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Abstract
In this paper, we consider an iterative method for finding a fixed point of continuous
mappings on an arbitrary interval. Then, we give the necessary and sufficient
conditions for the convergence of the proposed iterative methods for continuous
mappings on an arbitrary interval. We also compare the rate of convergence between
iteration methods. Finally, we provide a numerical example which supports our
theoretical results.
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1 Introduction
Let E be a closed interval on the real line and let f : E → E be a continuous mapping.
A point p ∈ E is a fixed point of f if f (p) = p. We denote by F(f ) the set of fixed points of f .
It is known that if E is also bounded, then F(f ) is nonempty.
There are many iterative methods for finding a fixed point of f . For example, the Mann

iteration (see []) is defined by u ∈ E and

un+ = ( – αn)un + αnf (un) (.)

for all n≥ , where {αn}∞n= is a sequence in [, ]. The Ishikawa iteration (see []) is defined
by s ∈ E and

⎧⎨
⎩
tn = ( – bn)sn + bnf (sn),

sn+ = ( – αn)sn + αnf (tn)
(.)

for all n ≥ , where {αn}∞n=, {bn}∞n= are sequences in [, ]. The Noor iteration (see []) is
defined by w ∈ E and

⎧⎪⎪⎨
⎪⎪⎩

rn = ( – an)wn + anf (wn),

qn = ( – bn)wn + bnf (rn),

wn+ = ( – αn)wn + αnf (qn)

(.)
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for all n ≥ , where {αn}∞n=, {bn}∞n= and {an}∞n= are sequences in [, ]. Clearly, Mann and
Ishikawa iterations are special cases of the Noor iteration.
In , Roades proved the convergence of the Mann iteration for the class of contin-

uous and nondecreasing functions on a closed unit interval, and then he [] extended
convergence results to Ishikawa iterations. He also proved that the Ishikawa iteration con-
verges faster than the Mann iteration for the class of continuous and nondecreasing map-
pings. Later, in , Borwein and Borwein [] proved the convergence of the Mann it-
eration of continuous mappings on a bounded closed interval. Recently, Qing and Qihou
[] extended their results to an arbitrary interval and to the Ishikawa iteration and a gave
necessary and sufficient condition for the convergence of Ishikawa iteration on an arbi-
trary interval. Recently, Phuengrattana and Suantai [] proved that the Mann, Ishikawa
and Noor iterations are equivalent for the class of continuous and nondecreasing map-
pings.
In this paper, we are interested in employing the iteration method (.) for a continuous

mapping on an arbitrary interval. The iteration method was first introduced by Thianwan
and Suantai [] as follows. Let E be a subset of a normed space X and let f : E → E be a
mapping

⎧⎪⎪⎨
⎪⎪⎩

zn = ( – an)xn + anf (xn),

yn = ( – bn – cn)xn + bnf (zn) + cnf (xn),

xn+ = ( – αn – βn)xn + αnf (yn) + βnf (zn)

(.)

for all n ≥ , where {αn}∞n=, {βn}∞n=, {an}∞n=, {bn}∞n= and {cn}∞n= are sequences in [, ].
Note that (.) reduces to (.) when an = bn = cn = βn = . Similarly, the process (.)

reduces to (.) when an = cn = βn = . Moreover, for cn = βn = , the process (.) reduces
to (.).
The purpose of this article is to give a necessary and sufficient condition for the strong

convergence of the iterationmethod (.) of continuousmappings on an arbitrary interval.
Our results extend and improve the corresponding results of Rhoades [], Borwein and
Borwein [], Qing and Qihou [], Phuengrattana and Suantai [], and many others.

2 Convergence theorems
We first give a convergence theorem for the iteration method (.) for continuous map-
pings on an arbitrary interval.

Theorem  Let E be a closed interval on the real line and let f : E → E be a continuous
mapping. For x ∈ E, let the iteration {xn}∞n= be defined by (.), and let {an}∞n=, {bn}∞n=,
{cn}∞n=, {αn}∞n= and {βn}∞n= be sequences in [, ] satisfying the following conditions:

(i) limn→∞ an = , limn→∞ bn = , limn→∞ cn =  and
∑∞

n= βn <∞,
(ii) limn→∞ αn =  and

∑∞
n= αn = ∞.

Then {xn}∞n= is bounded if and only if {xn}∞n= converges to a fixed point of f .

