
RESEARCH Open Access

Periodic points for the weak contraction
mappings in complete generalized metric spaces
Chi-Ming Chen1* and Chao-Hung Chen2

* Correspondence: ming@mail.
nhcue.edu.tw
1Department of Applied
Mathematics, National Hsinchu
University of Education, Hsin-Chu,
Taiwan
Full list of author information is
available at the end of the article

Abstract

In this article, we introduce the notions of (j - φ)-weak contraction mappings and (ψ
- φ)-weak contraction mappings in complete generalized metric spaces and prove
two theorems which assure the existence of a periodic point for these two types of
weak contraction.
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1 Introduction and preliminaries
Let (X, d) be a metric space, D a subset of X and f : D ® X be a map. We say f is con-

tractive if there exists a Î [0, 1) such that for all x, y Î D,

d
(
fx, fy

) ≤ α · d (
x, y

)
.

The well-known Banach’s fixed point theorem asserts that if D = X, f is contractive and

(X, d) is complete, then f has a unique fixed point in X. It is well known that the Banach

contraction principle [1] is a very useful and classical tool in nonlinear analysis. In 1969,

Boyd and Wong [2] introduced the notion of j-contraction. A mapping f : X ® X on a

metric space is called j-contraction if there exists an upper semi-continuous function

j : [0, ∞) ® [0, ∞) such that

d
(
fx, fy

) ≤ φ
(
d
(
x, y

))
for all x, y ∈ X.

Generalization of the above Banach contraction principle has been a heavily investi-

gated research branch. (see, e.g., [3,4]).

In 2000, Branciari [5] introduced the following notion of a generalized metric space

where the triangle inequality of a metric space had been replaced by an inequality

involing three terms instead of two. Later, many authors worked on this interesting

space (e.g. [6-11]).

Let (X, d) be a generalized metric space. For g >0 and x Î X, we define

Bγ (x) :=
{
y ∈ X|d (

x, y
)

< γ
}
.

Branciari [5] also claimed that {Bg(x): g >0, x Î X} is a basis for a topology on X, d is

continuous in each of the coordinates and a generalized metric space is a Hausdorff

space. We recall some definitions of a generalized metric space, as follows:
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Definition 1 [5]Let X be a nonempty set and d : X × X ® [0, ∞) be a mapping such

that for all x, y Î X and for all distinct point u, v Î X each of them different from ×

and y, one has

(i) d(x, y) = 0 if and only if × = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) (rectangular inequality).

Then (X, d) is called a generalized metric space (or shortly g.m.s).

We present an example to show that not every generalized metric on a set X is a

metric on X.

Example 1 Let X = {t, 2t, 3t, 4t, 5t} with t >0 is a constant, and we define d : X × X ®
[0, ∞) by

(1) d(x, x) = 0, for all × Î X;

(2) d(x, y) = d(y, x), for all x, y Î X;

(3) d(t, 2t) = 3g;
(4) d(t, 3t) = d(2t, 3t) = g;
(5) d(t, 4t) = d(2t, 4t) = d(3t, 4t) = 2g;
(6) d(t, 5t) = d(2t, 5t) = d(3t, 5t) = (4t, 5t) = 3

2γ,

where g >0 is a constant. Then (X, d) be a generalized metric space, but it is not a

metric space, because

d (t, 2t) = 3γ > d (t, 3t) + d (3t, 2t) = 2γ .

Definition 2 [5]Let (X, d) be a g.m.s, {xn} be a sequence in X and x Î X. We say that

{xn} is g.m.s convergent to × if and only if d(xn, x) ® 0 as n ® ∞. We denote by xn ® x

as n ® ∞.

Definition 3 [5]Let (X, d) be a g.m.s, {xn} be a sequence in X and x Î X. We say that

{xn} is g.m.s Cauchy sequence if and only if for each ε >0, there exists n0 ∈ Nsuch that d

(xm, xn) < ε for all n > m > n0.

Definition 4 [5]Let (X, d) be a g.m.s. Then X is called complete g.m.s if every g.m.s

Cauchy sequence is g.m.s convergent in X.

