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Abstract
In this paper, we define the modular space Zσ (s,p) by using the Zweier operator and
a modular. Then, we consider it equipped with the Luxemburg norm and also
examine the uniform Opial property and property β . Finally, we show that this space
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1 Introduction
In literature, there aremany papers about the geometrical properties of different sequence
spaces such as [–]. Opial [] introduced the Opial property and proved that the se-
quence spaces �p ( < p < ∞) have this property but Lp[, π ] (p �= ,  < p < ∞) does not
have it. Franchetti [] showed that any infinite dimensional Banach space has an equiv-
alent norm that satisfies the Opial property. Later, Prus [] introduced and investigated
the uniform Opial property for Banach spaces. The Opial property is important because
Banach spaces with this property have the weak fixed point property.

2 Definition and preliminaries
Let (X,‖ · ‖) be a real Banach space and let S(X) (resp. B(X)) be the unit sphere (resp. the
unit ball) of X. A Banach space X has the Opial property if for any weakly null sequence
{xn} in X and any x in X \ {}, the inequality limn→∞ inf‖x‖ < limn→∞ inf‖xn + x‖ holds.
We say that X has the uniform Opial property if for any ε >  there exists r >  such that
for any x ∈ X with ‖x‖ ≥ ε and any weakly null sequence {xn} in the unit sphere of X, the
inequality  + r ≤ limn→∞ inf‖xn + x‖ holds.
For a bounded set A ⊂ X, the ball-measure of noncompactness was defined by β(A) =

inf{ε >  : A can be covered by finitely many balls with diameter ≤ ε}. The function� de-
fined by �(ε) = inf{ – inf(‖x‖ : x ∈ A) : A is closed convex subset of B(X) with β(A) ≤ ε}
is called the modulus of noncompact convexity. A Banach space X is said to have prop-
erty (L), if limε→– �(ε) = . This property is an important concept in the fixed point theory
and a Banach spaceX possesses property (L) if and only if it is reflexive and has the uniform
Opial property.
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A Banach space X is said to satisfy the weak fixed point property if every nonempty
weakly compact convex subsetC and every nonexpansivemappingT : C → C(‖Tx–Ty‖ ≤
‖x – y‖,∀x, y ∈ C) have a fixed point, that is, there exists x ∈ C such that T(x) = x. Prop-
erty (L) and the fixed point property were also studied by Goebel and Kirk [], Toledano
et al. [], Benavides [], Benavides and Phothi []. A Banach space X is said to have
property (H) if every weakly convergent sequence on the unit sphere is convergent in
norm. Clarkson [] introduced the uniform convexity, and it is known that the uniform
convexity implies the reflexivity of Banach spaces. Huff [] introduced the concept of
nearly uniform convexity of Banach spaces. A Banach space X is called uniformly convex
(UC) if for each ε > , there is δ >  such that for x, y ∈ S(X), the inequality ‖x – y‖ > ε

implies that ‖ 
 (x + y)‖ <  – δ. For any x /∈ B(X), the drop determined by x is the set

D(x,B(X)) = conv({x} ∪ B(X)). A Banach space X has the drop property (D) if for every
closed setC disjointwithB(X), there exists an element x ∈ C such thatD(x,B(X))∩C = {x}.
Rolewicz [] showed that the Banach spaceX is reflexive ifX has the drop property. Later,
Montesinos [] extended this result and proved that X has the drop property if and only
if X is reflexive and has property (H). A sequence {xn} is said to be ε-separated sequence
for some ε >  if

sep(xn) = inf
{‖xn – xm‖ : n �=m

}
> ε.

A Banach space X is called nearly uniformly convex (NUC) if for every ε > , there exists
δ ∈ (, ) such that for every sequence (xn) ⊆ B(X) with sep(xn) > ε, we have conv(xn) ∩
(( – δ)B(X)) �= ∅. Huff [] proved that every (NUC) Banach space is reflexive and has
property (H). A Banach space X has property (β) if and only if for each ε > , there exists
δ >  such that for each element x ∈ B(X) and each sequence (xn) in B(X) with sep(xn) ≥ ε,
there is an index k for which ‖ x+xk

 ‖ <  – δ.
For a real vector space X, a function ρ : X → [,∞] is called a modular if it satisfies the

following conditions:
(i) ρ(x) =  if and only if x = ,
(ii) ρ(αx) = ρ(x) for all scalar α with |α| = ,
(iii) ρ(αx + βy) ≤ ρ(x) + ρ(y) for all x, y ∈ X and all α,β ≥  with α + β = .

The modular ρ is called convex if
(iv) ρ(αx + βy) ≤ αρ(x) + βρ(y) for all x, y ∈ X and all α,β ≥  with α + β = .