Proof It is obvious that {xn}∞n= converges to a fixed point of f . Now, assume that {xn}∞n=
is bounded. We shall show that {xn}∞n= is convergent. To show this, suppose not. Then
there exist a,b ∈ R, a = lim infn→∞ xn, b = lim supn→∞ xn and a < b. First, we show that if
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a <m < b, then f (m) =m. Suppose that f (m) �=m. Without loss of generality, we suppose
that f (m) –m > . Because f (x) is a continuous mapping, there exists δ ∈ (,b – a) such
that

f (x) – x >  for |x –m| ≤ δ. (.)

By the boundedness of {xn}∞n=, we have {xn}∞n= belongs to a bounded closed interval.
The continuity of f implies that {f (xn)}∞n= belongs to another bounded closed interval, so
{f (xn)}∞n= is bounded, and since zn = ( – an)xn + anf (xn), so {zn}∞n= is bounded, and thus
{f (zn)}∞n= is bounded. Similarly, since yn = (–bn– cn)xn+bnf (zn)+ cnf (xn), we have {yn}∞n=
and {f (yn)}∞n= are bounded. It follows by (.) that xn+ –xn = αn(f (yn)–xn)+βn(f (zn)–xn),
yn – xn = bn(f (zn) – xn) + cn(f (xn) – xn) and zn – xn = an(f (xn) – xn). By conditions (i) and
(ii), we get |xn+ – xn| → , |yn – xn| →  and |zn – xn| → . Thus, there exists N such that

|xn+ – xn| < δ


, |yn – xn| < δ


, |zn – xn| < δ


(.)

for all n > N . Since b = lim supn→∞ xn >m, there exists k > N such that xnk >m. Let k =
nk , then xk >m. For xk , there exist only two cases:
Case : xk ≥ m + δ

 , then by (.), we have xk+ – xk > – δ
 , then xk+ > xk – δ

 ≥ m, so
xk+ >m.
Case :m < xk <m+ δ

 , then by (.), we havem– δ
 < yk <m+ δ

 andm– δ
 < zk <m+ δ

 .
So, we have |xk –m| < δ

 < δ, |yk –m| < δ
 < δ and |zk –m| < δ

 < δ. Using (.), we get

f (xk) – xk > , f (yk) – yk > , f (zk) – zk > .

By (.), we have

xk+ = ( – αk – βk)xk + αkf (yk) + βkf (zk)

= xk + αk
(
f (yk) – xk

)
+ βk

(
f (zk) – xk

)

= xk + αk
(
f (yk) – yk

)
+ αk(yk – xk) + βk

(
f (zk) – zk

)
+ βk(zk – xk)

= xk + αk
[
bk

(
f (zk) – xk

)
+ ck

(
f (xk) – xk

)]
+ βkak

(
f (xk) – xk

)

+ αk
(
f (yk) – yk

)
+ βk

(
f (zk) – zk

)

= xk + akbk
(
f (zk) – zk

)
+ akbk(zk – xk) + αkck

(
f (xk) – xk

)

+ βkak
(
f (xk) – xk

)
+ αk

(
f (yk) – yk

)
+ βk

(
f (zk) – zk

)

= xk + akbk
(
f (xk) – xk

)
+ akbk

(
f (zk) – zk

)
+ αkck

(
f (xk) – xk

)

+ βkak
(
f (xk) – xk

)
+ αk

(
f (yk) – yk

)
+ βk

(
f (zk) – zk

)
.

By Case  and Case , we can conclude that xk+ > m. By using the above argument,
we obtain xk+ >m,xk+ >m,xk+ >m, . . . . Thus we get xn >m for all n > k = nk . So, a =
lim infn→∞ xn ≥ m, which is a contradiction with a <m. Thus f (m) =m.
For the sequence {xn}∞n=, we consider the following two cases.
Case ′: There exists xm such that a < xm < b.
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Then f (xm) = xm. Thus

zm = ( – am)xm + amf (xm) = xm,

ym = ( – bm – cm)xm + bmf (zm) + cmf (xm)

= ( – bm – cm)xm + bmf (xm) + cmf (xm) = xm,

xm+ = ( – αm – βm)xm + αmf (ym) + βmf (zm)

= ( – αm – βm)xm + αmf (xm) + βmf (xm) = xm.

