RESEARCH

Open Access

Some geometric properties of a new modular space defined by Zweier operator

Mikail Et¹, Murat Karakaş^{2*} and Muhammed Çınar³

Dedicated to Professor Hari M Srivastava

*Correspondence: m.karakas33@hotmail.com ²Department of Statistics, Bitlis Eren University, Bitlis, 13000, Turkey Full list of author information is available at the end of the article

Abstract

In this paper, we define the modular space $Z_{\sigma}(s, p)$ by using the Zweier operator and a modular. Then, we consider it equipped with the Luxemburg norm and also examine the uniform Opial property and property β . Finally, we show that this space has the fixed point property. **MSC:** 40A05; 46A45; 46B20

Keywords: Zweier operator; Luxemburg norm; modular space; uniform Opial property; property (β)

1 Introduction

In literature, there are many papers about the geometrical properties of different sequence spaces such as [1-9]. Opial [10] introduced the Opial property and proved that the sequence spaces ℓ_p $(1 have this property but <math>L_p[0, 2\pi]$ $(p \neq 2, 1 does not have it. Franchetti [11] showed that any infinite dimensional Banach space has an equivalent norm that satisfies the Opial property. Later, Prus [12] introduced and investigated the uniform Opial property for Banach spaces. The Opial property is important because Banach spaces with this property have the weak fixed point property.$

2 Definition and preliminaries

Let $(X, \|\cdot\|)$ be a real Banach space and let S(X) (resp. B(X)) be the unit sphere (resp. the unit ball) of X. A Banach space X has the Opial property if for any weakly null sequence $\{x_n\}$ in X and any x in $X \setminus \{0\}$, the inequality $\lim_{n\to\infty} \inf ||x|| < \lim_{n\to\infty} \inf ||x_n + x||$ holds. We say that X has the uniform Opial property if for any $\varepsilon > 0$ there exists r > 0 such that for any $x \in X$ with $||x|| \ge \varepsilon$ and any weakly null sequence $\{x_n\}$ in the unit sphere of X, the inequality $1 + r \le \lim_{n\to\infty} \inf ||x_n + x||$ holds.

For a bounded set $A \subset X$, the ball-measure of noncompactness was defined by $\beta(A) = \inf\{\varepsilon > 0 : A \text{ can be covered by finitely many balls with diameter <math>\leq \varepsilon\}$. The function Δ defined by $\Delta(\varepsilon) = \inf\{1 - \inf(||x|| : x \in A) : A \text{ is closed convex subset of } B(X) \text{ with } \beta(A) \leq \varepsilon\}$ is called the modulus of noncompact convexity. A Banach space X is said to have property (L), if $\lim_{\varepsilon \to 1^-} \Delta(\varepsilon) = 1$. This property is an important concept in the fixed point theory and a Banach space X possesses property (L) if and only if it is reflexive and has the uniform Opial property.

© 2013 Et et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A Banach space X is said to satisfy the weak fixed point property if every nonempty weakly compact convex subset C and every nonexpansive mapping $T: C \to C(||Tx - Ty|| < C)$ $||x - y||, \forall x, y \in C$ have a fixed point, that is, there exists $x \in C$ such that T(x) = x. Property (L) and the fixed point property were also studied by Goebel and Kirk [13], Toledano et al. [14], Benavides [15], Benavides and Phothi [16]. A Banach space X is said to have property (H) if every weakly convergent sequence on the unit sphere is convergent in norm. Clarkson [17] introduced the uniform convexity, and it is known that the uniform convexity implies the reflexivity of Banach spaces. Huff [18] introduced the concept of nearly uniform convexity of Banach spaces. A Banach space X is called uniformly convex (UC) if for each $\varepsilon > 0$, there is $\delta > 0$ such that for $x, y \in S(X)$, the inequality $||x - y|| > \varepsilon$ implies that $\|\frac{1}{2}(x+y)\| < 1 - \delta$. For any $x \notin B(X)$, the drop determined by x is the set $D(x, B(X)) = \operatorname{conv}(\{x\} \cup B(X))$. A Banach space X has the drop property (D) if for every closed set *C* disjoint with B(X), there exists an element $x \in C$ such that $D(x, B(X)) \cap C = \{x\}$. Rolewicz [19] showed that the Banach space X is reflexive if X has the drop property. Later, Montesinos [20] extended this result and proved that *X* has the drop property if and only if X is reflexive and has property (H). A sequence $\{x_n\}$ is said to be ε -separated sequence for some $\varepsilon > 0$ if

 $sep(x_n) = \inf\{\|x_n - x_m\| : n \neq m\} > \varepsilon.$

A Banach space *X* is called nearly uniformly convex (NUC) if for every $\varepsilon > 0$, there exists $\delta \in (0,1)$ such that for every sequence $(x_n) \subseteq B(X)$ with $sep(x_n) > \varepsilon$, we have $conv(x_n) \cap ((1 - \delta)B(X)) \neq \emptyset$. Huff [18] proved that every (NUC) Banach space is reflexive and has property (*H*). A Banach space *X* has property (β) if and only if for each $\varepsilon > 0$, there exists $\delta > 0$ such that for each element $x \in B(X)$ and each sequence (x_n) in B(X) with $sep(x_n) \ge \varepsilon$, there is an index *k* for which $\|\frac{x+x_k}{2}\| < 1 - \delta$.