In this article, we also recall the notion of Meir-Keeler function (see [12]). A function

j : [0, ∞) ® [0, ∞) is said to be a Meir-Keeler function if for each h >0, there exists δ

>0 such that for t Î [0, ∞) with h ≤ t < h + δ, we have j(t) < h. Generalization of the

above function has been a heavily investigated research branch. Praticularly, in [13,14],

the authors proved the existence and uniqueness of fixed points for various Meir-Kee-

ler type contractive functions. In this study, we introduce the below notions of the

weaker Meir-Keeler function j : [0, ∞) ® [0, ∞) and stronger Meir-Keeler function ψ :

[0, ∞) ® [0, 1).

Definition 5 We call j : [0, ∞) ® [0, ∞) a weaker Meir-Keeler function if the func-

tion j satisfies the following condition

∀η > 0 ∃δ > 0 ∀t ∈ [0,∞)
(
η ≤ t < δ + η ⇒ ∃n0 ∈ N φ(t)n0 < η

)
.
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The following provides an example of a weaker Meir-Keeler function which is not a

Meir-Keeler function.

Example 2 Let φ : R+ → R
+be defined by

φ (t) =

⎧⎨
⎩
0, if t ≤ 1,
3t, if 1 < t < 3,
1, if t ≥ 3.

Then j is a weaker Meir-Keeler function which is not a Meir-Keeler function.

Definition 6 We call ψ : [0, ∞) ® [0, 1) a stronger Meir-Keeler function if the func-

tion ψ satisfies the following condition

∀η > 0 ∃δ > 0 ∃γη ∈ [0, 1) ∀t ∈ [0,∞)
(
η ≤ t < δ + η ⇒ ψ (t) < γη

)
.

The following provides an example of a stronger Meir-Keeler function.

Example 3 Let ψ : R+ → [0, 1)be defined by

ψ
(
d
(
x, y

))
=

2t
3t + 1

.

Then ψ is a stronger Meir-Keeler function.

The following provides an example of a Meir-Keeler function which is not a stronger

Meir-Keeler function.

Example 4 Let ϕ : R+ → R
+be defined by

ϕ (t) =
{
t − 1, if t > 1;
0, if t ≤ 1.

Then φ is a Meir-Keeler function which is not a stronger Meir-Keeler function.

2 Main results
In the sequel, we let the function j : [0, ∞) ® [0, ∞) satisfies the following conditions:

(j1) j : [0, ∞) ® [0, ∞) is a weaker Meir-Keeler function;

(j2) j(t) >0 for t >0 and j(0) = 0;

(j3) for all t Î (0, ∞), {φn(t)}n∈N is decreasing;

(j4) for tn Î [0, ∞), we have that

(a) if limn®∞ tn = g >0, then limn®∞ j(tn) < g, and
(b) if limn®∞ tn = 0, then limn®∞ j(tn) = 0.

Let the function ψ : [0, ∞) ® [0, 1) satisfies the following conditions:

(ψ1) ψ : [0, ∞) ® [0, 1) is a stronger Meir-Keeler function;

(ψ2) ψ(t) >0 for t >0 and j(0) = 0.

And, we let the function φ : [0, ∞) ® [0, ∞) satisfies the following conditions:

(φ1) for all t Î (0, ∞), limn®∞ tn = 0 if and only if limn®∞ φ(tn) = 0;

(φ2) φ(t) >0 for t >0 and φ(0) = 0;

(φ3) φ is subadditive, that is, for every μ1, μ2 Î [0, ∞), φ(μ1 + μ2) ≤ φ(μ1) + φ(μ2).
Using the functions j and φ, we first introduce the notion of the (j-φ)-weak con-

traction mapping and prove a theorem which assures the existence of a periodic point

for the (j-φ)-weak contraction mapping.
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Definition 7 Let (X, d) be a g.m.s, and let f : X ® X be a function satisfying

ϕ
(
d
(
fx, fy

)) ≤ φ
(
ϕ

(
d(x, y

))
(1)

for all x, y Î X. Then f is said to be a (j - φ)-weak contraction mapping.

Theorem 1 Let (X, d) be a Hausdorff and complete g.m.s, and let f be a (j - φ)-weak
contraction mapping. Then f has a periodic point μ in X, that is, there exists μ Î X

such that μ = f pμ for some p ∈ N.

Proof. Given x0 and define a sequence {xn} in X by

xn+1 = f xn for n ∈ N ∪ {0} .