For any modular ρ on X, the space

Xρ =
{
x ∈ X : ρ(σx) < ∞ for some σ > 

}
is called a modular space. In general, the modular is not subadditive and thus it does not
behave as a norm or a distance. But we can associate themodular with an F-norm. A func-
tional ‖ · ‖ : X → [,∞] defines an F-norm if and only if

(i) ‖x‖ =  ⇔ x = ,
(ii) ‖αx‖ = ‖x‖ whenever |α| = ,
(iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖,
(iv) if αn → α and ‖xn – x‖ → , then ‖αnxn – αx‖ → .
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F-norm defines a distance on X by d(x, y) = ‖x – y‖. If the linear metric space (X,d) is
complete, then it is called an F-space. The modular space Xρ can be equipped with the
following F-norm:

‖x‖ = inf

{
α >  : ρ

(
x
α

)
≤ α

}
.

If the modular ρ is convex, then the equality ‖x‖ = inf{α >  : ρ( x
α
) ≤ } defines a norm

which is called the Luxemburg norm.
A modular ρ is said to satisfy the δ-condition if for any ε > , there exist constants

K ≥ , a >  such that ρ(u) ≤ Kρ(u) + ε for all u ∈ Xρ with ρ(u) ≤ a. If ρ provides
the δ-condition for any a >  with K ≥  dependent on a, then ρ provides the strong
δ-condition (briefly ρ ∈ δs).
Let us denote by � the space of all real sequences. The Cesàro sequence spaces

Cesp =

{
x ∈ � :

∞∑
n=

(
n–

n∑
i=

|xi|
)p

< ∞
}
,  ≤ p < ∞,

and

Ces∞ =

{
x ∈ � : sup

n
n–

n∑
i=

|xi| < ∞
}
,

were introduced by Shiue []. Jagers [] determined the Köthe duals of the sequence
space Cesp ( < p <∞). It can be shown that the inclusion �p ⊂ Cesp is strict for  < p <∞
although it does not hold for p = . Also, Suantai [] defined the generalized Cesàro se-
quence space by

ces(p) =
{
x ∈ � : ρ(λx) < ∞ for some λ > 

}
,

where ρ(x) =
∑∞

n=(

n
∑n

i= |x(i)|)pn . If p = (pn) is bounded, then

ces(p) =

{
x = (xk) :

∞∑
n=

(
n–

n∑
i=

∣∣x(i)∣∣
)pn

< ∞
}
.

The sequence space C(s,p) was defined by Bilgin [] as follows:

C(s,p) =

{
x = (xk) :

∞∑
r=

(
–r

∑
r
k–s|xk|

)pr
< ∞, s ≥ 

}

for p = (pr) with infpr > , where
∑

r denotes a sum over the ranges r ≤ k < r+. The
special case of C(s,p) for s =  is the space

Ces(p) =

{
x = (xk) :

∞∑
r=

(
–r

∑
r

|xk|
)pr

<∞
}
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which was introduced by Lim []. Also, the inclusion Ces(p) ⊆ C(s,p) holds. A paranorm
on C(s,p) is given by

ρ(x) =

( ∞∑
r=

(
–r

∑
r
k–s|xk|

)pr
)/M

forM =max(,H) and H = suppr <∞.
The Z-transform of a sequence x = (xk) is defined by (Zx)n = yn = αxn + ( – α)xn– by

using the Zweier operator

Z = (znk) =

⎧⎪⎪⎨
⎪⎪⎩

α, k = n,

 – α, k = n – ,

, otherwise

for n,k ∈N and α ∈F\{},

where F is the field of all complex or real numbers. The Zweier operator was studied by
Şengönül and Kayaduman [].
Now we introduce a new modular sequence space Zσ (s,p) by

Zσ (s,p) =
{
x ∈ � : σ (tx) <∞, for some t > 

}
,

where σ (x) =
∑∞

r=(–r
∑

r k–s|αxk + ( – α)xk–|)pr < ∞ and s ≥ . If we take α = , then
Zσ (s,p) = C(s,p); if α =  and s = , then Zσ (s,p) = Ces(p). It can be easily seen that
σ : Zσ (s,p) → [,∞] is a modular on Zσ (s,p). We define the Luxemburg norm on the
sequence space Zσ (s,p) as follows:

‖x‖ = inf

{
t >  : σ

(
x
t

)
≤ 

}
, ∀x ∈Zσ (s,p).

It is easy to see that the space Zσ (s,p) is a Banach space with respect to the Luxemburg
norm.
Throughout the paper, suppose that p = (pr) is bounded with pr >  for all r ∈N and

ei =
( i–︷ ︸︸ ︷
,, . . . , , , , , , . . .