For a real vector space *X*, a function $\rho : X \to [0, \infty]$ is called a modular if it satisfies the following conditions:

- (i) $\rho(x) = 0$ if and only if x = 0,
- (ii) $\rho(\alpha x) = \rho(x)$ for all scalar α with $|\alpha| = 1$,

(iii) $\rho(\alpha x + \beta y) \le \rho(x) + \rho(y)$ for all $x, y \in X$ and all $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$. The modular ρ is called convex if

(iv) $\rho(\alpha x + \beta y) \le \alpha \rho(x) + \beta \rho(y)$ for all $x, y \in X$ and all $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$. For any modular ρ on X, the space

$$X_{\rho} = \left\{ x \in X : \rho(\sigma x) < \infty \text{ for some } \sigma > 0 \right\}$$

is called a modular space. In general, the modular is not subadditive and thus it does not behave as a norm or a distance. But we can associate the modular with an *F*-norm. A functional $\|\cdot\|: X \to [0, \infty]$ defines an *F*-norm if and only if

- (i) $||x|| = 0 \Leftrightarrow x = 0$,
- (ii) $\|\alpha x\| = \|x\|$ whenever $|\alpha| = 1$,
- (iii) $||x + y|| \le ||x|| + ||y||$,
- (iv) if $\alpha_n \to \alpha$ and $||x_n x|| \to 0$, then $||\alpha_n x_n \alpha x|| \to 0$.

F-norm defines a distance on *X* by d(x, y) = ||x - y||. If the linear metric space (*X*, *d*) is complete, then it is called an *F*-space. The modular space X_{ρ} can be equipped with the following *F*-norm:

$$\|x\| = \inf \left\{ \alpha > 0 : \rho\left(\frac{x}{\alpha}\right) \le \alpha \right\}.$$

If the modular ρ is convex, then the equality $||x|| = \inf\{\alpha > 0 : \rho(\frac{x}{\alpha}) \le 1\}$ defines a norm which is called the Luxemburg norm.

A modular ρ is said to satisfy the δ_2 -condition if for any $\varepsilon > 0$, there exist constants $K \ge 2$, a > 0 such that $\rho(2u) \le K\rho(u) + \varepsilon$ for all $u \in X_\rho$ with $\rho(u) \le a$. If ρ provides the δ_2 -condition for any a > 0 with $K \ge 2$ dependent on a, then ρ provides the strong δ_2 -condition (briefly $\rho \in \delta_2^s$).

Let us denote by ℓ^0 the space of all real sequences. The Cesàro sequence spaces

$$Ces_p = \left\{ x \in \ell^0 : \sum_{n=1}^{\infty} \left(n^{-1} \sum_{i=1}^n |x_i| \right)^p < \infty \right\}, \quad 1 \le p < \infty,$$

and

$$Ces_{\infty} = \left\{ x \in \ell^0 : \sup_n n^{-1} \sum_{i=1}^n |x_i| < \infty \right\},$$

were introduced by Shiue [21]. Jagers [22] determined the Köthe duals of the sequence space Ces_p ($1). It can be shown that the inclusion <math>\ell_p \subset Ces_p$ is strict for 1 although it does not hold for <math>p = 1. Also, Suantai [23] defined the generalized Cesàro sequence space by

$$ces(p) = \{x \in \ell^0 : \rho(\lambda x) < \infty \text{ for some } \lambda > 0\},\$$

where $\rho(x) = \sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^{n} |x(i)|)^{p_n}$. If $p = (p_n)$ is bounded, then

$$ces(p) = \left\{ x = (x_k) : \sum_{n=1}^{\infty} \left(n^{-1} \sum_{i=1}^{n} |x(i)| \right)^{p_n} < \infty \right\}.$$