Step 1. We shall prove that

lim
n→∞ ϕ (d (xn, xn+1)) = 0, (2)

lim
n→∞ ϕ (d (xn, xn+2)) = 0. (3)

Using the inequality (1), we have that for each n ∈ N

ϕ (d (xn, xn+1)) = ϕ
(
d
(
f xn−1, f xn

))
≤ φ

(
ϕ

(
d(xn−1, xn

))
,

and so

ϕ (d (xn, xn+1)) ≤ φ (ϕ (d (xn−1, xn)))

≤ φ
(
φ

(
ϕ

(
d(xn−2, xn−1

)))
= φ2 (

ϕ
(
d(xn−2, xn−1)

))
≤ · · · · · ·
≤ φn (ϕ (d (x0, x1))) .

Since {φn(ϕ(d(x0, x1)))}n∈N is decreasing, it must converge to some h ≥ 0. We claim

that h = 0. On the contrary, assume that h >0. Then by the definition of weaker Meir-

Keeler function j, corresponding to h use, there exists δ >0 such that for x0, x1 Î X

with h ≤ φ(d(x0, x1)) < δ + h, there exists n0 ∈ N such that φn0(ϕ(d(x0, x1))) < η.

Since limn®∞ jn(φ(d(x0, x1))) = h, there exists p0 ∈ N such that h ≤ jp(φ(d(x0, x1))) <
δ + h, for all p ≥ p0. Thus, we conclude that φp0+n0 (ϕ(d(x0, x1))) < η. So we get a con-

tradiction. Therefore limn®∞ jn(φ(d(x0, x1))) = 0, that is,

lim
n→∞ ϕ (d (xn, xn+1)) = 0.

Using the inequality (1), we also have that for each n ∈ N

ϕ (d (xn, xn+2)) = ϕ
(
d
(
f xn−1, f xn+1

))
≤ φ

(
ϕ

(
d(xn−1, xn+1

))
,

and so

ϕ (d (xn, xn+2)) ≤ φ (ϕ (d (xn−1, xn+1)))

≤ φ
(
φ

(
ϕ

(
d(xn−2, xn

)))
= φ2 (

ϕ
(
d(xn−2, xn)

))
≤ · · · · · ·
≤ φn (ϕ (d (x0, x1))) .
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Since {ϕn(d(x0, x2))}n∈N is decreasing, by the same proof process, we also conclude

lim
n→∞ ϕ (d (xn, xn+2)) = 0.

Next, we claim that {xn} is g.m.s Cauchy. We claim that the following result holds:

Step 2. Claim that limn→∞ϕ
(
d
(
xpn , xqn

))
= 0, that is, for every ε >0, there exists

n ∈ N such that if p, q ≥ n then φ(d(xp, xq)) < ε.

Suppose the above statement is false. Then there exists ε >0 such that for any n ∈ N,

there are pn, qn ∈ N with pn > qn ≥ n satisfying

ϕ
(
d
(
xqn , xpn

)) ≥ ε.

Further, corresponding to qn ≥ n, we can choose pn in such a way that it the smallest

integer with pn > qn ≥ n and ϕ
(
d
(
xqn , xpn

)) ≥ ε. Therefore ϕ
(
d
(
xqn , xpn−1

))
< ε. By the

rectangular inequality and (2), (3), we have

ε ≤ ϕ
(
d
(
xpn , xqn

))
≤ ϕ

(
d(xpn , xpn−2

)
+ d

(
xpn−2, xpn−1

)
+ d

(
xpn−1, xqn)

)
≤ ϕ

(
d
(
xpn , xpn−2

))
+ ϕ

(
d
(
xpn−2, xpn−1

))
+ ε.

Letting n ® ∞. Then we get

lim
n→∞ ϕ

(
d
(
xpn , xqn

))
= ε.

On the other hand, we have

ϕ
(
d
(
xpn , xqn

)) ≤ ϕ
(
d
(
xpn , xpn−1

)
+ d

(
xpn−1, xqn−1

)
+ d

(
xqn−1, xqn

))
≤ ϕ

(
d
(
xpn , xpn−1

))
+ ϕ

(
d
(
xpn−1, xqn−1

))
+ ϕ

(
d
(
xqn−1, xqn

))

and

ϕ
(
d
(
xpn−1, xqn−1

)) ≤ ϕ
(
d
(
xpn−1, xpn

)
+ d

(
xpn , xqn

)
+ d

(
xqn , xqn−1

))
≤ ϕ

(
d
(
xpn−1, xpn

))
+ ϕ

(
d
(
xpn , xqn

))
+ ϕ

(
d
(
xqn , xqn−1

))
.