By induction, we obtain xm = xm+ = xm+ = xm+ = · · · , so, xn → xm. This implies that
xm = a and xn → a, which contradicts our assumption.
Case ′: For all n, xn ≤ a or xn ≥ b.
Because b – a >  and |xn+ – xn| → , so there exists N such that |xn+ – xn| < b–a

 for
all n > N. It implies that either xn ≤ a for all n > N or xn ≥ b for all n > N. If xn ≤ a
for n > N, then b = lim supn→∞ xn ≤ a, which is a contradiction with a < b. If xn ≥ b for
n >N, so we have a = lim infn→∞ xn ≥ b, which is a contradiction with a < b.
Hence, we have {xn}∞n= is convergent.
Finally, we show that {xn}∞n= converges to a fixed point of f . Let xn → p and suppose that

f (p) �= p. By the continuity of f , we have {f (xn)}∞n= is bounded. From zn = (–an)xn+anf (xn)
and an → , we obtain zn → p. Similarly, by yn = ( – bn – cn)xn + bnf (zn) + cnf (xn) and
bn →  and cn → , it follows that yn → p. Let rk = f (yk) – xk and sk = f (zk) – xk . By the
continuity of f , we have limk→∞ rk = limk→∞(f (yk) – xk) = f (p) – p �=  and limk→∞ sk =
limk→∞(f (zk) – xk) = f (p) – p �= . Put w = f (p) – p. Then w �= . By (.), we get xn+ =
xn + αn(f (yn) – xn) + βn(f (zn) – xn). It follows that

xn = x +
n–∑
k=

(αkrk + βksk). (.)

By rk → w �=  and
∑∞

n= αn = ∞, we have that
∑∞

k= αkrk is divergent,
∑∞

k= βksk is con-
vergent. It follows by (.) that {xn}∞n= is divergent, which is a contradiction with xn → p.
Thus f (p) = p, that is, {xn}∞n= converges to a fixed point of f . �

The following corollaries are obtained directly by Theorem .

Corollary  [] Let E be a closed interval on the real line and let f : E → E be a continuous
mapping. For x ∈ E, let the Noor iteration {xn}∞n= be defined by (.),where {αn}∞n=, {βn}∞n=,
{γn}∞n= are sequences in [, ] satisfying the following conditions:

(i)
∑∞

n= αn = ∞ and limn→∞ αn = ;
(ii) limn→∞ βn =  and limn→∞ γn = .
Then {xn}∞n= is bounded if and only if {xn}∞n= converges to a fixed point of f .

Proof By putting cn = βn =  for all n ≥  in Theorem , we obtain the required result
directly from Theorem . �

Corollary  [] Let E be a closed interval on the real line and let f : E → E be a continuous
mapping. For x ∈ E, let the Ishikawa iteration {xn}∞n= be defined by (.), where {αn}∞n=,
{βn}∞n= are sequences in [, ] satisfying the following conditions:

http://www.fixedpointtheoryandapplications.com/content/2013/1/124
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(i)
∑∞

n= αn = ∞ and limn→∞ αn = ;
(ii) limn→∞ βn = .
Then {xn}∞n= is bounded if and only if {xn}∞n= converges to a fixed point of f .

Proof By putting an = cn =  and βn =  for all n ≥  in Theorem , we obtain the desired
result. �

Corollary  [] Let E be a closed interval on the real line and let f : E → E be a continuous
mapping. For x ∈ E, let the Mann iteration {xn}∞n= be defined by (.), where {αn}∞n= is a
sequence in [, ] satisfying the following conditions:

(i) limn→∞ αn =  and
(ii)

∑∞
n= αn = ∞.

Then {xn}∞n= is bounded if and only if {xn}∞n= converges to a fixed point of f .

Proof It is the special case an = bn = cn = βn =  in Theorem . �

3 Rate of convergence
In this section, we compare the rate of convergence of the iteration (.) with the Mann,
Ishikawa and Noor iterations. We show that the iteration (.) converges faster than the
others.
In order to compare the rate of convergence of continuous self-mappings defined on a

closed interval, we use the following definition introduced by Rhoades [].

Definition  Let E be a closed interval on the real line and let f : E → E be a continuous
mapping. Suppose that {xn}∞n= and {un}∞n= are two iterations which converge to the fixed
point p of f . We say that {xn}∞n=is better than {un}∞n= if

|xn – p| ≤ |un – p| for all n≥ .