The sequence space C(s, p) was defined by Bilgin [24] as follows:

$$C(s,p) = \left\{ x = (x_k) : \sum_{r=0}^{\infty} \left(2^{-r} \sum_r k^{-s} |x_k| \right)^{p_r} < \infty, s \ge 0 \right\}$$

for $p = (p_r)$ with $\inf p_r > 0$, where \sum_r denotes a sum over the ranges $2^r \le k < 2^{r+1}$. The special case of C(s, p) for s = 0 is the space

$$Ces(p) = \left\{ x = (x_k) : \sum_{r=0}^{\infty} \left(2^{-r} \sum_r |x_k| \right)^{p_r} < \infty \right\}$$

which was introduced by Lim [25]. Also, the inclusion $Ces(p) \subseteq C(s, p)$ holds. A paranorm on C(s, p) is given by

$$\rho(x) = \left(\sum_{r=0}^{\infty} \left(2^{-r} \sum_{r} k^{-s} |x_k|\right)^{p_r}\right)^{1/M}$$

for $M = \max(1, H)$ and $H = \sup p_r < \infty$.

The *Z*-transform of a sequence $x = (x_k)$ is defined by $(Zx)_n = y_n = \alpha x_n + (1 - \alpha)x_{n-1}$ by using the Zweier operator

$$Z = (z_{nk}) = \begin{cases} \alpha, & k = n, \\ 1 - \alpha, & k = n - 1, \\ 0, & \text{otherwise} \end{cases} \text{ for } n, k \in \mathbb{N} \text{ and } \alpha \in \mathcal{F} \setminus \{0\},$$

where \mathcal{F} is the field of all complex or real numbers. The Zweier operator was studied by Şengönül and Kayaduman [26].

Now we introduce a new modular sequence space $\mathcal{Z}_{\sigma}(s, p)$ by

$$\mathcal{Z}_{\sigma}(s,p) = \left\{ x \in \ell^0 : \sigma(tx) < \infty, \text{ for some } t > 0 \right\},\$$

where $\sigma(x) = \sum_{r=0}^{\infty} (2^{-r} \sum_r k^{-s} |\alpha x_k + (1 - \alpha) x_{k-1}|)^{p_r} < \infty$ and $s \ge 0$. If we take $\alpha = 1$, then $\mathcal{Z}_{\sigma}(s,p) = C(s,p)$; if $\alpha = 1$ and s = 0, then $\mathcal{Z}_{\sigma}(s,p) = Ces(p)$. It can be easily seen that $\sigma : \mathcal{Z}_{\sigma}(s,p) \to [0,\infty]$ is a modular on $\mathcal{Z}_{\sigma}(s,p)$. We define the Luxemburg norm on the sequence space $\mathcal{Z}_{\sigma}(s,p)$ as follows:

$$||x|| = \inf\left\{t > 0 : \sigma\left(\frac{x}{t}\right) \le 1\right\}, \quad \forall x \in \mathcal{Z}_{\sigma}(s, p).$$

It is easy to see that the space $Z_{\sigma}(s, p)$ is a Banach space with respect to the Luxemburg norm.

Throughout the paper, suppose that $p = (p_r)$ is bounded with $p_r > 1$ for all $r \in \mathbb{N}$ and

$$e_i = (\overbrace{0, 0, \dots, 0}^{i-1}, 1, 0, 0, 0, \dots),$$

$$x_{|_i} = (x(1), x(2), x(3), \dots, x(i), 0, 0, 0, \dots),$$

$$x_{|_{\mathbb{N}-i}} = (0, 0, 0, \dots, x(i+1), x(i+2), \dots),$$

for $i \in \mathbb{N}$ and $x \in \ell^0$. In addition, we will require the following inequalities:

$$|a_k + b_k|^{p_k} \le C(|a_k|^{p_k} + |b_k|^{p_k}), \qquad |a_k + b_k|^{t_k} \le |a_k|^{t_k} + |b_k|^{t_k},$$

where $t_k = \frac{p_k}{M} \le 1$ and $C = \max\{1, 2^{H-1}\}$ with $H = \sup p_k$.

3 Main results

Since ℓ_p is reflexive and convex, $\ell(p)$ -type spaces have many useful applications, and it is natural to consider a geometric structure of these spaces. From this point of view, we

generalized the space C(s,p) by using the Zweier operator and then obtained the equality $\mathcal{Z}_{\sigma}(s,p) = Ces(p)$, that is, it was seen that the structure of the space Ces(p) was preserved. In this section, our goal is to investigate a geometric structure of the modular space $\mathcal{Z}_{\sigma}(s,p)$ related to the fixed point theory. For this, we will examine property (β) and the uniform Opial property for $\mathcal{Z}_{\sigma}(s,p)$. Finally, we will give some fixed point results. To do this, we need some results which are important in our opinion.