Letting n ® ∞. Then we get

lim
n→∞ ϕ

(
d
(
xpn−1, xqn−1

))
= ε.

Using the inequality (1), we have

ϕ
(
d
(
xpn , xqn

))
= ϕ

(
d
(
f xpn−1, f xqn−1

)))
≤ φ

(
ϕ

(
d
(
xpn−1, xqn−1

)))
,

Letting n ® ∞, by the definitions of the functions j and φ, we have

ε ≤ lim
n→∞ φ

(
ϕ

(
d
(
xpn−1, xqn−1

)))
< ε.

So we get a contradiction. Therefore limn→∞ϕ
(
d
(
xpn , xqn

))
= 0, by the condition

(φ1), we have limn→∞d
(
xpn , xqn

)
= 0. Therefore {xn} is g.m.s Cauchy.

Step 3. We claim that f has a periodic point in X.

Suppose, on contrary, f has no periodic point. Then {xn} is a sequence of distinct

points, that is, xp ≠ xq for all p, q ∈ N with p ≠ q. By step 2, since X is complete g.m.s,

there exists ν Î X such that xn ® ν. Using the inequality (1), we have

Chen and Chen Fixed Point Theory and Applications 2012, 2012:79
http://www.fixedpointtheoryandapplications.com/content/2012/1/79

Page 5 of 9



ϕ
(
d
(
f xn, fν

)) ≤ φ (ϕ (d (xn,ν)))

Letting n ® ∞, we have

ϕ
(
d
(
f xn, fν

)) → 0, as n → ∞,

by the condition (φ1), we get

d
(
f xn, fν

) → 0, as n → ∞,

that is,

xn+1 = f xn → fν, as n → ∞.

As (X, d) is Hausdorff, we have ν = fν, a contradiction with our assumption that f has

no periodic point. Therefore, there exists ν Î X such thatv = f p(v) for some p ∈ N. So f

has a periodic point in X. □
Using the functions ψ and φ, we next introduce the notion of the (ψ-φ)-weak con-

traction mapping and prove a theorem which assures the existence of a periodic point

for the (ψ-φ)-weak contraction mapping.

Definition 8 Let (X, d) be a g.m.s, and let f : X ® X be a function satisfying

ϕ
(
d
(
fx, fy

)) ≤ ψ
(
ϕ

(
d(x, y

)) · ϕ(d(x, y) (4)

for all x, y Î X. Then f is said to be a (ψ - φ)-weak contraction mapping.

Theorem 2 Let (X, d) be a Hausdorff and complete g.m.s, and let f be a (ψ - φ)-weak
contraction mapping. Then f has a periodic point μ in X.

Proof. Given x0 and define a sequence {xn} in X by

xn+1 = f xn for n ∈ N ∪ {0}.

Step 1. We shall prove that

lim
n→∞ ϕ (d (xn, xn+1)) = 0, (5)

lim
n→∞ ϕ (d (xn, xn+2)) = 0. (6)

Taking into account (4) and the definition of stronger Meir-Keeler function ψ, we

have that for each n ∈ N

ϕ (d (xn, xn+1)) = ϕ
(
d
(
f xn−1, f xn

))
≤ ψ

(
ϕ

(
d(xn−1, xn

)) · ϕ (
d(xn−1, xn

)
< ϕ

(
d(xn−1, xn

)
.

Thus the sequence {φ(d(xn, xn+1))} is descreasing and bounded below and hence it is

con-vergent. Let limn ® ∞ φ(d(xn, xn+1)) = h ≥ 0. Then there exists n0 ∈ N and δ >0

such that for all n ∈ N with n ≥ n0

η ≤ ϕ (d (xn, xn+1)) < η + δ. (7)

Taking into account (7) and the definition of stronger Meir-Keeler function ψ, corre-

sponding to h use, there exists gh Î [0, 1) such that

ψ (ϕ (d (xn, xn+1))) < γn for all n ≥ n0.
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Thus, we can deduce that for each n ∈ N with n ≥ n0 + 1

ϕ (d (xn, xn+1)) = ϕ
(
d
(
f xn−1, f xn

))
≤ ψ

(
ϕ

(
d(xn−1, xn

)) · ϕ (
d(xn−1, xn

)
< γη · ϕ (d (xn−1, xn)) ,

and so

ϕ (d (xn, xn+1)) ≤ γη · ϕ (d (xn−1, xn))

≤ γ 2
η · ϕ (

d
(
xn−2, xn0−1

))
≤ · · ·
≤ γ n−n0

η · ϕ
(
d
(
xn0 , xn0+1

))
.