)
,

x|i =
(
x(),x(),x(), . . . ,x(i), , , , . . .

)
,

x|N–i =
(
,, , . . . ,x(i + ),x(i + ), . . .

)
,

for i ∈ N and x ∈ �. In addition, we will require the following inequalities:

|ak + bk|pk ≤ C
(|ak|pk + |bk|pk

)
, |ak + bk|tk ≤ |ak|tk + |bk|tk ,

where tk = pk
M ≤  and C =max{, H–} with H = suppk .

3 Main results
Since �p is reflexive and convex, �(p)-type spaces have many useful applications, and it
is natural to consider a geometric structure of these spaces. From this point of view, we

http://www.fixedpointtheoryandapplications.com/content/2013/1/165
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generalized the space C(s,p) by using the Zweier operator and then obtained the equality
Zσ (s,p) = Ces(p), that is, it was seen that the structure of the spaceCes(p) was preserved. In
this section, our goal is to investigate a geometric structure of the modular space Zσ (s,p)
related to the fixed point theory. For this, we will examine property (β) and the uniform
Opial property for Zσ (s,p). Finally, we will give some fixed point results. To do this, we
need some results which are important in our opinion.

Lemma . [] If σ ∈ δs, then for any L >  and ε > , there exists δ >  such that

∣∣σ (u + v) – σ (u)
∣∣ < ε,

where u, v ∈ Xσ with σ (u)≤ L and σ (v)≤ δ.

Lemma . [] If σ ∈ δs, convergence in norm and in modular are equivalent in Xσ .

Lemma . [] If σ ∈ δs, then for any ε > , there exists δ = δ(ε) >  such that ‖x‖ ≥  + δ

implies σ (x)≥  + ε.

Now we give the following two lemmas without proof.

Lemma . If ‖x‖L <  for any x ∈Zσ (s,p), then σ (x)≤ ‖x‖L.

Lemma . For any x ∈Zσ (s,p), ‖x‖L =  if and only if σ (x) = .

Lemma . If lim infpr > , then for any x ∈Zσ (s,p), there exist k ∈N and μ ∈ (, ) such
that

σ

(
xk



)
≤  –μ


σ
(
xk

)

for all k ∈ N with k ≥ k, where xk = (
k–︷ ︸︸ ︷

,, . . . , ,
∑

r≤i≤k |x(i)|,x(k + ),x(k + ), . . .) and
r ≤ k < r+.

Proof Let k ∈ N be fixed. Then there exists rk ∈N such that k ∈ Irk . Let γ be a real number
 < γ ≤ lim infpr , and so there exists k ∈ N such that γ < prk for all k ≥ k. Choose μ ∈
(, ) such that (  )

γ ≤ –μ

 . Therefore, we have

σ

(
xk



)
=

∞∑
r=

(
–r

∑
r
k–s

∣∣∣∣αx(k) + ( – α)x(k – )


∣∣∣∣
)pr

=
∞∑
r=

(



)pr(
–r

∑
r
k–s

∣∣αx(k) + ( – α)x(k – )
∣∣)pr

≤
(



)γ ∞∑
r=

(
–r

∑
r
k–s

∣∣αx(k) + ( – α)x(k – )
∣∣)pr

<
 –μ


σ
(
xk

)
for each x ∈Zσ (s,p) and k ≥ k. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/165
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Lemma . If σ ∈ δs, then for any ε ∈ (, ), there exists δ ∈ (, ) such that σ (x) ≤  – ε

implies ‖x‖ ≤  – δ.

Proof Suppose that lemma does not hold. So, there exist ε >  and xn ∈ Zσ (s,p) such
that σ (xn) <  – ε and 

 ≤ ‖xn‖ → . Take sn = 
‖xn‖– , and so sn →  as n → ∞. Let

P = sup{σ (xn) : n ∈ N}. There exists D ≥  such that

σ (u)≤ Dσ (u) +  (.)

for every u ∈Zσ (s,p) with σ (u) < , since σ ∈ δs. We have

σ (xn) ≤ Dσ (xn) +  <D + 

for all n ∈N by (.). Therefore,  < P < ∞ and from Lemma . we have

 = σ

(
xn

‖xn‖
)
= σ

(
snxn + ( – sn)xn

)
≤ snσ (xn) + ( – sn)σ (xn)

≤ snP + ( – ε) → ( – ε).

This is a contradiction. So, the proof is complete. �

Theorem . The space Zσ (s,p) has property (β).