Lemma 3.1 [2] If $\sigma \in \delta_2^s$, then for any L > 0 and $\varepsilon > 0$, there exists $\delta > 0$ such that

 $\left|\sigma(u+\nu)-\sigma(u)\right|<\varepsilon,$

where $u, v \in X_{\sigma}$ with $\sigma(u) \leq L$ and $\sigma(v) \leq \delta$.

Lemma 3.2 [2] If $\sigma \in \delta_2^s$, convergence in norm and in modular are equivalent in X_{σ} .

Lemma 3.3 [2] If $\sigma \in \delta_2^s$, then for any $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that $||x|| \ge 1 + \delta$ implies $\sigma(x) \ge 1 + \varepsilon$.

Now we give the following two lemmas without proof.

Lemma 3.4 If $||x||_L < 1$ for any $x \in \mathbb{Z}_{\sigma}(s, p)$, then $\sigma(x) \leq ||x||_L$.

Lemma 3.5 For any $x \in \mathcal{Z}_{\sigma}(s, p)$, $||x||_{L} = 1$ if and only if $\sigma(x) = 1$.

Lemma 3.6 If $\liminf p_r > 1$, then for any $x \in \mathbb{Z}_{\sigma}(s, p)$, there exist $k_0 \in \mathbb{N}$ and $\mu \in (0, 1)$ such that

$$\sigma\left(\frac{x^k}{2}\right) \leq \frac{1-\mu}{2}\sigma\left(x^k\right)$$

for all $k \in \mathbb{N}$ with $k \ge k_0$, where $x^k = (0, 0, \dots, 0, \sum_{2^r \le i \le k} |x(i)|, x(k+1), x(k+2), \dots)$ and $2^r \le k < 2^{r+1}$.

Proof Let $k \in \mathbb{N}$ be fixed. Then there exists $r_k \in \mathbb{N}$ such that $k \in I_{r_k}$. Let γ be a real number $1 < \gamma \le \liminf p_r$, and so there exists $k_0 \in \mathbb{N}$ such that $\gamma < p_{r_k}$ for all $k \ge k_0$. Choose $\mu \in (0,1)$ such that $(\frac{1}{2})^{\gamma} \le \frac{1-\mu}{2}$. Therefore, we have

$$\sigma\left(\frac{x^k}{2}\right) = \sum_{r=0}^{\infty} \left(2^{-r} \sum_r k^{-s} \left|\frac{\alpha x(k) + (1-\alpha)x(k-1)}{2}\right|\right)^{p_r}$$
$$= \sum_{r=0}^{\infty} \left(\frac{1}{2}\right)^{p_r} \left(2^{-r} \sum_r k^{-s} \left|\alpha x(k) + (1-\alpha)x(k-1)\right|\right)^{p_r}$$
$$\leq \left(\frac{1}{2}\right)^{\gamma} \sum_{r=0}^{\infty} \left(2^{-r} \sum_r k^{-s} \left|\alpha x(k) + (1-\alpha)x(k-1)\right|\right)^{p_r}$$
$$< \frac{1-\mu}{2} \sigma\left(x^k\right)$$

for each $x \in \mathcal{Z}_{\sigma}(s, p)$ and $k \ge k_0$.

Lemma 3.7 If $\sigma \in \delta_2^s$, then for any $\varepsilon \in (0,1)$, there exists $\delta \in (0,1)$ such that $\sigma(x) \le 1 - \varepsilon$ implies $||x|| \le 1 - \delta$.

Proof Suppose that lemma does not hold. So, there exist $\varepsilon > 0$ and $x_n \in \mathbb{Z}_{\sigma}(s,p)$ such that $\sigma(x_n) < 1 - \varepsilon$ and $\frac{1}{2} \le ||x_n|| \to 1$. Take $s_n = \frac{1}{||x_n||-1}$, and so $s_n \to 0$ as $n \to \infty$. Let $P = \sup\{\sigma(2x_n) : n \in \mathbb{N}\}$. There exists $D \ge 2$ such that

$$\sigma(2u) \le D\sigma(u) + 1 \tag{3.1}$$

for every $u \in \mathbb{Z}_{\sigma}(s, p)$ with $\sigma(u) < 1$, since $\sigma \in \delta_2^s$. We have

$$\sigma(2x_n) \le D\sigma(x_n) + 1 < D + 1$$

for all $n \in \mathbb{N}$ by (3.1). Therefore, $0 < P < \infty$ and from Lemma 3.5 we have

$$1 = \sigma\left(\frac{x_n}{\|x_n\|}\right) = \sigma\left(2s_nx_n + (1 - s_n)x_n\right)$$
$$\leq s_n\sigma(2x_n) + (1 - s_n)\sigma(x_n)$$
$$\leq s_nP + (1 - \varepsilon) \to (1 - \varepsilon).$$

This is a contradiction. So, the proof is complete.