Since gh Î [0, 1), we get

lim
n→∞ ϕ (d (xn, xn+1)) = 0.

Taking into account (4) and the definition of stronger Meir-Keeler function ψ, we

have that for each n ∈ N

ϕ (d (xn, xn+2)) = ϕ
(
d
(
f xn−1, f xn+1

))
≤ ψ

(
ϕ

(
d(xn−1, xn+1

)) · ϕ (
d(xn−1, xn+1

)
< ϕ

(
d(xn−1, xn+1

)
.

Thus the sequence {φ(d(xn, xn+2))} is descreasing and bounded below and hence it is

convergent. By the same proof process, we also conclude

lim
n→∞ ϕ (d (xn, xn+2)) = 0.

Next, we claim that {xn} is g.m.s Cauchy.

Step 2. Claim that limn→∞ϕ
(
d
(
xpn , xqn

))
= 0, that is, for every ε >0, corresponding

to above n0 use, there exists n ∈ N with n ≥ n0 +1 such that if p, q ≥ n then φ(d(xp,
xq)) < ε.

Suppose the above statement is false. Then there exists ε >0 such that for any n ∈ N,

there are pn, qn ∈ N with pn > qn ≥ n ≥ n0 + 1 satisfying

ϕ
(
d
(
xqn , xpn

)) ≥ ε.

Following from Theorem 1, we have that

lim
n→∞ ϕ

(
d
(
xpn , xqn

))
= ε.

and

lim
n→∞ ϕ

(
d
(
xpn−1, xqn−1

))
= ε.

Using the inequality (4), we have

ϕ
(
d
(
xpn , xqn

))
= ϕ

(
d
(
f xpn−1, f xqn−1

)))
≤ ψ

(
ϕ

(
d
(
xpn−1, xqn−1

))) · ϕ (
d
(
xpn−1, xqn−1

))
< γη · ϕ

(
d
(
xpn−1, xqn−1

))
,
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Letting n ® ∞, by the definitions of the functions ψ and φ, we have

ε < lim
n→∞ γη · ϕ (

d
(
xpn−1, xqn−1

))
< γη · ε < ε.

So we get a contradiction. Therefore limn→∞ϕ
(
d
(
xpn , xqn

))
= 0, by the condition

(φ1), we have limn→∞d
(
xpn , xqn

)
= 0. Therefore {xn} is g.m.s Cauchy.

Step 3. We claim that f has a periodic point in X.

Suppose, on contrary, f has no periodic point. Then {xn} is a sequence of distinct

points, that is, xp ≠ xq for all p, q ∈ N with p ≠ q. By step 2, since X is complete g.m.s,

there exists ν Î X such that xn ® ν. Using the inequality (4), we have

ϕ
(
d
(
f xn, fν

)) ≤ ψ (ϕ (d (xn, ν))) · ϕ (d (xn, ν))

Letting n ® ∞, we have

ϕ
(
d
(
f xn, fν

)) → 0, as n → ∞,

by the condition (φ1), we get

d
(
f xn, fν

) → 0, as n → ∞,

that is,

xn+1 = f xn → fν, as n → ∞.

As (X, d) is Hausdorff, we have ν = fν, a contradiction with our assumption that f has

no periodic point. Therefore, there exists ν Î X such that v = f p(v) for some p ∈ N. So f

has a periodic point in X. □
In conclusion, by using the new concepts of (j-φ)-weak contraction mappings and

(ψ - φ)-weak contraction mappings, we obtain two theorems (Theorems 1 and 2)

which assure the existence of a periodic point for these two types of weak contraction

in complete generalized metric spaces. Our results generalize or improve many recent

fixed point theorems in the literature.
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