Lemma  [] Let E be a closed interval on the real line and let f : E → E be a continuous
and nondecreasing mapping. Let {αn}∞n=, {βn}∞n=, {an}∞n= be sequences in [, ). Let {un}∞n=,
{sn}∞n= and {wn}∞n= be defined by (.)-(.), respectively. Then the following hold:

(i) If f (u) < u, then f (un) < un for all n≥  and {un}∞n= is nonincreasing.
(ii) If f (u) > u, then f (un) > un for all n≥  and {un}∞n= is nondecreasing.
(iii) If f (s) < s, then f (sn) < sn for all n≥  and {sn}∞n= is nonincreasing.
(iv) If f (s) > s, then f (sn) > sn for all n≥  and {sn}∞n= is nondecreasing.
(v) If f (w) < w, then f (wn) < wn for all n≥  and {wn}∞n= is nonincreasing.
(vi) If f (w) > w, then f (wn) > wn for all n≥  and {wn}∞n= is nondecreasing.

Lemma  Let E be a closed interval on the real line and let f : E → E be a continuous and
nondecreasing mapping. Let {an}∞n=, {bn}∞n=, {cn}∞n=, {αn}∞n= and {βn}∞n= be sequences in
[, ). Let {xn}∞n= be defined by (.). Then the following hold:

(i) If f (x) < x, then f (xn) < xn for all n≥  and {xn}∞n= is nonincreasing.
(ii) If f (x) > x, then f (xn) > xn for all n≥  and {xn}∞n= is nondecreasing.

Proof (i) Let f (x) < x. Then f (x) < z ≤ x. Since f is nondecreasing, we have f (z) ≤
f (x) < z ≤ x. This implies f (z) < y ≤ z. Thus f (y) ≤ f (x) < z ≤ x. For y, we consider
the following cases.

http://www.fixedpointtheoryandapplications.com/content/2013/1/124


Kadioglu and Yildirim Fixed Point Theory and Applications 2013, 2013:124 Page 6 of 10
http://www.fixedpointtheoryandapplications.com/content/2013/1/124

Case : f (z) < y ≤ z. Then f (y) ≤ f (z) < z < x. It follows that if f (y) < x ≤ y, then
f (x) ≤ f (y) < x, if y < x ≤ z, then f (x)≤ f (z) < y < x and if z < x ≤ x, then f (x) ≤
f (x) < z < x. Thus, we have f (x) < x.
Case : z < y ≤ x. Then f (y) ≤ f (x) < z ≤ x. This implies f (y) < x ≤ x. Thus

f (x) ≤ f (x) < z < y ≤ x. It follows that if f (y) < x ≤ y, then f (x) ≤ f (y) < x and
if y < x ≤ x, then f (x)≤ f (x) < y < x. Hence, we have f (x) < x.
From Cases  and , we have f (x) < x. By induction, we conclude that f (xn) < xn for all

n≥ . This implies zn ≤ xn for all n≥ . Since f is nondecreasing, we have f (zn) ≤ f (xn) < xn
for all n≥ . Thus yn ≤ xn for all n≥ , then f (yn) ≤ f (xn) < xn for all n≥ . Hence, we have
xn+ ≤ xn for all n ≥ , that is, {xn}∞n= is nonincreasing.
(ii) Following the line of (i), we can show the desired result. �

Lemma  Let E be a closed interval on the real line and let f : E → E be a continuous and
nondecreasing mapping. Let {an}∞n=, {bn}∞n=, {cn}∞n=, {αn}∞n= and {βn}∞n= be sequences in
[, ). For w = x ∈ E, let {wn}∞n= and {xn}∞n= be the sequences defined by (.) and (.),
respectively. Then the following are satisfied:

(i) If f (w) < w, then xn ≤ wn for all n ≥ .
(ii) If f (w) > w, then xn ≥ wn for all n ≥ .

Proof (i) Let f (w) < w. Since w = x, we get f (x) < x. From (.), we have f (x) < z ≤ x.
Since f is nondecreasing, we obtain f (z) ≤ f (x) < z ≤ x. This implies f (z) < y ≤ z.
Using (.) and (.), we have

z – r = ( – c)(x –w) + c
[
f (x) – f (w)

]
= ,

that is, z = r, and we get

y – q = ( – b)(x –w) + b
(
f (z) – f (r)

)
+ c

(
f (x) – x

) ≤ .