Theorem 3.8 *The space* $\mathcal{Z}_{\sigma}(s,p)$ *has property* (β)*.*

Proof Let $\varepsilon > 0$ and $(x_n) \subset B(\mathcal{Z}_{\sigma}(s, p))$ with $sep(x_n) \ge \varepsilon$ and $x \in B(\mathcal{Z}_{\sigma}(s, p))$. For each $l \in \mathbb{N}$, we can find $r_k \in \mathbb{N}$ such that $2^{r_k} \le l < 2^{r_k+1}$. Let

$$x_n^l = \left(\overbrace{0,0,\ldots,0}^{l-1}, \sum_{2^{r_k} \le i \le l} |x(i)|, x_n(l+1), x_n(l+2), \ldots\right).$$

Since for each $i \in \mathbb{N}$, $(x_n(i))_{i=1}^{\infty}$ is bounded, by using the diagonal method, we can find a subsequence (x_{n_j}) of (x_n) such that $(x_{n_j}(i))$ converges for each $i \in \mathbb{N}$ with $1 \le i \le l$. Therefore, there exists an increasing sequence of positive integers t_l such that $sep((x_{n_j}^l)_{j\ge t_l}) \ge \varepsilon$. Thus, there exists a sequence of positive integers $(r_l)_{l=1}^{\infty}$ with $r_1 < r_2 < \cdots$ such that $||x_{r_l}^l|| \ge \frac{\varepsilon}{2}$ for all $l \in \mathbb{N}$. Since $\sigma \in \delta_2^s$, there is $\eta > 0$ such that

$$\sigma\left(x_{r_{l}}^{l}\right) \geq \eta \quad \text{for all } l \in \mathbb{N} \tag{3.2}$$

from Lemma 3.3. However, there exist $k_0 \in \mathbb{N}$ and $\mu \in (0, 1)$ such that

$$\sigma\left(\frac{\nu^k}{2}\right) \le \frac{1-\mu}{2}\sigma\left(\nu^k\right) \tag{3.3}$$

for all $v \in \mathcal{Z}_{\sigma}(s, p)$ and $k \ge k_0$ by Lemma 3.6. There exists $\delta > 0$ such that

$$\sigma(y) \le 1 - \frac{\mu\eta}{4} \quad \Rightarrow \quad \|y\| \le 1 - \delta \tag{3.4}$$

for any $y \in \mathcal{Z}_{\sigma}(s, p)$ by Lemma 3.7.

By Lemma 3.1, there exists δ_0 such that

$$\left|\sigma(u+v) - \sigma(u)\right| < \frac{\mu\eta}{4},\tag{3.5}$$

where $\sigma(u) \leq 1$ and $\sigma(v) \leq \delta_0$. Hence, we get that $\sigma(x) \leq 1$ since $x \in B(\mathcal{Z}_{\sigma}(s, p))$. Then there exists $k \geq k_0$ such that $\sigma(x^k) \leq \delta_0$. Let $u = x_{r_l}^l$ and $v = x^l$. Then

$$\sigma\left(\frac{u}{2}\right) < 1$$
 and $\sigma\left(\frac{v}{2}\right) < \delta_0$.

We obtain from (3.3) and (3.5) that

$$\sigma\left(\frac{u+v}{2}\right) \le \sigma\left(\frac{u}{2}\right) + \frac{\mu\eta}{4} \le \frac{1-\mu}{2}\sigma(u) + \frac{\mu\eta}{4}.$$
(3.6)

Choose $s_i = r_{l_i}$. By the inequalities (3.2), (3.3), (3.6) and the convexity of the function $f(u) = |u|^{p_r}$, we have

