), p) = lim

n→∞ d(yn, p) = c.

Finally, by Lemma 2.5, we have

lim
n→∞ d(xn, Snxn) = 0.

Moreover,

d(xn, Tnxn) ≤ d(xn, Tnyn) + d(Tnyn, Tnxn−1) + d(Tnxn−1, Tnxn)

≤ (1 − αn)d(xn−1, Tnyn) + d(xn−1, yn) + d(xn−1, xn)

≤ (1 − αn)d(xn−1, Tnyn) + βnd(xn, Snxn) + 2d(xn−1, xn)

gives that

lim
n→∞ d(xn, Tnxn) = 0.

For each l Î I, we have

d(xn, Tn+lxn) ≤ d(xn, xn+l) + d(xn+l, Tn+lxn+l) + d(Tn+lxn+l, Tn+lxn)

≤ 2d(xn, xn+l) + d(xn+l, Tn+lxn+l).

Therefore

lim
n→∞ d(xn, Tn+lxn) = 0 for each l ∈ I.

Since for each l Î I, the sequence {d(xn, Tlxn)} is a subsequence of ∪N
i=1{d(xn, Tn+lxn)}

and limn→∞d(xn, Tn+lxn) = 0 for each l Î I, therefore

lim
n→∞ d(xn, Tlxn) = 0 for each l ∈ I.

Similarly, we have

lim
n→∞ d(xn, Sn+lxn) = 0 for each l ∈ I,

and hence

limn→∞d(xn, Slxn) = 0 for each l ∈ I. □

3. Convergence in hyperbolic spaces
In this section, we establish Δ- convergence and strong convergence of the implicit

algorithm (2.2).

Theorem 3.1. Let K be a nonempty closed convex subset of a complete uniformly con-

vex hyperbolic space × with monotone modulus of uniform convexity h and let {Ti : i Î
I} and {Si : i Î I} be two finite families of nonexpansive selfmaps on K such that F ≠ j.
Then the sequence {xn} defined implicitly in (2.2), Δ-converges to a common fixed

point of {Ti : i Î I} and {Si : i Î I}.

Proof. It follows from Lemma 2.7 that {xn} is bounded. Therefore by Lemma 2.2, {xn}

has a unique asymptotic center, that is, A({xn}) = {x}. Let {un} be any subsequence of

{xn} such that A({un}) = {u}. Then by Lemma 2.8, we have limn®∞ d(un, Tlun) = 0 =
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limn®∞ d(un, Slun) for each l Î I. We claim that u is the common fixed point of {Ti : i

Î I} and {Si : i Î I}.

Now, we define a sequence {zm} in K by zm = Tmu where Tm = Tm(mod N).

Observe that

d(zm, un) ≤ d(Tmu, Tmun) + d(Tmun, Tm−1un) + . . . + d(Tun, un)

≤ d(u, un) +
m−1∑
i=1

d(un, Tiun).

Therefore, we have

r(zm, {un}) = lim sup
n→∞

d(zm, un) ≤ lim sup
n→∞

d(u, un) = r(u, {un}).

This implies that |r(zm, {un}) - r(u, {un})| ® 0 as m ® ∞. It follows from Lemma 2.6

that Tm(mod N)u = u. Hence u is the common fixed point of {Ti : i Î I}. Similarly, we

can show that u is the common fixed point of {Si : i Î I}. Therefore u is the common

fixed point of {Ti : i Î I} and {Si : i Î I}. Moreover, limn®∞ d(xn, u) exists by Lemma

2.7.

Suppose x ≠ u. By the uniqueness of asymptotic centers,

lim sup
n→∞

d(un, u) < lim sup
n→∞

d(un, x)

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, u)

= lim sup
n→∞

d(un, u),

a contradiction. Hence x = u. Since {un} is an arbitrary subsequence of {xn}, therefore

A({un}) = {u} for all subsequences {un} of {xn}. This proves that {xn} Δ-converges to a

common fixed point of {Ti : i Î I} and {Si : i Î I}. □
Recall that a sequence {xn} in a metric space X is said to be Fejér monotone with

respect to K (a subset of X) if d(xn+1, p) ≤ d(xn, p) for all p Î K and for all n ≥ 1. A

map T : K ® K is semi-compact if any bounded sequence {xn} satisfying d(xn, Txn) ®
0 as n ® ∞, has a convergent subsequence.