Since f is nondecreasing, we have f (y) ≤ f (q). This implies

x –w = ( – α – β)x + αf (y) + βf (z) – ( – α)w – αf (q)

= ( – α)(x –w) + α
(
f (y) – f (q)

)
+ β

(
f (z) – x

)

≤ ,

that is, x ≤ w. Assume that xk ≤ wk . Thus f (xk) ≤ f (wk).
By Lemma (v) and Lemma (i), we have f (wk) < f (wk) and f (xk) < f (wk). This implies

f (xk) < zk ≤ xk and f (zk)≤ f (xk) < zk . Thus

zk – rk = ( – γk)(xk –wk) + γk
(
f (xk) – f (wk)

) ≤ .

That is, zk ≤ rk . Since f (zk) ≤ f (rk), we have

yk – qk = ( – bk)(xk –wk) + bk
(
f (zk) – f (rk)

)
+ ck

(
f (xk) – xk

) ≤ ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/124
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so yk ≤ qk , which implies f (yk) – f (qk). It follows that

xk+ –wk+ = ( – αk)(xk –wk) + αk
(
f (yk) – f (qk)

)
+ βk

(
f (zk) – xk

)

≤ ,

that is, xk+ ≤ wk+. By mathematical induction, we obtain xn ≤ wn for all n≥ .
(ii) By using Lemma (vi) and Lemma (ii) and the same argument as in (i), we can show

that xn ≥ wn for all n≥ . �

Theorem  Let E be a closed interval on the real line and let f : E → E be a continuous
and nondecreasing mapping such that F(f ) is nonempty and bounded. Let {an}∞n=, {bn}∞n=,
{cn}∞n=, {αn}∞n= and {βn}∞n= be sequences in [, ). For w = x ∈ E, let {wn}∞n= and {xn}∞n=
be the sequences defined by (.) and (.), respectively. Let {an}∞n=, {bn}∞n=, {cn}∞n=, {αn}∞n=
and {βn}∞n= be sequences in [, ). Then the following is satisfied:
The iteration (.) {xn}∞n= converges to p ∈ F(f ) if and only if the Noor iteration {wn}∞n=

converges to p.Moreover, the iteration (.) {xn}∞n= is better than the Noor iteration.

Proof Put L = inf{p ∈ E : p = f (p)} and U = sup{p ∈ E : p = f (p)}.
(⇒) If the iteration (.) {xn}∞n= converges to p ∈ F(f ), then setting cn = βn =  for all

n≥  in (.), we can get the convergence of the Noor iteration.
(⇐) Suppose that the Noor iteration {wn}∞n= converges to p ∈ F(f ). We divide our proof

into the following three cases:
Case : w = x >U , Case : w = x < L, Case : L ≤ w = x ≤ U .
Case : w = x > U . By Proposition . in [], we get f (w) < w and f (x) < x. Using

Lemma(i), we get that xn ≤ wn for all n≥ . Following the line of the proof of Theorem.
in [], we have U ≤ xn for all n ≥ . Then we have  ≤ xn – p≤ wn – p, so

|xn – p| ≤ |wn – p| for all n≥ .

We can see that the iteration (.) {xn}∞n= is better than the Noor iteration.
Case : w = x < L. By Proposition . in [], we get f (w) > w and f (x) > x. Using

Lemma (ii), we get xn ≥ wn for all n ≥ . Following the line of the proof of Theorem .
in [], we get xn ≤ L for all n≥ . So,

|xn – p| ≤ |wn – p| for all n≥ .

We can see that the iteration (.) {xn}∞n= is better than the Noor iteration.
Case : L ≤ w = x ≤ U . Suppose that f (w) �= w. If f (w) < w, we have by Lemma (v)

that {wn}∞n= is nondecreasing with limit p. By Lemma (i), we have p ≤ xn ≤ wn for all
n≥ . It follows that |xn – p| ≤ |wn – p| for all n≥ . Hence we have that the iteration (.)
{xn}∞n= is better than the Noor iteration {wn}∞n=. If f (w) > w, we have by Lemma (vi) that
{wn}∞n= in nondecreasing with limit p. By Lemma (ii), we have p ≥ xn ≥ wn for all n≥ . It
follows that |xn – p| ≤ |wn – p| for all n≥ . Hence, we have that the iteration (.) {xn}∞n=
is better than the Noor iteration {wn}∞n=. �

Next, we present a numerical example for comparing the rate of convergence between
the Mann (.), Ishikawa (.), Noor (.) iterations and the iteration (.).

http://www.fixedpointtheoryandapplications.com/content/2013/1/124
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Table 1 Comparison of rate of convergence of the Mann, Ishikawa, Noor and iteration (1.4)
for the given function in Example 1

n Mann Ishikawa Noor Iteration (1.4)