$$\begin{split} \sigma\left(\frac{x+x_{s_k}}{2}\right) &= \sum_{r=0}^{\infty} \left(2^{-r}\sum_r k^{-s} \left| \frac{\alpha(x(k)+x_{s_l}(k))+(1-\alpha)(x(k-1)+x_{s_l}(k-1))}{2} \right| \right)^{p_r} \\ &= \sum_{r=0}^{r_k-1} \left(2^{-r}\sum_r k^{-s} \left| \frac{\alpha(x(k)+x_{s_l}(k))+(1-\alpha)(x(k-1)+x_{s_l}(k-1))}{2} \right| \right)^{p_r} \\ &+ \sum_{r=r_k}^{\infty} \left(2^{-r}\sum_r k^{-s} \left| \frac{\alpha(x(k)+x_{s_l}(k))+(1-\alpha)(x(k-1)+x_{s_l}(k-1))}{2} \right| \right)^{p_r} \\ &\leq \frac{1}{2}\sum_{r=0}^{r_k-1} \left(2^{-r}\sum_r k^{-s} \left| \alpha x(k)+(1-\alpha)x(k-1) \right| \right)^{p_r} \\ &+ \frac{1}{2}\sum_{r=0}^{r_k-1} \left(2^{-r}\sum_r k^{-s} \left| \frac{\alpha x_{s_l}(k)+(1-\alpha)x_{s_l}(k-1)}{2} \right| \right)^{p_r} \\ &+ \sum_{r=r_k}^{\infty} \left(2^{-r}\sum_r k^{-s} \left| \frac{\alpha x_{s_l}(k)+(1-\alpha)x(k-1)}{2} \right| \right)^{p_r} \\ &+ \frac{1}{2}\sum_{r=0}^{r_k-1} \left(2^{-r}\sum_r k^{-s} \left| \alpha x_{s_l}(k)+(1-\alpha)x_{s_l}(k-1) \right| \right)^{p_r} \\ &+ \frac{1}{2}\sum_{r=0}^{r_k-1} \left(2^{-r}\sum_r k^{-s} \left| \alpha x_{s_l}(k)+(1-\alpha)x_{s_l}(k-1) \right| \right)^{p_r} \\ &+ \frac{1}{2}\sum_{r=0}^{\infty} \left(2^{-r}\sum_r k^{-s} \left| \alpha x_{s_l}(k)+(1-\alpha)x_{s_l}(k-1) \right| \right)^{p_r} \\ &+ \frac{1}{2}\sum_{r=0}^{\infty} \left(2^{-r}\sum_r k^{-s} \left| \alpha x_{s_l}(k)+(1-\alpha)x_{s_l}(k-1) \right| \right)^{p_r} \\ &+ \frac{1}{2}\sum_{r=0}^{\infty} \left(2^{-r}\sum_r k^{-s} \left| \alpha x_{s_l}(k)+(1-\alpha)x_{s_l}(k-1) \right| \right)^{p_r} \\ &+ \frac{1}{2}\sum_{r=0}^{\infty} \left(2^{-r}\sum_r k^{-s} \left| \alpha x_{s_l}(k)+(1-\alpha)x_{s_l}(k-1) \right| \right)^{p_r} \end{split}$$

$$\begin{aligned} &-\frac{\mu}{2}\sum_{r=r_{k}}^{\infty}\left(2^{-r}\sum_{r}k^{-s}\left|\frac{\alpha x_{s_{i}}(k)+(1-\alpha)x_{s_{i}}(k-1)}{2}\right|\right)^{p_{r}}+\frac{\mu\eta}{4}\\ &\leq \frac{1}{2}+\frac{1}{2}-\frac{\mu\eta}{2}+\frac{\mu\eta}{4}\\ &=1-\frac{\mu\eta}{4}.\end{aligned}$$

So, the inequality (3.4) implies that $\|\frac{x+x_{s_k}}{2}\| \le 1 - \delta$. Consequently, the space $\mathcal{Z}_{\sigma}(s, p)$ possesses property (β).

Since property (β) implies NUC, NUC implies property (D) and property (D) implies reflexivity, we can give the following result from Theorem 3.8.

Corollary 3.9 The space $Z_{\sigma}(s, p)$ is nearly uniform convex, reflexive and also it has property (D).

Theorem 3.10 The space $Z_{\sigma}(s, p)$ has the uniform Opial property.

Proof Let $\varepsilon > 0$ and $x \in \mathbb{Z}_{\sigma}(s, p)$ be such that $||x|| \ge \varepsilon$ and (x_n) be a weakly null sequence in $S(\mathbb{Z}_{\sigma}(s, p))$. By $\sigma \in \delta_2^s$, there exists $\zeta \in (0, 1)$ independent of x such that $\sigma(x) > \zeta$ by Lemma 3.2. Also since $\sigma \in \delta_2^s$, by Lemma 3.1, there is $\zeta_1 \in (0, \zeta)$ such that

$$\left|\sigma\left(y+z\right)-\sigma\left(y\right)\right| < \frac{\zeta}{4} \tag{3.7}$$

whenever $\sigma(y) \leq 1$ and $\sigma(z) \leq \zeta_1$. Take $r_0 \in \mathbb{N}$ such that

$$\sum_{r=r_0+1}^{\infty} \left(2^{-r} \sum_{r} k^{-s} \left| \alpha x(k) + (1-\alpha) x(k-1) \right| \right)^{p_r} < \frac{\zeta_1}{4}.$$
(3.8)