Let f be a nondecreasing selfmap on [0, ∞) with f(0) = 0 and f(t) >0 for all t Î (0, ∞)

and let d(x, H) = inf{d(x, y): y Î H}. Then a family {Ti : i Î I} of selfmaps on K with

F1 = ∩N
i=1F(Ti) 	= φ, satisfies condition (A) if

d(x, Tx) ≥ f (d(x, F1)) for all x ∈ K,

holds for at least one T Î {Ti : i Î I} or

max
i∈I

d(x, Tix) ≥ f (d(x, F1)) for all x ∈ K,

holds.

Different modifications of the condition (A) for two finite families of selfmaps have

been made recently in the literature [25], [9] as follows:

Let {Ti : i Î I} and {Si : i Î I} be two finite families of nonexpansive selfmaps on K

with F ≠ j. Then the two families are said to satisfy:
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(i) condition (B) on K if

d(x, Tx) ≥ f (d(x, F)) or d(x, Sx) ≥ f (d(x, F)) for all x ∈ K,

holds for at least one T Î {Ti : i Î I} or one S Î {Si : i Î I};

(ii) condition (C) on K if

1
2

{d(x, Tix) + d(x, Six)} ≥ f (d(x, F)) for all x ∈ K.

Note that the condition (B) and the condition (C) are equivalent to the condition (A)

if Ti = Si for all i Î I. We shall use condition (B) to study strong convergence of the

algorithm (2.2).

For further development, we need the following technical result.

Lemma 3.2. [26]Let K be a nonempty closed subset of a complete metric space (X, d)

and {xn} be Fejér monotone with respect to K. Then {xn} converges to some p Î K if and

only if limn®∞d(xn, K) = 0.

Lemma 3.3. Let K be a nonempty closed convex subset of a complete uniformly con-

vex hyperbolic space × with monotone modulus of uniform convexity h and let {Ti : i Î
I} and {Si : i Î I} be two finite families of nonexpansive selfmaps on K such that F ≠ j.
Then the sequence {xn} defined implicitly in (2.2) converges strongly to p Î F if and

only if limn®∞ d(xn, F) = 0.

Proof. It follows from (2.4) that {xn} is Fejér monotone with respect to F and limn®∞

d(xn, F) exists. Hence, the result follows from Lemma 3.2. □
We now establish strong convergence of the algorithm (2.2) based on Lemma 3.3.

Theorem 3.4. Let K be a nonempty closed convex subset of a complete uniformly con-

vex hyperbolic space × with monotone modulus of uniform convexity h and let {Ti : i Î
I} and {Si: i Î I} be two finite families of nonexpansive selfmaps on K such that F ≠ j.
Suppose that a pair of maps T and S in {Ti : i Î I} and {Si : i Î I}, respectively, satisfies

condition (B). Then the sequence {xn} defined implicitly in (2.2) converges strongly to p

Î F.

Proof. It follows from Lemma 2.7 that limn®∞ d(xn, F) exists. Moreover, Lemma 2.8

implies that limn®∞ d(xn, Tlxn) = d(xn, Slxn) = 0 for each l Î I. So condition (B) guar-

antees that limn®∞ f(d(xn, F)) = 0. Since f is nondecreasing with f (0) = 0, it follows

that limn®∞ d(xn, F) = 0. Therefore, Lemma 3.3 implies that {xn} converges strongly to

a point p in F. □
Theorem 3.5. Let K be a nonempty closed convex subset of a complete uniformly

convex

hyperbolic space × with monotone modulus of uniform convexity h and let {Ti : i Î I}

and {Si : i Î I} be two finite families of nonexpansive selfmaps on K such that F ≠ j.
Suppose that one of the map in {Ti : i Î I} and {Si : i Î I} is semi-compact. Then the

sequence {xn} defined implicitly in (2.2) converges strongly to p Î F.

Proof. Use Lemma 2.8 and the line of action given in the proof of Theorem 3.4 in

[9]. □
Remark 3.6. (1) Theorem 3.1 sets analogue of [ 17, Theorem 3.3], for two finite

families

of nonexpansive maps on unbounded domain in a uniformly convex hyperbolic space

X;
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(2) Lemma 3.3 improves [ 8, Theorem 1] and [ 10, Theorem 3.1] for two finite

families of nonexpansive maps on X;

(3) Theorem 3.4 extends and improves Theorem 3.3 (Theorem 3.4) of [9] from uni-

formly convex Banach space setting to the general setup of uniformly convex hyper-

bolic space;

(4) Theorem 3.5 improves and extends [ 8, Theorem 2] for two finite families of

nonexpansive maps on X.
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