Proof Let ε >  and (xn) ⊂ B(Zσ (s,p)) with sep(xn) ≥ ε and x ∈ B(Zσ (s,p)). For each l ∈N,
we can find rk ∈N such that rk ≤ l < rk+. Let

xln =
( l–︷ ︸︸ ︷
,, . . . , ,

∑
rk≤i≤l

∣∣x(i)∣∣,xn(l + ),xn(l + ), . . .
)
.

Since for each i ∈N, (xn(i))∞i= is bounded, by using the diagonal method, we can find a sub-
sequence (xnj ) of (xn) such that (xnj (i)) converges for each i ∈ N with  ≤ i ≤ l. Therefore,
there exists an increasing sequence of positive integers tl such that sep((xlnj )j≥tl ) ≥ ε. Thus,
there exists a sequence of positive integers (rl)∞l= with r < r < · · · such that ‖xlrl‖ ≥ ε

 for
all l ∈N. Since σ ∈ δs, there is η >  such that

σ
(
xlrl

) ≥ η for all l ∈N (.)

from Lemma .. However, there exist k ∈N and μ ∈ (, ) such that

σ

(
vk



)
≤  –μ


σ
(
vk

)
(.)

for all v ∈Zσ (s,p) and k ≥ k by Lemma .. There exists δ >  such that

σ (y)≤  –
μη


⇒ ‖y‖ ≤  – δ (.)

for any y ∈Zσ (s,p) by Lemma ..

http://www.fixedpointtheoryandapplications.com/content/2013/1/165
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By Lemma ., there exists δ such that

∣∣σ (u + v) – σ (u)
∣∣ < μη


, (.)

where σ (u)≤  and σ (v)≤ δ. Hence, we get that σ (x)≤  since x ∈ B(Zσ (s,p)). Then there
exists k ≥ k such that σ (xk) ≤ δ. Let u = xlrl and v = xl . Then

σ

(
u


)
<  and σ

(
v


)
< δ.

We obtain from (.) and (.) that

σ

(
u + v


)
≤ σ

(
u


)
+

μη


≤  –μ


σ (u) +

μη


. (.)

Choose si = rli . By the inequalities (.), (.), (.) and the convexity of the function
f (u) = |u|pr , we have

σ

(
x + xsk



)
=

∞∑
r=

(
–r

∑
r
k–s

∣∣∣∣α(x(k) + xsi (k)) + ( – α)(x(k – ) + xsi (k – ))


∣∣∣∣
)pr

=
rk–∑
r=

(
–r

∑
r
k–s

∣∣∣∣α(x(k) + xsi (k)) + ( – α)(x(k – ) + xsi (k – ))


∣∣∣∣
)pr

+
∞∑
r=rk

(
–r

∑
r
k–s

∣∣∣∣α(x(k) + xsi (k)) + ( – α)(x(k – ) + xsi (k – ))


∣∣∣∣
)pr

≤ 


rk–∑
r=

(
–r

∑
r
k–s

∣∣αx(k) + ( – α)x(k – )
∣∣)pr

+



rk–∑
r=

(
–r

∑
r
k–s

∣∣αxsi (k) + ( – α)xsi (k – )
∣∣)pr

+
∞∑
r=rk

(
–r

∑
r
k–s

∣∣∣∣αxsi (k) + ( – α)xsi (k – )


∣∣∣∣
)pr

+
μη



≤ 


rk–∑
r=

(
–r

∑
r
k–s

∣∣αx(k) + ( – α)x(k – )
∣∣)pr

+



rk–∑
r=

(
–r

∑
r
k–s

∣∣αxsi (k) + ( – α)xsi (k – )
∣∣)pr

+
 –μ



∞∑
r=rk

(
–r

∑
r
k–s

∣∣∣∣αxsi (k) + ( – α)xsi (k – )


∣∣∣∣
)pr

+
μη



≤ 


rk–∑
r=

(
–r

∑
r
k–s

∣∣αx(k) + ( – α)x(k – )
∣∣)pr

+



∞∑
r=

(
–r

∑
r
k–s

∣∣αxsi (k) + ( – α)xsi (k – )
∣∣)pr

http://www.fixedpointtheoryandapplications.com/content/2013/1/165
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–
μ



∞∑
r=rk

(
–r

∑
r
k–s

∣∣∣∣αxsi (k) + ( – α)xsi (k – )


∣∣∣∣
)pr

+
μη



≤ 

+


–

μη


+

μη



=  –
μη


.

So, the inequality (.) implies that ‖ x+xsk
 ‖ ≤  – δ. Consequently, the space Zσ (s,p)

possesses property (β). �

Since property (β) implies NUC, NUC implies property (D) and property (D) implies
reflexivity, we can give the following result from Theorem ..