Hence, we have

$$\zeta < \sum_{r=1}^{r_0} \left(2^{-r} \sum_r k^{-s} \left| \alpha x(k) + (1 - \alpha) x(k - 1) \right| \right)^{p_r} + \sum_{r=r_0+1}^{\infty} \left(2^{-r} \sum_r k^{-s} \left| \alpha x(k) + (1 - \alpha) x(k - 1) \right| \right)^{p_r} \le \sum_{r=1}^{r_0} \left(2^{-r} \sum_r k^{-s} \left| \alpha x(k) + (1 - \alpha) x(k - 1) \right| \right)^{p_r} + \frac{\zeta_1}{4}$$
(3.9)

and this implies that

$$\sum_{r=1}^{r_0} \left(2^{-r} \sum_r k^{-s} \left| \alpha x(k) + (1 - \alpha) x(k - 1) \right| \right)^{p_r} > \zeta - \frac{\zeta_1}{4}$$
$$> \zeta - \frac{\zeta}{4}$$
$$= \frac{3\zeta}{4}.$$
(3.10)

Since $x_n \to {}^w 0$, by the inequality (3.10), there exists $r_0 \in \mathbb{N}$ such that

$$\sum_{r=1}^{r_0} \left(2^{-r} \sum_r k^{-s} \left| \alpha \left(x_n(k) + x(k) \right) + (1 - \alpha) \left(x_n(k - 1) + x(k - 1) \right) \right| \right)^{p_r} > \frac{3\zeta}{4}.$$
 (3.11)

Again, by $x_n \rightarrow {}^w 0$, there is $r_1 > r_0$ such that for all $r > r_1$

$$\|x_{n_{|r_0}}\| < 1 - \left(1 - \frac{\zeta}{4}\right)^{1/M},\tag{3.12}$$

where $p_r \leq M \in \mathbb{N}$ for all $r \in \mathbb{N}$. Therefore, we obtain that

$$\|x_{n_{|\mathbb{N}-r_0}}\| > \left(1 - \frac{\zeta}{4}\right)^{1/M}$$
(3.13)

by the triangle inequality of the norm. It follows from the definition of the Luxemburg norm that

$$1 \leq \sigma \left(\frac{x_{n|\mathbb{N}-r_{0}}}{(1-\frac{\zeta}{4})^{1/M}}\right)$$

$$= \sum_{r=r_{0}+1}^{\infty} \left(\frac{2^{-r}\sum_{r}k^{-s}|\alpha x_{n}(k) + (1-\alpha)x_{n}(k-1)|}{(1-\frac{\zeta}{4})^{1/M}}\right)^{p_{r}}$$

$$\leq \left(\frac{1}{(1-\frac{\zeta}{4})^{1/M}}\right)^{M} \sum_{r=r_{0}+1}^{\infty} \left(2^{-r}\sum_{r}k^{-s}|\alpha x_{n}(k) + (1-\alpha)x_{n}(k-1)|\right)^{p_{r}}$$
(3.14)

and this implies that

$$\sum_{r=r_0+1}^{\infty} \left(2^{-r} \sum_{r} k^{-s} \left| \alpha x_n(k) + (1-\alpha) x_n(k-1) \right| \right)^{p_r} \ge 1 - \frac{\zeta}{4}.$$
(3.15)

By (3.7), (3.8), (3.11), (3.15) and since $x_n \rightarrow w 0 \Rightarrow x_n \rightarrow 0$ (coordinatewise), we have for any $r > r_1$ that

$$\begin{aligned} \sigma(x_n + x) &= \sum_{r=1}^{r_0} \left(2^{-r} \sum_r k^{-s} \left| \alpha \left(x_n(k) + x(k) \right) + (1 - \alpha) \left(x_n(k - 1) + x(k - 1) \right) \right| \right)^{p_r} \\ &+ \sum_{r=r_0+1}^{\infty} \left(2^{-r} \sum_r k^{-s} \left| \alpha \left(x_n(k) + x(k) \right) + (1 - \alpha) \left(x_n(k - 1) + x(k - 1) \right) \right| \right)^{p_r} \\ &\geq \sum_{r=r_0+1}^{\infty} \left(2^{-r} \sum_r k^{-s} \left| \alpha \left(x_n(k) + x(k) \right) + (1 - \alpha) \left(x_n(k - 1) + x(k - 1) \right) \right| \right)^{p_r} \\ &- \frac{\zeta}{4} + \frac{3\zeta}{4} \\ &\geq \frac{3\zeta}{4} + \left(1 - \frac{\zeta}{4} \right) - \frac{\zeta}{4} \\ &= 1 + \frac{\zeta}{4}. \end{aligned}$$

Since $\sigma \in \delta_2^s$, it follows from Lemma 3.3 that there is τ depending on ζ only such that $||x_n + x|| \ge 1 + \tau$.