1 3.750000 3.588542 3.489803 2.934030
5 2.861209 2.565875 2.445855 1.684223
10 2.047043 1.815025 1.732658 1.275403
15 1.569324 1.424585 1.376349 1.127905
20 1.312865 1.228173 1.200831 1.065029
25 1.176804 1.127450 1.111775 1.035290
30 1.103122 1.073872 1.064664 1.020127
35 1.061984 1.044248 1.038692 1.011940
40 1.038280 1.027271 1.023833 1.007314
45 1.024214 1.017229 1.015052 1.004602
50 1.015642 1.011122 1.009714 1.002962

Example  Let f : [, ] → [, ] be defined by f (x) = x+
 . Then f is a continuous and

nondecreasing mapping with a fixed point p = . Use the initial point x =  and control
condition an = bn = cn = βn = 

n+ and αn = 
n.+ .

Remark  From the example above, we see that the iteration (.) is better than theMann,
Ishikawa and Noor iterations under the same control conditions (see Table ).

4 Convergence theorems for modified iterationmethods
Now, we give a convergence theorem for continuous mappings on an arbitrary interval by
using the following modified iteration method defined by Suantai [].

⎧⎪⎪⎨
⎪⎪⎩

zn = ( – an)xn + anf n(xn),

yn = ( – bn – cn)xn + bnf n(zn) + cnf n(xn),

xn+ = ( – αn – βn)xn + αnf n(yn) + βnf n(zn)

(.)

for all n ≥ , where {αn}∞n=, {βn}∞n=, {an}∞n=, {bn}∞n= and {cn}∞n= are sequences in [, ] and
f n = f ◦ f ◦· · ·◦ f . Also, it is an open problemwhether it is possible to prove the convergence
theorem of a finite family of continuous mappings on an arbitrary interval by using the
iteration methods in this paper.

Theorem  Let E be a closed interval on the real line and let f : E → E be an injective
and continuous mapping. If the sequence {xn}∞n= satisfying the conditions of Theorem  is
bounded, then it converges to a fixed point of f .

Proof Suppose that {xn}∞n= is not convergent. Let a = lim infn→∞ xn and b = lim supn→∞ xn.
Then a < b. Next, we show that

ifm ∈ (a,b), then f (m) =m.

To show this, suppose that f (m) �=m for somem ∈ (a,b). Because f is an injective map-
ping,

f n(m) �=m for f (m) �=m.

http://www.fixedpointtheoryandapplications.com/content/2013/1/124
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Without loss of generality, we suppose that f n(m) –m > . From the continuity of f , we
know that f n is a continuous function. So, there exists δ,  < δ < b – a, such that

f n(x) – x >  for |x –m| ≤ δ.

If we use a similar method as the proof of Theorem , the proof of this theorem follows.
That is, {xn}∞n= converges to a fixed point of f . �

The following three corollaries follow from Theorem .

Corollary  Let E be a closed interval on the real line and let f : E → E be an injective and
continuous mapping. For x ∈ E, let {xn}∞n= be the sequence defined by

⎧⎪⎪⎨
⎪⎪⎩

zn = ( – an)xn + anf n(xn),

yn = ( – bn)xn + bnf n(zn),

xn+ = ( – αn)xn + αnf n(yn).

If the sequence {xn}∞n= satisfying the conditions of Corollary  is bounded, then it converges
to a fixed point of f .

Proof If we take cn = βn =  for all n≥  in Theorem , we obtain the desired result. �

Corollary  Let E be a closed interval on the real line and let f : E → E be an injective and
continuous mapping. For x ∈ E, let {xn}∞n= be a sequence defined by

⎧⎨
⎩
yn = ( – bn)xn + bnf n(xn),

xn+ = ( – αn)xn + αnf n(yn).

If the sequence {xn}∞n= satisfying the conditions of Corollary  is bounded, then it con-
verges to a fixed point of f .

Proof It follows directly from Theorem  by setting an = cn = βn =  for all n≥ . �

Corollary  Let E be a closed interval on the real line and let f : E → E be an injective and
continuous mapping. For x ∈ E, let {xn}∞n= be a sequence defined by

xn+ = ( – αn)xn + αnf n(xn).

If the sequence {xn}∞n= satisfying the conditions of Corollary  is bounded, then it con-
verges to a fixed point of f .

Proof By putting an = bn = cn = βn =  for all n ≥  in Theorem , we obtain the desired
result. �
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