Corollary . The space Zσ (s,p) is nearly uniform convex, reflexive and also it has prop-
erty (D).

Theorem . The space Zσ (s,p) has the uniform Opial property.

Proof Let ε >  and x ∈ Zσ (s,p) be such that ‖x‖ ≥ ε and (xn) be a weakly null sequence
in S(Zσ (s,p)). By σ ∈ δs, there exists ζ ∈ (, ) independent of x such that σ (x) > ζ by
Lemma .. Also since σ ∈ δs, by Lemma ., there is ζ ∈ (, ζ ) such that

∣∣σ (y + z) – σ (y)
∣∣ < ζ


(.)

whenever σ (y)≤  and σ (z)≤ ζ. Take r ∈ N such that

∞∑
r=r+

(
–r

∑
r
k–s

∣∣αx(k) + ( – α)x(k – )
∣∣)pr

<
ζ


. (.)

Hence, we have

ζ <
r∑
r=

(
–r

∑
r
k–s

∣∣αx(k) + ( – α)x(k – )
∣∣)pr

+
∞∑

r=r+

(
–r

∑
r
k–s

∣∣αx(k) + ( – α)x(k – )
∣∣)pr

≤
r∑
r=

(
–r

∑
r
k–s

∣∣αx(k) + ( – α)x(k – )
∣∣)pr

+
ζ


(.)

and this implies that

r∑
r=

(
–r

∑
r
k–s

∣∣αx(k) + ( – α)x(k – )
∣∣)pr

> ζ –
ζ



> ζ –
ζ



=
ζ

. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/165
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Since xn →w , by the inequality (.), there exists r ∈N such that

r∑
r=

(
–r

∑
r
k–s

∣∣α(
xn(k) + x(k)

)
+ ( – α)

(
xn(k – ) + x(k – )

)∣∣)pr
>
ζ

. (.)

Again, by xn →w , there is r > r such that for all r > r

‖xn|r ‖ <  –
(
 –

ζ



)/M

, (.)

where pr ≤ M ∈N for all r ∈N. Therefore, we obtain that

‖xn|N–r ‖ >
(
 –

ζ



)/M

(.)

by the triangle inequality of the norm. It follows from the definition of the Luxemburg
norm that

 ≤ σ

( xn|N–r
( – ζ

 )/M

)

=
∞∑

r=r+

(
–r

∑
r k–s|αxn(k) + ( – α)xn(k – )|

( – ζ

 )/M

)pr

≤
(


( – ζ

 )/M

)M ∞∑
r=r+

(
–r

∑
r
k–s

∣∣αxn(k) + ( – α)xn(k – )
∣∣)pr

(.)

and this implies that

∞∑
r=r+

(
–r

∑
r
k–s

∣∣αxn(k) + ( – α)xn(k – )
∣∣)pr

≥  –
ζ


. (.)

By (.), (.), (.), (.) and since xn →w  ⇒ xn →  (coordinatewise), we have for
any r > r that

σ (xn + x) =
r∑
r=

(
–r

∑
r
k–s

∣∣α(
xn(k) + x(k)

)
+ ( – α)

(
xn(k – ) + x(k – )

)∣∣)pr

+
∞∑

r=r+

(
–r

∑
r
k–s

∣∣α(
xn(k) + x(k)

)
+ ( – α)

(
xn(k – ) + x(k – )

)∣∣)pr

≥
∞∑

r=r+

(
–r

∑
r
k–s

∣∣α(
xn(k) + x(k)

)
+ ( – α)

(
xn(k – ) + x(k – )

)∣∣)pr

–
ζ


+
ζ


≥ ζ


+
(
 –

ζ



)
–

ζ



=  +
ζ


.
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Since σ ∈ δs, it follows from Lemma . that there is τ depending on ζ only such that
‖xn + x‖ ≥  + τ . �

Corollary . The space Zσ (s,p) has property (L) and the fixed point property.
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26. Şengönül, M, Kayaduman, K: On the ZN-Nakano sequence space. Int. J. Math. Anal. 4(25-28), 1363-1375 (2010)

doi:10.1186/1687-1812-2013-165
Cite this article as: Et et al.: Some geometric properties of a newmodular space defined by Zweier operator. Fixed
Point Theory and Applications 2013 2013:165.

http://www.fixedpointtheoryandapplications.com/content/2013/1/165

	Some geometric properties of a new modular space deﬁned by Zweier operator
	Abstract
	MSC
	Keywords

	Introduction
	Deﬁnition and preliminaries
	Main results
	Competing interests
	Authors' contributions
	Author details
	References