Corollary 3.11 The space $\mathcal{Z}_{\sigma}(s,p)$ has property (L) and the fixed point property.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors read and approved the final manuscript.

Author details

¹Department of Mathematics, Firat University, Elaızğ, 23119, Turkey. ²Department of Statistics, Bitlis Eren University, Bitlis, 13000, Turkey. ³Department of Mathematics, Muş Alparslan University, Muş, 49100, Turkey.

Received: 14 December 2012 Accepted: 5 June 2013 Published: 25 June 2013

References

- Cui, Y, Hudzik, H: Some geometric properties related to fixed point theory in Cesàro spaces. Collect. Math. 50(3), 277-288 (1999)
- Cui, Y, Hudzik, H: On the uniform Opial property in some modular sequence spaces. Funct. Approx. Comment. Math. XXVI, 93-102 (1998)
- Karakaya, V: Some geometric properties of sequence spaces involving lacunary sequence. J. Inequal. Appl. 2007, Article ID 81028 (2007)
- 4. Savaş, E, Karakaya, V, Şimşek, N: Some ℓ_p -type new sequence spaces and their geometric properties. Abstr. Appl. Anal. **2009**, Article ID 696971 (2009)
- 5. Şimşek, N, Savaş, E, Karakaya, V: Some geometric and topological properties of a new sequence space defined by de la Vallée-Poussin mean. J. Comput. Anal. Appl. **12**(4), 768-779 (2010)
- Maligranda, L, Petrot, N, Suantai, S: On the James constant and B-convexity of Cesàro and Cesàro-Orlicz sequences spaces. J. Math. Anal. Appl. 326(1), 312-331 (2007)
- Mursaleen, M, Çolak, R, Et, M: Some geometric inequalities in a new Banach sequence space. J. Inequal. Appl., 2007, Article ID 86757 (2007)
- Petrot, N, Suantai, S: On uniform Kadec-Klee properties and rotundity in generalized Cesàro sequence spaces. Int. J. Math. Sci. 2, 91-97 (2004)
- Petrot, N, Suantai, S: Uniform Opial properties in generalized Cesàro sequence spaces. Nonlinear Anal. 63(8), 1116-1125 (2005)
- Opial, Z: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591-597 (1967)
- 11. Franchetti, C: Duality mapping and homeomorphisms in Banach theory. In: Proceedings of Research Workshop on Banach Spaces Theory. University of Iowa Press, Iowa City (1981)
- 12. Prus, S: Banach spaces with uniform Opial property. Nonlinear Anal. 8, 697-704 (1992)
- Goebel, K, Kirk, W: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)
 Toledano, JMA, Benavides, TD, Acedo, GL: Measureness of noncompactness. In: Metric Fixed Point Theory, Operator
- Theory: Advances and Applications, vol. 99. Birkhäuser, Basel (1997) 15. Benavides, TD: Weak uniform normal structure in direct sum spaces. Stud. Math. **103**(37), 293-299 (1992)
- Benavides, TD, Phothi, S: The fixed point property under renorming in some classes of Banach spaces. Nonlinear Anal. 72(3), 1409-1416 (2010)
- 17. Clarkson, JA: Uniformly convex spaces. Trans. Am. Math. Soc. 40, 396-414 (1936)
- 18. Huff, R: Banach spaces which are nearly uniformly convex. Rocky Mt. J. Math. 10(4), 743-749 (1980)
- 19. Rolewicz, S: On Δ -uniform convexity and drop property. Stud. Math. 87(2), 181-191 (1987)
- 20. Montesinos, V: Drop property equals reflexivity. Stud. Math. 87(1), 93-100 (1987)
- 21. Shiue, JS: On the Cesàro sequence space. Tamkang J. Math. 2, 19-25 (1970)
- 22. Jagers, AA: A note on Cesàro sequence spaces. Nieuw Arch. Wiskd. 22(3), 113-124 (1974)
- 23. Suantai, S: On the H-property of some Banach sequence spaces. Arch. Math. 39, 309-316 (2003)
- 24. Bilgin, T: The sequence space C(s,p) and related matrix transformations. Punjab Univ. J. Math. 30, 67-77 (1997)
- 25. Lim, KP: Matrix transformation in the Cesàro sequence spaces. Kyungpook Math. J. 14, 221-227 (1974)
- 26. Şengönül, M, Kayaduman, K: On the Z_N-Nakano sequence space. Int. J. Math. Anal. 4(25-28), 1363-1375 (2010)

doi:10.1186/1687-1812-2013-165

Cite this article as: Et et al.: **Some geometric properties of a new modular space defined by Zweier operator**. *Fixed Point Theory and Applications* 2013 **2013**:165.